Software and Systems Integration

Leveraging Federal IT Investment
Wi ith Service-Oriented Architecture®

Geoffrey Raines
The MITRE Corporation

Service-oriented architecture (SOA) builds on computer engineering approaches of the past to offer an architectural approach
for enterprise systems, oriented around offering services on a network of consumers. For federal senior leadership teams, it offers
a path forward, allowing for incremental and focused inprovement of their I'T support systems. With thoughtful engineering

and an enterprise point of view, SOA offers positive benefits such as langnage neutral integration, component reuse, organi-

zational agility, and the ability to leverage past investment in existing systens.

Similar to the nation’s Fortune 500 lead-

ership, today’s federal leadership teams

often find themselves facing significant I'T

investment and portfolio challenges. They

have inherited a computing infrastructure
that is often not uniform, and whose tech-
nologies span the recent history of com-
puting. The IT infrastructures tend to
have diverse environments, complex busi-

ness logic, inconsistent interfaces, and lim-

ited sustainment budgets:

* Diverse environments. Mainframe
systems, client/server systems, and
multi-tier Web-based systems sit side-
by-side, demanding operations and
maintenance resources from a technolo-
gy marketplace in which the cost of
niche legacy technical skills continues to
rise. The portfolio of systems are gener-
ally written in a number of different
software development languages such as
COBOL, Java, assembly, and C, requit-
ing heterogeneous staff skill sets and
experience in a variety of commercial
products, some of which are so old that
they no longer offer support licenses.

* Complex business logic. The systems
often conform to a set of complex
business logic that has developed over a
number of years in response to evolv-
ing legal requirements, congressional
reporting mandates, changes in con-
tractor teams, and refinement of busi-
ness processes. While some systems are
new and robust, many are brittle and
hard to modify, relying on technical
skills not common in the marketplace
that become increasingly more expen-
sive. The maintenance tail on these sys-
tems is surprisingly high and competes
for resources with required new func-
tionality.

* Inconsistent interfaces. Interfaces
between systems have grown up spon-
taneously without enterprise planning
over many years. The interfaces are the
result of one-off negotiations between

© 2009 The MITRE Corporation for this article. All rights
reserved.

4 CRrossTALK The Journal of Defense Software Engincering

various parts of the organization, and
have been designed using many varied
technologies during the organization’s
IT history, following no consistent
design pattern. Recent enterprise
architecture efforts have documented
the enterprise interfaces in diagrams
that resemble a Rorschach inkblot test.
* Limited sustainment budgets. Even
without the continuous downward
pressure on IT budgets brought by
competing national requirements and
the view that IT should be increasingly
viewed as a commodity, there are not
enough budget resources or human
resources to recast the portfolio of sys-
tems to be modern and robust in one
action. David Longworth writes:

According to analysts at Forrester
Research, there are some 200 bil-
lion lines of COBOL—the most
popular legacy programming lan-
guage—still in use. Nor is it going
away: maintenance and modifica-
tions to installed software increase
that number by 5 billion lines a
year. IBM, meanwhile, claims its
CICS [Customer Information Con-
trol System] mainframe transaction
software handles more than 30 bil-
lion transactions per day, processes
$1 trillion in transaction values, and
is used by 30 million people. [1]

Given budget constraints, an incre-
mental approach seems to be required.

A Path Forward

SOA, as implemented through the com-
mon Web services standards, offers feder-
al senior leadership teams a path forward
given the diverse and complex IT portfo-
lio that they have inherited, allowing for
incremental and focused improvement of
their I'T support systems. With thoughtful
engineering and an enterprise point of
view, SOA offers several positive benefits.

Language Neutral Integration
Web-enabling applications with a com-
mon browser interface became a powerful
tool during the *90s. In the same way that
HTML defined a simple user browser
interface that almost all software applica-
tions could create, Web services defined a
programming interface available in almost
all environments. The HTML interface at
the presentation layer became ubiquitous
because it was easy to create, as it was
composed of text characters. Similarly, the
foundational contemporary Web services
standards use XML, which again is
focused on the creation and consumption
of delimited text. The bottom line is that
regardless of the development language
your systems use, your systems can offer
and invoke services through a common
mechanism.

