
May/June 2010 www.stsc.hill.af.mil 27

Open Forum

Adam Smith was both influential and
controversial in his inclusion of

humans, or labor, as a major contribution
to the wealth of a nation. Then again,
Smith was not the only visionary in 18th
century Scotland to acknowledge the
human contribution to business and eco-
nomics. With the Industrial Revolution in
full flow, the common worker was per-
ceived by industrialists as a replaceable cog
in a machine, there to turn a profit and to
be exploited. Cotton mill owner and social
reformer Robert Owen would break that
mold. On the banks of the River Clyde
(near Glasgow) stands the one-time cot-
ton mill town of New Lanark [1]. As tes-
timony to its achievements, the mill oper-
ated from 1786 until 1968 and is now pre-
served as a World Heritage site. What dis-
tinguished the mill-owner from others at
that time was the manner in which he nur-
tured the workforce: Having decent
homes for workers, schools for their chil-
dren, and cooperative shops delivering
goods at a reasonable value contributed to
the town’s financial and communal suc-
cess. For Owen, this was not philanthropy;
it was the self-interest of capitalism,
spiked with a social conscience. As clearly
as the River Clyde was needed to turn the
wheels of the mill machines, Owen recog-
nized that people were needed to work the
looms that weave the cloth. The end-result
was employees who worked harder and
better—and created a higher-quality final
product.

Human Assets
Adam Smith and I share more than
nationality; we both believe that humans
are key assets in the pursuit of economi-
cally favorable results. For more years than
I care to admit to, I have held a strong
conviction that substantial and sustainable
advances in industrial-scale software engi-
neering will not come from new tools or
programming languages; they will not
emerge from the hyperbole surrounding
heavyweight or lightweight processes; they
will not come from accruing quality

badges or collecting metrics; and they will
not arrive via a modeling notation (such as
the Unified Modeling Language). The
potential for improvement is the most that
various software tools, techniques, and ini-
tiatives can ever deliver. Substantive
progress has been—and will continue to
be—a direct consequence of employing
software professionals and providing
them with a suitable environment in
which to operate. Competent personnel
are an organization’s pivotal assets.

Having an appropriately trained soft-
ware workforce has a double-edged effect.
Educated teams focus on productive
work; shared knowledge and experience
give them the cohesion with which to
address the intellectual tasks that comprise
engineering. Equally significant is that
teams spend less time evaluating and cor-
recting substandard software artifacts sim-
ply because these are produced in negligi-
ble quantities by competent engineers.

While there is a widespread fallacy
that technical issues are the primary
source of project woes, people aspects
seem to dominate the most expensive
project disasters. Without a doubt, the
majority of perceived difficulties are sim-
ply symptomatic of intrinsic people fac-
tors (politics is a popular euphemism for
these). To quote from the influential
book, “Peopleware”:

For the overwhelming majority of
the bankrupt projects we studied,
there was not a single technological
issue to explain the failure ... The
major problems of our work are

not so much technological as soci-
ological in nature. [2]

Particularly in knowledge economies,
the success or failure of technology pro-
grams hinges on assessing capabilities and
recognizing the needs of the engineering
teams. To this end, I have generated seven
human-centric rules for software develop-
ment organizations to adhere to:
• Rule 1: The main causal factors of

project success, mediocrity, or failure
should be recognized as human and
organizational, not technological.

• Rule 2: Professionalism and software
engineering competence should be
assessed objectively and encouraged
proactively by senior management.

• Rule 3: The number and seniority of
software professionals employed with-
in an organization should be commen-
surate with the magnitude and critical-
ity of the required software systems.

• Rule 4: Organizations should provide
an environment conducive to the intel-
lectual task.

• Rule 5: Management should recognize
its primary functions are to attract,
motivate, facilitate, and retain talent.
Teams should be given an identity, a
vision, and quality goals.

• Rule 6: Teams should be organized
with respect to member strengths and
competencies.

• Rule 7: Dependable sources of knowl-
edge should be provided in the form of
textbooks and training materials.
Readers familiar with my May/June

2009 CrossTalk article will recognize
two of these rules. Attention was also
drawn to three essential ingredients of
software development called the 3Ps: peo-
ple, products, and processes [3].

