Using Inspections to Teach Requirements Validation

Lulu He, Dr. Jeffrey C. Carver, and Dr. Rayford B. Vaughn

Mississippi State University

Reguirements validation is often not adequately covered by a traditional software engineering curriculum in universities. This

article describes an experiment conducted in a graduate-level requirements engineering conrse to provide students a real world
experience in requirements validation. The experiment made use of the IN-fold inspection method, in which multiple teams of

Students inspect the same requirements document then meet together to discuss their findings. This procedure allows the stu-
dents to not only practice their reviewing skills, but also to strengthen their communication and collaboration skills. At the

conclusion of the exercise, the students were given the apportunity to provide qualitative and guantitative feedback. The results
of this study suggest that the techniques employed by this class and the resulting defect detection conld be useful in general dur-

ing the requirements validation process.

It can be argued that requirements engi-
neering (RE) is one of the most impor-
tant stages in a traditional software devel-
opment life cycle because it helps to cor-
rectly determine the desired purpose of a
system. The goal of an RE process is to
identify and document stakeholders and
their needs in a form amenable to analy-
sis, communication, and implementation
[1]. Correct, complete, and unambiguous
requirements not only ensure that devel-
opers build the right system, but also
reduce the effort and cost that would
otherwise be needed to fix requirements
problems later. Because of the impor-
tance in obtaining correct requirements,
RE courses are fundamental elements of
any software engineering curriculum. An
RE course should teach students tech-
niques for accurately eliciting, analyzing,
and validating requirements. By acquiring
these skills, future software engineers are
better equipped to produce quality
requirements, eliminate faults, and reduce
development time. Educating students in
RE, however, is not an easy task because
it is a human-centered process that re-
quires skills from a variety of disciplines
(e.g., computer science, system engineer-
ing, cognitive psychology, anthropology,
and sociology) [1]. Moreover, RE educa-
tors must bridge the gap between acade-
mia and industry by exposing students to
the real world as much as possible. One
important real-world aspect of RE that
has remained largely unstudied in the
software engineering education commu-
nity is requirements validation.

This article describes an exercise to
aid in the teaching of requirements vali-
dation in a graduate-level RE course,
along with an evaluation of its usefulness.
In the exercise, the students validated a
real software requirements specification
document provided by an industrial part-
ner using a meeting-based N-fold inspec-
tion method (described later) [2].

January 2008

Background

Previous research has identified challenges
faced during RE education. Because one
goal of software engineering education is
to help students develop the knowledge
and skills necessary to be successful in
industry, a challenge for RE educators is
that the inherent complexity of industrial
RE (i.e. the broad scope, multiple con-
cerns, and deficient specifications) is diffi-
cult to replicate in a classroom environ-
ment [3, 4]. To be successful, a require-
ments engineer must possess both the
technical skills needed to interact with the
system and the social skills needed to
interact with its human stakeholders [1].
These soft skills (e.g, communication and
teamwork) are also difficult to teach in the
classroom [5].

Most published work on RE education
has focused on a small set of RE topics:
elicitation, analysis, and the overall process.
Validation is a complex task that is often
not adequately covered in a traditional uni-
versity education [6]. A requirements docu-
ment can have many different types of defi-
ciencies that may have disastrous effects on
subsequent development stages and yield
undesirable consequences [4, 7]. The
requirements validation process checks for
different types of problems (e.g., omis-
sions, inconsistencies, and ambiguities) to
help ensure that proper quality standards
are fulfilled. Due to time limits and other
considerations, validation is usually con-
ducted informally either on an ad-hoc basis
or simply as a peer review [8]. As a result,
little has been reported concerning the edu-
cational challenges of validation topics like
inspections. These challenges highlight the
importance of improving education and
critical, technical, and social skills that a
requirements engineer must possess.
However, the topics covered in many soft-
ware engineering courses do not meet these
needs, posing a major challenge for devel-
oping RE skills [6, 9]. Furthermore, experi-

ence teports about RE education is rare in
software engineering and RE literature. To
address the lack of focus on requirements
validation, we developed a requirements
validation exercise which we found to be
successful and instructive. This exercise is a
follow-on expetiment from that reported at
the Fourteenth Annual Systems and
Software Technology Conference held in
Salt Lake City in April 2002 titled “Third
Party Walkthrough Inspections: A Joint
Navy/University Empirical ~ Software
Engineering Project”” The most recent
results of the experiment were also pre-
sented by invitation at the Canadian Air
Force Software Engineering Symposium
held at the Royal Military College of
Canada in Kingston, Ontario, May 2007
[10, 11].