Component Reuse

Given current Web services technology,
once an organization has built a software
component and offered it as a service, the
rest of the organization can then utilize
that service. Given proper service gover-
nance—including items such as service
provider trust, service security, and relia-
bility—Web services offer the potential
for aiding the more effective management
of an enterprise portfolio, allowing a capa-
bility to be built well once and shated, in
contrast to sustaining redundant systems
with many of the same capabilities (e.g,
multiple payroll, trouble ticket, or map-
ping systems in one organization). Reuse,
through the implementation of enterprise
service offerings, is further discussed later
in this article.

Organizational Agility

SOA defines building blocks of software
capability in terms of offered services that
meet some portion of the organization’s
requirements. These building blocks, once
defined and reliably operated, can be
recombined and integrated rapidly. Peter

February 2009

Fingar stated, “Classes, systems, or sub-
systems [that] can be designed as reusable
pieces. These pieces can then be assem-
bled to create various new applications”
[2]. Agility—the ability to more rapidly
adapt a federal organization’s tools to
meet their current requitements—can be
enhanced by having well-documented and
understood interfaces and enterprise-
accessible software capabilities.

Leveraging Existing Systems

One common use of SOA is to encapsu-
late elements or functions of existing
application systems and make them avail-
able to the enterprise in a standard agreed-
upon way, leveraging the substantial
investment alteady made. The most com-
pelling business case for SOA is often
made regarding leveraging this legacy
investment, enabling integration between
new and old system components. When
new capabilities are built, they are also
designed to work within the chosen com-
ponent model. Given the size and com-
plexity of the installed federal application
system base, being able to get more value
from these systems is a key driver for SOA
adoption. David Litwack writes:

The movement toward Web
Services will be rooted not in the
invention of radical new technolo-
gy, but rather in the Internet-
enabling and re-purposing of the
cumulative technology of more
than 40 years. Organizations will
continue to use Java, mainframe and
midrange systems, and Microsoft
technologies as a foundation for
solutions of the future. [3]

Of course, SOA as a concept has exist-
ed for many yeats, and communications
between service consumers and providers
have been implemented with a number of
protocols and approaches before Web set-
vices. Web services standards have brought
renewed contemporary interest in SOA
because of its use of textual XML and its
ability to be generated and consumed in
diverse computing platforms.

The benefits mentioned, however,
accrue only as the result of comprehen-
sive engineering and a meaningful archi-
tecture at the enterprise level. SOA as a
service concept in no way eliminates the
need for strong software development
practices, requirements-based life cycles,
and an effective enterprise architecture.
Done right, SOA offers valuable benefits;
however, SOA without structured pro-
cesses and governance will lead to tradi-
tional software system problems.

February 2009

Leveraging Federal IT Investment With Service-Oriented Architecture

The Increasing Span of Integration
SOA and its implementing standards, such
as the Web services standards, come to us
at a particular point in computing history.
While several key improvements (such as
language neutrality) differentiate today’s
Web services technologies, there has been
a long history of integrating technologies
with qualities analogous to Web services,
including a field of study often referred to
as Enterprise Application Integration
(EAI). One of the key trends driving the
adoption of Web services is the increasing
span of integration being attempted in
organizations today. Systems integration is
increasing both in complexity within orga-
nizations and across external organiza-
tions. We can expect this trend to contin-
ue as we combine greater numbers of data
sources to provide higher value informa-
tion. Ronan Bradley writes:

CIOs often have difficulty in justi-
fying the substantial costs associat-
ed with integration but, neverthe-
less, in order to deliver compelling
solutions to customers or improve
operational efficiency, sooner or
later an organization is faced with
an integration challenge. [4]

Drawing Parallels:

“Past Is Prologue” [5]

During the ’70s, electronics engineers
experienced an architectural and design
revolution with the introduction of practi-
cal, inexpensive, and ubiquitous integrated
circuits (ICs). This revolution in the
design of complex hardware systems is
informative for contemporary software
professionals now charged with building
enterprise software systems using the lat-
est technologies of Web services in the
context of SOAs.