Human Asset Evaluation
Not all assets are of equal value; so too
can be said of human assets. The process
of evaluation for most assets is based fun-
damentally on attributes and objective cri-
teria, with a variable dash of subjectivity

Human Asset Management

Widely recognized as the “father of modern economics,” Adam Smith’s seminal book, “The Wealth of Nations,” included
both tangible assets (machines, buildings, and land) and humans as essential wealth-generating resources. Our present high-
technology industries are eager to invest in and protect their tangible assets (such as computer networks), but the modern
accountancy paradigm forces the view of an employee as merely a cost. Humans are indeed primary assets, and this article
provides guidance in assessing, utilizing, and enhancing their value. 

Martin Allen
Independent Software Consultant

“... people aspects
seem to dominate the
most expensive project

disasters.”



Open Forum

28 CROSSTALK The Journal of Defense Software Engineering May/June 2010

on top. Houses with identical specifica-
tions and locations (objective) can have
different valuations due to the varying
attraction of the décor (subjective).
Likewise, diamonds of the same number
of carats (objective) can have different
valuations due to their luster (subjective).
When assessing the value of human
assets, we can follow a similar scheme.

The main objective criteria for evaluat-
ing professional (software) engineers are:
• Qualifications/education.
• Formal training.
• Experience.

If necessary, qualifiers can be used to
turn these into quantitative criteria—con-
sider the applicability, duration, and timeli-
ness of each criterion. For example, a rele-
vant degree is very valuable; if my experi-
ence is typical, this has shaped an engineer’s
aptitude from an early age.

Subjective criteria, sometimes referred
to as soft skills, may include:
• Communication ability.
• Attitude/commitment.
• Adaptability.
• Assertiveness.
Decent soft skills are particularly relevant
where team interaction and influence are
important.

One may expect the formality of an
employee evaluation scheme to vary with
respect to the industry and the criticality of
the application. With safety-related soft-
ware systems in Europe, the range of indi-
vidual and team competence is unaccept-
ably wide. In recent years, I have had the
pleasure of working alongside competent
professionals with the requisite qualifica-
tions, training, and experience. I have also
worked in critical environments where,

clearly, the engineers lacked even basic
skills. Some years ago, I was involved in an
initiative to introduce a competence assess-
ment scheme into a safety-related industry
sector. A significant number of managers
and engineers were unwilling to take part in
the scheme until the objective criteria had
been replaced by subjective criteria. Those
same people would probably balk at the
idea of being passengers on an airplane
flown by a pilot who was not trained, but
who had a pleasant voice over the speaker.
Unfortunate as it seems, adopting formal
employee evaluation or competence assess-
ment schemes is like diet and exercise—we
need it to stay fit and healthy, but doing the
things that are best for us is not always easy.
For safety-related systems, the British
Health and Safety Executive has published
guidelines for introducing a competence
management system [4].

Could the certification of software
engineering professionals be the answer (or
part of the answer) in establishing compe-
tence? As is often the case when challenged
to answer a software engineering question,
we rely on respected sources of knowledge
such as CrossTalk. Perhaps, surprising-
ly, there is a lack of information on profes-
sional certification; the obvious conclusion
is that certification is at least an unpopular
subject, or even taboo. Without a doubt,
there are leading academics and practicing
professionals who are concerned about the
efficacy of certification programs. The
core of the IEEE’s Certified Software
Development Associate and Professional
efforts [5], the Software Engineering Body
of Knowledge, has been criticized; for
example, its ability to encompass all appli-
cation domains is questionable. However,

my own experiences (in various industry
sectors in Europe) show a multitude of
people, particularly in technical leadership
roles, who would be fearful of successful
certification initiatives that could expose
their shallow grasp of a deep discipline.

Perhaps there are less formal and more
palatable ways of assessing an engineer’s
competence. For instance, I have assem-
bled a portfolio from the many projects I
have worked on. This collection includes
samples of requirements specifications,
architectural designs, test specifications,
process definitions, presentations, lists of
technical books read and owned, etc. This
gives me the ability to show someone the
level of my experience and ability; yet, hav-
ing a portfolio is far from common in our
industries and it receives very mixed reac-
tions. As DeMarco and Lister suggest, “It
would be ludicrous to think of hiring a jug-
gler without first seeing him perform” [2].