Description of the
Requirements Validation

Exercise

The exercise was conducted during a grad-
uate-level RE course at Mississippi State
University. The class included graduate stu-
dents that were currently working for the
Department of Defense (DoD), had previ-
ous government software development
experience, and many that had no practical
experience. The main goal of this course
was to provide students with a comprehen-
sive overview of requirements elicitation,
analysis, specification validation, and man-
agement. These activities were introduced
in the context of systems engineering and
various software development life-cycle
models. For each activity, the students were
exposed to specific methods, tools, and
notations. The semi-weekly, 75-minute
class sessions contained a mixture of lec-
ture material, class discussions centered on
outside readings, and student presentations.
Near the end of the semester, the students
participated in a two-week requirements
validation exercise — the primary subject of

wwwstsc.hillaf.mil 11

Training and Education

this article. While the exercise reported
here is based on a small number of stu-
dents, we believe the results achieved sug-
gest that such techniques could be consid-
ered in larger requirements validation exer-
cises. The authors are amenable to cooper-
ating with others to expand this research
through additional empirical investigation
— particularly in DoD software engineering
endeavors.

Overview and Goals of the

Requirements Validation Exercise

The overall goal of the exercise was to pro-

vide students with hands-on practice in

requirements validation. The specific goals
of the requirements validation exercise
were the following:

1. To help students understand the course
materials better by experiencing the for-
mat and presentation of a real require-
ments document, experiencing the
impact of domain-specific language in
understanding and reviewing a require-
ments document, and exposing the stu-
dents to flaws commonly found in a
requirements document.

2. 'To help students obtain an appreciation
for the complexity and necessity of RE,
especially requirements validation.

3. To give students hands-on experience
validating a requirements document
with specific inspection techniques.

4. 'To provide an opportunity for students
to practice soff skills such as communi-
cation and teamwork.

Two important goals of the course
wete addressed through this exercise. First,
give the students an idea of the size, com-
plexity, language, and flaws that can occur
in software artifacts, they validated a real
requirements document, which was actual-
ly used by a contractor to develop and
implement a system. The requirements
document described an upgrade to a case-
tracking system for the U.S. National Labor
Relations Board. The 43-page document
was written in natural language (English)
and contained the standard content that
would be expected in a government
requirements document.

Second, to expose students to a real-
wotld requirements validation method, the
N-fold inspection method was used. In this
method, the same artifact is inspected by
multiple teams in parallel with the goal of
improving the overall review effectiveness
[12]. From an educational point of view,
the N-fold inspection method provides
students with an opportunity to discuss the
defects found with other students, thereby
understanding how others had viewed the
artifact. Furthermore, N-fold inspection

| 2 CrosSTALK The Journal of Defense Software Engineering

meetings expose students to the impor-
tance of communication and teamwork —
important soft skills.

Requirements Validation Techniques
Studies have shown that inspections are an
effective requirements validation tech-
nique because they greatly improve system
quality by detecting many defects early in
the software life cycle [13]. Within the N-
fold method, individual reviewers can use
different approaches to review the docu-
ment. Our students used either a checklist
approach or the Perspective-Based
Reading (PBR) approach (each described
in more detail).

In practice, most industrial inspections
use an ad-hoc or checklist-based approach
for defect detection [14]. A checklist pro-
vides the inspector with concrete guidance
that is not provided by an ad-hoc
approach. A checklist is a list of items that
focus an inspector’s attention on specific
topics, such as common defects or organi-
zational rules, while reviewing a software

“‘Studies have shown
that inspections are an
effective requirements

validation technique ... by
detecting many defects
early in the
software life cycle.””

document [15]. For this requirements vali-
dation exercise, an informal checklist was
developed that focused on important qual-
ity concepts relevant to a requirements
document. Checklist examples are readily
available on the Web, for example, <soft-
ware.gsfc.nasa.gov/AssetsApproved/PA2.
2.1.5.doc>, <www.processimpact.com/
process_assets/requitements_teview_
checklist.doc>, or <wwwswqual.com/
training/Require.pdf>. For the class exet-
cise, we used a checklist based on the
Volere Requirements Specification Tem-
plate which can be found at <www.
systemsguild.com/GuildSite/Robs/Tem
plate.html>.