Like SOA, the IC revolution was fun-
damentally a distributed, multi-team, com-
ponent-based approach to building larger
systems. Through the commercial market-
place, corporations built components for
use by engineering teams around the
world. Teams of engineers created build-
ing blocks in the form of IC components
that could then be described, procured,
and reused.

Like software services, every 1C chip
has a defined interface. The IC interface is
described in several ways. First, the chip
has a defined function—a predictable
behavior that can be described and pro-
vides some value for the consumer. Next,
the physical dimensions of the chip are
enumerated. For example, the number and
shape of pins is specified, as are the elec-

tronic signaling, timing, and voltages
across the pins. All of these characteristics
make up the total interface definition for
the IC. Of course, software services do
not have an identical physical definition,
but an analogous concept of a compre-
hensive interface definition is still viable.

Effective software components also pos-

sess a predictable and definable behavior.
Introducing and using ICs includes the

following considerations:

* Who Pays? Building an IC chip the
first time requires a large expenditure
of resources and capital. The team
who builds the IC spends considerable
resources. The teams who reuse an IC,
instead of rebuilding them, save con-
siderable time and expense. A chip
might take $500,000 to build the first
time, and might be available for reuse
in a commercial catalog for $3.99. The
creation of the chip the first time
involves many time-consuming steps
including requirements analysis, be-
havior definition, design, layout, pho-
tolithography, testing, packaging, man-
ufacturing, and marketing [6]. The
team who gets to reuse the chip
instead of rebuilding it saves both time
and dollars. At the time, designs of
over 100,000 transistors were reported
as requiring hundreds of staff-years to
produce manually [7].

* Generic or Specialty Components?
Given the amount of investment
required to build a chip, designs were
purposely scoped to be generic or spe-
cific with particular market segments
and consumer audiences in mind. Some
chips only worked for very specific
problem domains, such as audio analy-
sis. Some were very generic and were
intended to be used broadly, like a logic
multiplexer. The bigger the market and
the greater the potential for reuse, the
easier it was for a manufacturer to
amortize costs against a broader base,
resulting in lower costs per instance.

* Increased Potential Design Scope.
By combining existing chips into larger
assemblies, an engineer could quickly
leverage the power of hundreds of
thousands of transistors. In this way, IC
reuse expanded the reach of average
engineers, allowing them to leverage
resources and dollars spent far in excess
of the local project budget.

* Design Granularity. The designer of
an IC had to decide how much logic to
place in a chip to make it most effective
in the marketplace. Should the designer
create many smaller-function chips, or
fewer larger-function chips? Families of
chips were often built with the inten-

www.stsc.hillaf.mil 5

Software and Systems Integration

tion of their functions being used as a
set, not unlike a library of software
functions. Often, these families of
chips had similar interface designs such
as consistent signal voltages.

* Speed of integration. As designers
became familiar with the details of
component offerings and leveraged
pre-built functions, the speed at which
an ntegrated product (built of many
components) could come to market
was substantially increased.

* Catalogs. When the collection of
potential ICs offered became large, cat-
alogs of components were then creat-
ed and classification systems for com-
ponents were established. Catalogs
often had a combination of sales and
definitive technical information. The
catalogs often had to point to more
detailed resources for the technical
audiences purchasing the components.

* Testing. Technical documents defined
the expected behavior of ICs. Com-
ponents were tested by both the man-
ufacturer and the marketplace. Anom-
alous behavior by ICs became noted as
errata in technical specifications.

* Engineering support. IC vendors
offered advanced technical labor sup-
port to customers in the form of
application engineers and other techni-
cal staff. Helping customers use the
products fundamentally supported
product sales.