On the topic of hiring competent staff,
professionals must be dismayed at the high
proportion of job advertisements, over a
substantial period, focused on low-caliber
skills. For instance, experiences with a spe-
cific programming language or a particular
requirements management or design tool
are often cited as essential skills. With
regard to requirements, the major skill is
always in the specification: Tool proficien-
cy can inject quality into requirements
management, not the specification thereof.
A skilled engineer will be trained to specify
atomic, consistent, structured, and testable
requirements; Wilson provides a synopsis
on requirements specification in [6].
Similarly with design tools, and to quote
Grady Booch, “CASE [Computer Assisted
Software Engineering] tools have allowed
merely bad designers to produce bad
designs more quickly” [7]. The absolute fix-
ation by whole industry sectors on pro-
gramming language experience is a contin-
uing embarrassment. There is an ever-pre-
sent concern in our profession that the
wrong categories of skills are encouraged
and valued.

Judging from the feedback I received
from my previous article, the most con-
tentious areas were the rules and the sec-
tion dealing with people—specifically, the
contrasting behavior between profession-
als and amateurs. For a comparison, see
Table 1.

We can take one of the divergences
between these groups of people and ana-
lyze it further. Consider a sliding scale with
art at one end and science at the other. If,
by a process of task analysis, we conclude
that the creative nature of software engi-
neering and its resilience to practical math-
ematical proof places it nearer art than sci-

The Professional Practitioner The Amateur or Hobbyist

Views the overall task as an engineering
discipline.

Describes the overall task as an art or craft.

Promotes a holistic, life-cycle view. Holds an implementation, coding bias.

Places emphasis on the application or problem
domain, and presents architectural solutions.

Places emphasis on the technical detail of
the solution domain to the detriment of the
customer or user.

Learns principally from published engineering
literature.

Learns principally by emulating colleagues.

Encourages compliance with industry
standards.

Prefers improvised, local procedures.

Employs quality criteria to manage projects. Manages projects via schedule alone.

Conveys an outward, discipline focus. Conveys an inward, project focus.

Exhibits a balanced approach to risk. Adopts a naïve approach to risk.

Table 1: Characteristics of Software Professionals versus Amateurs



Human Asset Management

May/June 2010 www.stsc.hill.af.mil 29

ence, we must pause for thought. Good lit-
erature is founded on the discipline of
strict linguistic standards (e.g., punctuation,
spelling, and grammar), whereas music is
founded on structures for tone, rhythm,
and notation. History has proven, there-
fore, that discipline has released creativity,
not stifled it: Discipline is as elemental to
an artist, writer, or musician as it is to an
engineer.

When a student receives a classical edu-
cation in software engineering, this indoc-
trinates a view of, and an approach to, the
discipline that is not just different from
common practices, perceptions, and
mythology—it is diametrically opposed.
The gap between professional and amateur
is not a gap, it is a chasm. Therefore, in
comparative arithmetic terms, it is ludi-
crous to assume that 10 untrained person-
nel can perform even the work of a solitary
professional. Perhaps this accounts for the
10 to 1 productivity ratio recorded as long
ago as 1975 by Frederick P. Brooks in
“The Mythical Man-Month” [8].

In 1980, I was a new graduate working
in the British defense industry. I was
approached by a concerned manager who
observed, “You appear to be faltering and
are not producing code as quickly as your
peers.” No one amongst this large office
of software developers had ever witnessed
a qualified and trained softie ratifying and
specifying requirements, devising software
architecture, designing the software, defin-
ing test cases and recording test results, as
well as generating robust code. Wind the
clock forward almost three decades and, in
a high-dependability environment, our
team was tasked to review multiple soft-
ware requirements specifications pro-
duced by untrained personnel. Even with
the availability of practical guidelines, the
authors had produced worthless specifica-
tions. Combined with the worst that a bot-
tom-up, functional software architecture
has to offer, the project was in an undesir-
able state. The real problem in such a sce-
nario is that, again, a group of untrained
people cannot match the actual productiv-
ity of one professional. Equally, the
majority will dominate proceedings and a
solitary professional will toil to correct the
substantial but substandard output of 10
untrained employees.