PBR is a systematic inspection tech-
nique that supports defect detection in
software requirements through a role-
playing exercise [13]. In PBR, each
reviewer verifies the correctness of the
requirements from the perspective of a
specific stakeholder. The most common

perspectives are the user, the designer,
and the tester. PBR techniques provide
reviewers with a set of steps to follow to
build a high-level system abstraction and
questions to help identify problems. For
example, a reviewer assuming the user
perspective may create use cases, while a
reviewer assuming the tester perspective
would create test plans. Studies have
shown that PBR is a more effective, sys-
tematic, focused, goal-oriented, customiz-
able, and transferable process than a stan-
dard checklist or ad-hoc approach [16]. By
reviewing the requirements document
from the perspective of different stake-
holders (i.c., playing the role of that stake-
holder), the reviewers are expected not
only to detect more defects, but also to
better comprehend the complexity of RE.

Details of the Requirements
Validation Exercise and Summary of

Research Results

Students enrolled in the course were
divided into four, three-person teams with
the expertise level balanced across teams.
The members of two teams used a check-
list to inspect the requitements document,
while members of the other two teams
used the PBR technique. For the PBR
teams, each student was instructed to use
one of the three perspectives (user,
designer, or tester) to guide their inspec-
tion. These two inspection techniques
were chosen because research suggested
that while PBR is often a more effective
technique, checklists are more widely used
in government and industry [14]. A sec-
ond motivator was that no previous work
had compared the effectiveness of a
checklist-based approach to the effective-
ness PBR in the context of the N-fold
inspection method. More importantly,
instead of using a generic checklist, the
checklist in this study was specifically
developed for the type of requirements
document to be inspected (e.g., from a
government organization).

Before the exercise began, the stu-
dents received one class meeting (75 min-
utes) of training in their assigned tech-
nique (checklist or PBR). The training for
the checklist teams was done through a
discussion with the course professor
about attributes of requirements quality.
During this discussion, the checklist stu-
dents — heavily guided by the professor —
developed a checklist to guide their
inspection. The training for PBR was
done by an expert in PBR and included a
discussion of the theory behind the tech-
niques and a case study that illustrated an
example of its use. After the training, the

January 2008

PBR reviewers were given the detailed pro-
tocol for their assigned perspective. Then
each student performed an individual
inspection of the requirements document
using their assigned technique. During this
inspection, each student individually
reviewed the document and recorded as
many defects as he or she could find. The
students were given two days to perform
this task outside of class. Once all three
members of a team completed the individ-
ual inspection step, they met together in
the 1st Team Meeting. During this meet-
ing, the students discussed the defects they
found and agreed on a final team defect
list. After all four teams had conducted the
1st Team Meeting, the two checklist teams
(six students) met together and the two
PBR teams (six students) met together for
the 2nd Team Meeting. In these six-person
meetings, the reviewers examined the two
defect lists produced during the 1st Team
Meeting and agreed on a final list of
defects.

The data analysis indicated that PBR
was more effective, both for individual
inspectors and for the teams. Conversely,
the data suggested that the checklist teams
had more effective team meetings during
the N-fold inspection process than the
PBR teams. Here, the effectiveness of
team meetings is defined by two mea-
sures: meeting gains, i.e. the number of
defects identified during the meeting dis-
cussions that no individual inspector had
found prior to the meeting, and meeting
losses, 1.e. defects found by an individual
inspector that the inspection team deter-
mines ate false positives and, hence, not
recorded on the final team defect list. In
the case of the PBR teams, the team
meeting served little purpose because
there were few meeting gains or meeting
losses. The end result would have been
similar had the individual list simply been
combined without spending time in a for-
mal team meeting. Conversely, for the
checklist teams, the meeting served a vital
role in the process. During the team meet-
ings, not only were there meeting gains,
but also a large percentage of false posi-
tives were identified and removed as
meeting losses. Identification of false
positives saves time during the rework
phase. One likely cause of this result is
the different perspectives from which the
PBR reviewers approached the Software
Requirements Specification (SRS). Each
PBR reviewer focused on their own pet-
spective and was less concerned with the
perspectives of others. For the checklist
team, the reviewers inspected the SRS
using the same checklist and there was
more interaction among team members

January 2008

during the meetings. The most important,
and novel, conclusion drawn from these
results is that the effectiveness and neces-
sity of a team meeting depends greatly on
the technique used during the individual
preparation phase of the inspection.
Additional data on this experiment can be
obtained by contacting the second or
third author of this article.