* Value chains. Value chains consume
raw components and produce more
complex, value-added offerings. ICs
enabled value chains to be created as
collections of chips became circuit
boards, and collections of circuit
boards became products.

e Innovation. ICs were put together in
ways not anticipated by their designers.
Teams who designed chips could not
foretell all the possible uses of the
chips over the years. Componentized
logic allowed engineers to create inno-
vative solutions beyond the original
vision of component builders.

One might ask: “Were electrical engi-
neers successful with this component-
based approach?” Certainly the market-
place was populated by a very large num-
ber of offerings based in some part on
ICs. Certainly many fortunes and value
chains were created. The cost-effective-
ness of the reuse approach was validated
by the fact that it became the predominant
approach of the electronics industry. In
short, electronic offerings of the time
could not be built to market prices if each
chip, specification, module, or component
had to be refabricated on each project.

6 CRrosSTALK The Journal of Defense Software Engincering

Reuse, through component-based meth-
ods enabled by new technologies, led this
revolution. Yet, the transformation took a
decade to occut.

An SOA Analogy

In many ways, the described IC chip revo-
lution is analogous to the effort under way
with Web services today. Clearly, Web set-
vices components have analogous inter-
faces definitions as well as defined and
documented behaviors that provide some
benefit to a potential consumer. One can
also reasonably expect that the team pro-
ducing the Web service will incur substan-
tial expenses that consumers of the service
will not. For example, high reliability
requirements for the operation of a ser-
vice and its server and network infrastruc-
ture can be a new cost driver for the

“The enterprise ... saves
resources every time
a project reuses a
current software service
rather than
creating redundant
services based on
similar underlying
requirements ...”’

provider. To continue the analogy, collec-
tions of service offerings are becoming
sufficiently large enough to require some
librarian function to organize, catalog, and
describe the components. Many SOA pro-
jects use a service registry, such as Univer-
sal Description, Discovery, and Integration
for this purpose. Enterprise integration
engineers are realizing the ability to more
rapidly combine network-based service
offerings and a new paradigm, sometimes
referred to as a mashup, is demonstrating
the speed at which integration can now
occur [8]. Value chains of data integration
are already occurring in the marketplace. A
data integrator can ingest the product of
multiple services and produce a service
with correlated data of greater value.
Finally, it is also safe to say that service
providers may be surprised at how their
services get integrated over time and they
may be part of larger integration that they
could not have foreseen during the original
design' [9]. In summary, many aspects of

the current SOA efforts follow similar
component-based patterns, and many of
the benefits realized historically by the IC
revolution could be potentially realized by
SOA efforts.

Reuse

Historic Source Code Reuse

During the ’80s, many organizations,
including the DoD, attempted to reuse
source code modules with little success.
For example, duting the DoD’s focus on
the Ada language, programs were estab-
lished to reuse Ada language functions and
procedures across projects [10]. The basic
reuse premise outlines a process where a
producer of a source code module would
post the source code to a common shared
area along with a description of its pur-
pose and its input and output data [11]. At
that point, staff from another project
would find the code module, download it,
and decide to invoke it locally in their
source code and actually compile it into
their local libraries and system executables.
As an example, the DoD states that:

One of the design goals of Ada
was to facilitate the creation and
use of reusable parts to improve
productivity. To this end, Ada pro-
vides features to develop reusable
parts and to adapt them once they
are available. [12]

For example, Project A might create a
high-quality sorting function, and Project
B could then compile that function into its
own software application.

Though well-intentioned, the actual
discovery and reuse of the soutce code
modules did not happen on a large scale in
practice. Reasons given for the lack of
reuse (at the time) included: lack of trust
of mission-central requirements to an
external producer of the source code, fail-
ure to show a benefit to the contractor
reuser implementing later systems, inade-
quate descriptions of the behavior of a
module to be reused, and inadequate test-
ing of all the possible outcomes of the
module to be reused [13]. All in all, the

barriers to reuse were high.