Lean Engineering is a populist topic,
although it is well-documented that pro-
duction-oriented techniques do not trans-
fer readily into a (software) development
environment—also known as the make a
cheeseburger, sell a cheeseburger mentality dis-
cussed in [2]. Nonetheless, one of the
principles of Lean is the reduction of
waste in a production line. In terms of

waste, having non-professional software
personnel producing substandard artifacts
is analogous to having an untrained team
preparing and then selling raw, frozen
burgers on a bun, with or without the
cheese. In order to rectify this and similar
waste issues, an organization may choose
to assess the capabilities and training
needs of project personnel—or choose to
assess the competence of the manage-
ment team that appointed and tasked
untrained personnel in the first instance.

If the economic aspects of the soft-
ware engineering life cycle were ever to be
modeled, the most significant variables in
the equation would reflect the human
knowledge and experience. Then again,
the life cycle has been modeled and the
people capability attributes are the most
significant. Barry Boehm identified this
truism as early as the 1980s, and it is cap-
tured in COCOMO [9].

There are already significant clues here
as to how to assess the value or compe-
tence of software engineering personnel.
However, if your organization is still
searching for a magical productivity
enhancer, then look to laetrile1 for the
futility of searching for wonder cures, or
“easy technological non-solutions” as
described fully in chapter 6 of [2] and
again in Brooks’ “No Silver Bullet” chap-
ter in [8].

Human Asset Enhancement
As we know, many assets (like cars) depre-
ciate in value, while others (like real estate)
increase in value—so we maintain, build
on, and insure against loss those appreci-
ating investments. Humans increase in
worth through enhanced knowledge or
experience and, likewise, an organization
is prudent to invest time and money on its
most precious people assets as well as to
guard against the mishap of their loss. In
our competitive technology-driven mar-
kets, companies striving to be the best
have to attract, nurture, and retain high-
caliber engineers.

I remember an organization that pur-
chased each member of its administrative
personnel a top-of-the-line PC and smart
laser printer. What happened? The engi-
neers stopped squabbling over their rent-

ed, one-between-five, basic machines—
and looked on enviously. In this case, the
organization showed a blatant disregard
for its engineers. After this, many resumes
were typed into those rented computers,
including my own. When an organization
equips all of its people adequately, pro-
vides an environment conducive to the
intellectual task of technological develop-
ment, and supports personnel growth, it
in turn maintains, enhances, and protects
human asset value. Engineers are people,
and people need to feel their contributions
are valued.

As indicated earlier, staff competence
assessment schemes are often viewed neg-
atively—but suppose such assessments
were shown to link directly to an organi-
zation’s development of, and investment
in, its people. Therefore, the most effec-
tive teams can be organized on the objec-
tive basis of competence rather than on
arbitrary and subjective opinions. As initial
reluctance gives way to synergy, people
will gel into strong teams.

Having assembled a strong team of
competent professionals, how should it be
organized? Brooks gives sound advice in
his “The Surgical Team” [8] chapter. A
surgeon and his surgical assistant perform
an operation, while supported by nurses,
an anesthesiologist, and administrative
staff. This arrangement compares favor-
ably with the roles of software architect,
software manager, programmers, testers,
and an administrator2. Consider the differ-
ence in the structure and formalism with-
in different groups of musicians. A ran-
dom collection of musicians can meet for
a jam session; without proper direction or
sheet music, the small group can still pro-
duce some decent, improvised sounds.
Similarly, a small band of jazz musicians
can, given reasonable levels of compe-
tence and practice, entertain an apprecia-
tive audience. However, to reach the excel-
lence of a large professional orchestra is a
monumental challenge in systematic coor-
dination—the conductor on the rostrum
and the sheet music are not just for show.
For technical teams developing software-
intensive systems of systems, the analogy
is clear: Systematic and formal coordina-
tion is essential.

Readers will benefit from this defense software industry insider’s focus on the proven,
primary influence on software project success or failure: the combined capabilities of
development team members. As for return on investment, enhancing team capability
is unique in offering potential productivity gain factors of up to 10 times. Increasing
team capability has the dual effect of improving the quality of software artifacts and
reducing waste.