Evaluation of the Educational Value

of the Exercise

To evaluate the effectiveness of this exer-
cise relative to the four educational goals
listed earlier, quantitative and qualitative
data was collected using a post-study sur-
vey. Goals 1-3 were specifically evaluated
by the survey questions in Table 1 (see
page 14). Goal 4 was addressed by using
team meetings, but it was not specifically
evaluated on the post-study questionnaire.
The survey focused on the students’ opin-
ions of the exercise and gave them an
opportunity to provide feedback on how
to improve the exercise. The first two
questions were answered using a predeter-
mined scale (explained with each ques-
tion). The other questions were answered
using free text.

Results

This section discusses the results from the
post-exercise questionnaire along with a
brief explanation. The questionnaire col-
lected both qualitative and quantitative
data from the students.

Quantitative Data

QIl.Was the exercise a positive or nega-
tive experience?

The students answered this question on a
scale of 1 (negative) to 5 (positive). Figure
1 shows that 91 percent of the students
found the exercise to be a positive expeti-

Using Inspections to Teach Requirements Validation

ence with no students having a negative
experience. In Figure 1, the ratings given
by students using PBR and checklist are
shown in different shades to evaluate any
impact the technique had. While the opin-
ion of the PBR reviewers is slightly more
positive, there is little difference due to the
technique used. Therefore, regardless of
which technique was used, the students
found the N-fold inspection exercise to be
a positive experience.

Q2. Did the exercise help you better
understand the course materials?

The students responded to this question
on a scale of 1 (not at all) to 5 (very
much). Figure 2 shows that all of the stu-
dents found the exercise was very belpful or
a lot helpful.

Qualitative Data

The qualitative feedback, in which the stu-
dents were able to express their own opin-
ions, provides additional insight into the
usefulness and effectiveness of the exer-
cise. In this analysis, specific answers given
for each question are listed along with the
number of students who gave that answer,
shown in parentheses where 3 checklist/2
PBR means that three students who used
the checklist and two students who used
PBR gave the answer. In some cases, the
response was given by only PBR students
or only checklist students, e.g., 3 PBR in
bullet three of Q3. This does not imply
that the answer is not applicable to the
other technique — it only means that no
students using the other technique provid-
ed an answer. In some cases, students pro-
vided more than one answer to each ques-
tion, so the total number of responses
may be greater than 12. Q3 and Q4 from
the post-study survey were geared towards
addressing Educational Goals 2 and 3. Q5

Figure 1: Positive or Negative Experience
Results

Figure 2: Understanding the Conrse Materials
Results

Inspection Technique
W Checklist
6 PBR

Count

0- ..

Negative

Less Neutral Positive

Less
Negative iti

Positive

Q1. Was the exercise a positive
or negative experience?

6 Inspection Technique
I Checklist
5. PBR
4
€
3
o 91
24
14
0 T T T
Not At A Okay A Very
All Little Lot Much
Q2. Did the exercise help you better understand
the course materials?

www.stsc.hillaf.mil 13

Training and Education

Q1. Was the exercise a positive or negative experience?

Q2. Did the exercise help you better understand the course materials?

Q3. Did you see any benefits from the exercise? If so what were they?

Q4. Did you learn anything by performing the exercise? If so, what?

Q5. Did you see any drawbacks to the exercise? If so what were they?

Q6. How could the exercise been improved?

Table 1: Survey Questions

and Q6 provide feedback on how to

improve the exercise.

Q3. Did you see any benefits from the

exercise? If so what were they?

All 12 students indicated that they found

some benefit from participation in this

exercise:

1. It provided hands-on/practical experi-
ence (3 checklist/2 PBR).

2. Ithelped them better understand a real
requirements document (3 checklist /3
PBR).

3. It helped them better understand
defect detection in a requirements
document (3 PBR).

Because the students obtained hands-on

experience and indicated that they under-

stood a real requirements document, this
exercise helped address Educational Goals

2 and 3.

Q4. Did you learn anything by performing

the exercise? If so, what?

From this exercise, the students learned

the following:

1. The usefulness of inspections (2
checklist/1 PBR).

2. The difficulties involved in creating
and using a real requirements docu-
ment (3 checklist/1 PBR).

3. The benefits of using a method to
focus a requirements inspection on
certain aspects of the requirements
document (2 checklist/5 PBR).

Similar to Q3, these responses indicate

that the students learned the benefits of

inspections, and the difficulties in creating
real requirements documents, helping

address Educational Goals 2 and 3.

Q5. Did you see any drawbacks to the
exercise? If so what were they?