Service Reuse

The danger in describing the use of ser-
vices as reuse is that the reader will assume
I mean the soutce code reuse model just
described. In fact, the nature of service
reuse is closer to the model of the reuse of
ICs by electrical engineers (as outlined in
the Drawing Parallels section), though still
having common issues of trust, defined
behavior, and expected performance. In

February 2009

plain terms, reuse in the service context
does not mean rebuilding a service, but
rather the using again or invoking of a ser-
vice built by someone else.

The enterprise as a whole saves
resources every time a project reuses a
current softwate service rather than creat-
ing redundant services based on similar
underlying requirements and adding to an
agency’s maintenance portfolio. Since a
system’s maintenance costs (over their life-
time) often exceed the cost to build them,
the enterprise saves not only in the devel-
opment and establishment cost of a new
service but also in the 20-plus year main-
tenance cost over the service’s life cycle.
As one Web vendor stated:

Web Services reuse is everything:
on top of the major cost savings ...
reuse means there are fewer ser-
vices to maintain and triage. So
reuse generates savings—and fre-
quency of use drives value in the
organization. [14]

However, we should not assume a
straight-line savings, where running one
service is exactly half as costly as running
two services: as the cost of running a ser-
vice is also impacted by the number of
service consumers. Consolidation can
make the remaining service more popular,
with a greater demand on resources.

Reuse of a service differs from source
code reuse in that the external service is
called from across the network and is not
compiled into local system libraries or
local executables. The provider of the set-
vice continues to operate, monitor, and
upgrade the service (as appropriate).
Thanks to the benefits of contemporary
Web service technologies, the external
reused service can be in another software
language, use a completely different multi-
tiered or single-tiered machine atrchitec-
ture, be updated at any time with a logic or
patch modification by the service provider,
represent five lines of Java or 5 million
lines of COBOL, or be mostly composed
of a legacy system written 20 years ago. In
these ways, service reuse is very different
from source code reuse of the past.

Some aspects of reuse remain un-
changed. The consumer of the service still
needs to trust the reliability and correctness
of the producer’s service. The consumer
must be able to find the service and have
adequate documentation accurately de-
scribing the behavior and interface of the
service. Performance of the service is still
key. As ZDNet’s Joe McKendrick stated:

Converging trends and business

February 2009

Leveraging Federal IT Investment With Service-Oriented Architecture

necessity—above and beyond the
SOA ‘vision’ itself—may help
drive, or even force, reuse. SOA is
not springing from a vacuum, or
even from the minds of starry-
eyed idealists. It’s becoming a nec-
essary way of doing business, of
dispersing technology solutions as
cost-effectively as possible. And,
ultimately, providing businesses
new avenues for agility, freeing up
processes from rigid systems. [15]

Mature SOAs should measure reuse as
part of a periodic portfolio management
assessment [16]. The Progress Actional
Web site stated that reuse is not only a key
benefit of SOA, but also something quan-
tifiable:

You can measure how many times a
service is being used and how many
processes it is supporting, thus the
number of items being reused. This
enables you to measure the value of
the service. [14]

The assessment of reuse can be effectively
integrated into the information repository
used for service discovery in the organiza-
tion—the enterprise catalog.

SOA as an Enterprise

Integration Technology

EAI is a field of study in computer sci-
ence that focuses on the integration of
systems of systems and enterprise applica-
tions. With the span of attempted systems
integration and data sharing continually
increasing in large organizations, the EAI
engineering discipline has become increas-
ingly central to senior leadership teams
managing portfolios of applications.

The fundamental EAI tenets are
based on traditional software engineering
methods, though the scale is often con-
siderably larger. While the traditional
software coder focused on the parame-
ters that would be sent to, and received
from, a function or procedure, the EAI
engineer focuses on the parameters that
are exchanged with an entire system. The
traditional coder might have been writing
one hundred source lines of code
(SLOC) for a function, while the EAI
engineer might be invoking a system with
a million SLOC and several tiers of hard-
ware for operational implementation.
However, the overall request/response
pattern is the same, and the logic issues
(such as error recovery) must still be han-
dled gracefully.

SOA can be considered another impor-

tant step in a 30-year history of EAI tech-
nologies. As Chris Harding stated: “SOA
eliminates the traditional spaghetti archi-
tecture that requires many interconnected
systems to solve a single problem” [17].