Software Defense Application



Open Forum

30 CROSSTALK The Journal of Defense Software Engineering May/June 2010

Having assembled a strong team of
competent professionals, how should it be
managed? Consider an environment
where managers (verbally) whip teams to
meet implausible milestones; where engi-
neers are forced to cut corners and under-
mine basic quality criteria; where training
is regarded as an unnecessary expense,
and reading a book is considered a waste
of company time; where professional
opinions are most unwelcome and people
are expected to just get on with the job;
where political mendacity is a substitute
for competence; where knowledge is
wielded like a bludgeon with people herd-
ed into pens like cattle; in an office where
it is too hot, cold, or noisy for anyone to
function efficiently. In contrast, imagine
an environment where people are encour-
aged to design outstanding products;
where teams and individuals are chal-
lenged to excel; an office with shelves
groaning from the weight of books by
software gurus; where training is viewed as
a necessity; where professionalism is a
given; where diverse opinions are seen as
the balance in an open political culture;
where personnel are provided with ade-
quate tools and comfort; and a place
where the organization and staff have
mutual goals and aspirations. In summary,
it is as easy to obtain the least value from

your human assets as it is to obtain the
most value.

Conclusion
The legacies of Adam Smith and Robert
Owen are an important reminder to us that
people are at the heart of commercial and
social success. In our rapidly changing tech-
nological world, it is worth considering
their centuries-old wisdom. Perhaps there
is an opportunity for our organizations to
look again at the value, rather than the cost,
of their people assets. When people are
viewed truly as vital assets, then investment
in them is sure to deliver a mutually benefi-
cial corporate future. This will, in turn, lead
to greater customer satisfaction.u

References
1. “New Lanark – World Heritage Site.”

<www.newlanark.org>.
2. DeMarco, Tom, and Timothy Lister.

Peopleware: Productive Projects and Teams.
New York: Dorset House, 1999.

3. Allen, Martin. “From Substandard to
Successful Software.” CrossTalk
May/June 2009 <www.stsc.hill.af.mil/
crosstalk/2009/05/0905Allen.pdf>.

4. Health and Safety Executive, The
Institution of Electrical Engineers,
and The British Computer Society.

Managing Competence for Safety-Related
Systems. 2007 <www.hse.gov.uk/human
factors/topics/mancomppt1.pdf>.

5. IEEE Computer Society. “Certifi-
cation and Training for Software
Professionals.” 2009 <www.computer.
org/portal/web/certification>.

6. Wilson, William M. “Writing Effective
Natural Language Requirements
Specifications.” CrossTalk Feb.
1999 <www.stsc.hill.af.mil/crosstalk/
1999/02/wilson.pdf>.

7. Booch, Grady. Object-Oriented Analysis
and Design with Applications. Menlo
Park, CA: Addison Wesley, 1994.

8. Brooks, Frederick P. The Mythical Man-
Month: Essays on Software Engineering.
20th Anniversary Edition. Reading,
MA: Addison-Wesley, 1995.

9. Boehm, Barry W. Software Engineering
Economics. Upper Saddle River, NJ:
Prentice Hall PTR, 1981.

Notes
1. Laetrile is an extract from apricot

stones, sold in Mexico as a (fraudulent)
cure for cancer.

2. The role of software manager here is
one of a facilitator, rather than a tech-
nical lead. Team composition should
also vary with the magnitude and criti-
cality of the task.

About the Author

Martin Allen is a soft-
ware engineering profes-
sional with 30 years expe-
rience, mostly in the
defense industry in the
United Kingdom. He has
worked on many success-

ful software-intensive systems for the
British Royal Air Force and the Royal
Navy. Allen has always had a strong
interest in industry standards for the
engineering of dependable systems. His
other professional interests include risk
management, software cost economics,
requirements analysis, design methods,
and software testing. Allen and his col-
leagues work on the boundary between
the academic research of computer sci-
ence and the practical application of
software engineering.

1 Belfry Walk
Titchfield Common
Hampshire, United Kingdom
PO14 4QD
E-mail: mjallen60@yahoo.co.uk