An SOAs ability to run logic and func-
tions from across a network is not new.
Recent examples include Enterprise Java-
Beans by Sun Microsystems, Inc.,
Common Object Request Broker
Architecture by the Object Management
Group, as well as the Component Object
Model, Distributed Component Object
Model, and NET from the Microsoft
Corporation. The various methods have
differed in the ease with which integration
could occur from a programmer’s point of
view, the methods for conveying run-time
errors, the ports required to be open on a
network, the quantity of enterprise equip-
ment to operate, and the general design
approaches to fault tolerance when fail-
ures occur.

Like owners of many other systems of
systems environments, decision makers
for command and control systems and
intelligence systems have an opportunity
to leverage SOA to better enable more
rapid integration and reconnection of sys-
tem components. Services can be devel-
oped from legacy data sources and exist-
ing investment in procedural logic.
Aggregation and correlation services can
combine the output of more fundamental
services to add wvalue for consumers.
Finally, registries can detail the ensemble
of IT services that an organization will
maintain as a portfolio.

Conclusion

SOA offers federal leadership teams a
means to effectively leverage decades of
IT investment while providing a growth
path for new capabilities. SOA provides a
technical underpinning for structuring
portfolios as a collection of discrete ser-
vices, each with a definable customer base,
an acquisition strategy, performance lev-
els, and a measurable operational cost.

A key current challenge for many fed-
eral organizations is the structuring of IT
portfolios around a component-based set-
vice model and enforcing sufficient stan-
dards within their own organizational
boundaries, which can be quite large. As
the span of attempted integration contin-
ues to grow, the challenge of the next 10
years will be enabling that integration
model to bridge multiple external organi-
zations that undoubtedly will be using dis-
parate standards and tools. ¢

References
1. Longworth, David. “Service Reuse Un-

www.stsc.hillaf.mil 7

Software and Systems Integration

locks Hidden Value.” Loosely Coupl-
ed. 29 Sept. 2003 <www.looselycoupled.
com/stories/2003/reuse-ca0929.html>.

10.

DoD. Ada Joint Program Office. Ada

95 Quality and Style Guide Online.
Chapter 8. Oct. 1995 <www.adaic.

2. Fingar, Peter, et. al. Next Generation com/docs/95style/html/sec_8/>.
Computing: Distributed Objects for 11. Boehm, B.W., et al. “An Environment
Business. New York: SIGS Books & for Improving Software Productivity.”
Multimedia, 1996. Computer. June 1984.

3. Litwack, David, and Peter Fingar. “In 12. DoD. Ada Joint Program Office. Ada
the Fast Lane.” Internet World Maga- Quality and Style: Guidelines for
zine. 1 June 2002 <http://iw.com/ma Professional Programmers. Oct. 1995
gazine.php?inc=060102/06.01.02 <www.adaic.otg/docs/95style/95style
ebusiness1.html>. pdf>.

4. Bradley, Ronan. “Agile Infrastruc- 13.Traez, Will. Software Reuse: Motiva-
tures.” GDS InfoCentre. 2008 <http:// tors and Inhibitors. Proc. of COMP-
gdsinternational.com/infocentre/art CON. Spring 1987.
sum.asprmag=184&iss=150&art=259 14. Progress Actional. “Web Services Use
01&lang=en>. and Reuse” <wwwactional.com/re

5. Shakespeare, William. The Tempest. sources/whitepapers/SOA-Worst-Prac

6. Intel. “How Chips are Made.” 2008 tices-Vol-1/Web-Services-Reuse.
<www.intel.com/education/making html>.
chips/preparation.htm>. 15. McKendrick, Joe. “Pouring Cold Wa-

7. Panasuk, Curtis. “Silicon Compilers ter on SOA ‘Reuse’ Mantra.” ZDNet.
Make Sweeping Changes in the VLSL.” 30 Aug. 2006 <http://blogs.zdnet.
Design World, Electronic Design. 20 com/service-otiented/?p=699>.

Sept. 1984: 67-74. 16. Roch, Eric. “SOA Service Reuse.” 23

8. “Mashup Dashboard.” Programmable Feb. 2007 <http://blogs.ittoolbox.
Web. 13 Nowv. 2008 <www.program com/eai/business/archives/SOA
mableweb.com/mashups>. -Service-Reuse-14699>.

9. International Genetically Engineered 17. Harding, Chris. “Achieving Business

Machine Competition. “Registry of
Standard Biological Parts.” 2008
<http://pattstegistry.org/Main_Page>.

Agility Through Model-Driven SOA.”
ebiz. 29 Jan. 2006 <www.ebizq.net/
topics/soa/features/6639.html>.

WEB SITES

Note

1. This same component-based approach is
also being examined for genetics work.
The same interface definition, behavior,
cataloging, and reuse discussions are cur-
rently occurring, creating a new genetic
sub-field known as synthetic genetics.

About the Author

Geoffrey Raines is a
principal software sys-
tems engineer for The
MITRE Corporation’s
Command and Control
Center, supporting a vari-
ety of government sponsors. Previously,
he was the vice president and chief tech-
nical officer of Electronic Consulting
Services, Inc.—an information technolo-
gy and engineering consulting profes-
sional services firm, where he developed
engineering solutions for federal clients.
He has a bachelor’s degree in computer
science from George Mason University.

The MITRE Corporation

7525 Colshire DR

McLean, VA 22102-7539
E-mail: soa-list@lists.mitre.org

The Agile/Waterfall Cooperative
www.rallvdev.com/documents/AgileWaterfall Coop-Sliger.pdf
Agile and Waterfall methodologies have different ways of mea-
suring progress, determining success, managing teams, organiz-
ing, and communicating. How can they be managed as part of
a cohesive project portfolio? Can they coexist and still make the
company successful? Software development expert Michele
Sliger looks at how continuous improvement through time-
boxed iterative deliveries and reviews, implementation of the
most important items first, and constant collaborative commu-
nication lead to success. Sliger also provides transitional tech-
niques (for Waterfall up-front, at-end, and in-tandem process-
es) and 10 keys to success.

IBM Federal Service-Oriented
Architecture (SOA) Institute
www-03.ibm.com/industries/government/us/detail/resource/
N586710B88615G50.html

The Federal SOA Institute’s mission is to help the government
adopt and benefit from SOA by providing a robust educational
environment, advanced solution development capabilities, and
opportunities for innovation and collaboration. Along with
helping serve that mission, this Web site assists federal agencies
in identifying new ways to quickly build and utilize IT systems,
integrate and reuse legacy systems, and reduce overall develop-
ment, systems integration, and operations costs.

Examples of C++ in Safety-Critical
Systems
www.cpptalk.net/examples-of-c-in-safety-critical-systems-vt
13505.html

Many have heaped praise on Ada and Java for safety-critical sys-
tems, and CROSSTALK is guilty as charged. Still, there are sev-
eral examples of the tried-and-true C++ language serving as a
perfect—and secure—alternative. As part of the C++TalkNet
Forum, this site is an open discussion of C++ in safety-critical
scenarios: how it’s being used successfully, personal experiences
in usage and implementation, published research and confer-
ence proceedings, and overall support and encouragement for
users of the lesser-known safety-critical systems alternative.

Joint Strike Fighter (JSF) Air Vehicle - C++
Coding Standards
www.research.att.com/~bs/JSE-AV-rules.pdf

If you're a C++ programmer looking for a good set of rules for
safety-critical and performance critical code, Lockheed Martin
shares the tools its team successfully used for the DoD’s JSF pro-
gram. This site provides direction and guidance that will enable
C++ programmers to employ good programming style and
proven programming practices leading to safe, reliable, testable,
and maintainable code. As well, this document will help pro-
grammers develop code that conforms to safety-critical software
principles.

8 CRrRosSTALK The Journal of Defense Software Engincering

February 2009