Only five (4 checklist/1 PBR) of the 12
students reported any drawbacks of the
exercise:

1. Not enough training (3 checklist/1 PBR).
2. Not enough time (2 checklist).

On a positive note, these drawbacks all
relate to the logistics of the exercise and
not to its intrinsic value. None of these
drawbacks are concerned with the inspec-

| 4 CrosSTALK The Journal of Defense Software Engineering

tion procedure that was used during the
exercise.

Q6. How could the exercise have been

improved?

1. Expand the exercise (1 checklist/1
PBR).

2. Provide more domain knowledge (2
checklist).

3. Allow more time for various activities
(2 checklist/2 PBR).

4. Provide more training (1 checklist/4
PBR).

These suggestions generally relate to the

drawbacks cited in Q5. It was interesting

that two students asked for a more exten-

sive exercise that allowed them to obtain

more practice and experience using the

inspection techniques. This request sug-

gests that the students believed that even

more benefit would be obtained by

expanding the scope of the exercise.

Summary and Conclusion

This article describes the use of a require-
ments validation exercise in a graduate-
level RE course. In the exercise, the stu-
dents validated a software requirements
document using a meeting-based N-fold
inspection. The students provided their
opinions and feedback about the useful-
ness of the exercise in a post-exercise sur-
vey. These results showed that the exercise
achieved its goals.

Overall, students were highly satisfied
with the exercise content and found it to
be helpful. The exercise helped students
understand what a software requirements
document looks like and gain insight into
the difficulty and complexity involved in
its correct development. They not only
realized the importance of requirements
validation but also gained hands-on expe-
rience using inspection techniques. The
exercise provided the students with essen-
tial knowledge about requirements quality,
enabling them to better understand other
course material such as the following: elic-
itation, analysis, and specification.
Moreover, though not empirically evaluat-
ed, the team meetings in this exercise gave
the students an opportunity to practice

their communication and teamwork skills,

which are essential for their future careers.

Based on the feedback provided by the
students, the following modifications are
being considered for future similar class
exercises:

1. Provide more training on the inspec-
tion techniques by using case studies.

2. Give specific instructions on the struc-
ture and organization of the team
meeting;

3. Extend the length of the exetcise to
allow additional time for training and
the individual inspection.

4. To make the exercise more realistic,
stakeholders of the software require-
ments document will be invited to
class, and help students to obtain more
domain knowledge.

5. When the N-fold inspection is fin-
ished, the defect lists will be given to
the owner of the requirements docu-
ment to understand the disposition of
those defects.

This study was performed in a gradu-
ate-level university course; therefore, the
next step is to perform additional valida-
tion in an industrial setting. Furthermore,
the positive experience with the N-fold
inspection process during RE suggests
that it may have applicability in other phas-
es of the software life cycle. In the future,
we will seek out opportunities to replicate
these experiences in other aspects of the
software engineering curticulum. 4

References

1. Nuseibeh, B., and S. Easterbrook.
“Requirements Engineering: A Road
Map.” Proc. of International Confer-
ence on Software Engineering,
Limerick, Ireland, June 2000: Associa-
tion of Computing Machinery (ACM)
Press, 2000: 37-46.

2. He, L., and J.C. Carver. “PBR Vs.
Checklist: A Replication in the N-Fold
Inspection Context” Proc. of 5th
ACM/Institute of Electrical and
Electronics Engineers (IEEE) Inter-
national Symposium on Empirical
Software Engineering (ISESE 2000),
Rio de Janeiro, Brazil, Sept. 21-22,
2006.

3. Armarego, J., and S. Clarke. “Preparing
Students for the Future: Learning
Creative Software Development —
Setting the Stage.” Proc. of the Annual
International ~ Higher Education
Research and Development Society of
Austral Asia Conference Christchurch,
New Zealand. July 6-9, 2003.

4. Van Lamsweerde, A. “Requirements
Engineering in the Year 00: A
Research Perspective.” Proc. of 22nd

January 2008

International Conference on Softwate
Engineering. Limerick, Ireland, 2000:
IEEE Computer Society Press, 2000.

5. Conn, R. “Developing Software Engi-
neers at the C-130j Software Factory.”
IEEE Softwate 19.5 (2002): 25-29.

6. Bubenko, J.A. “Challenges in Require-
ments Engineering” Proc. of 2nd
IEEE International Symposium on
Require-ments Engineering, Los
Alamitos, CA: IEEE Computer
Society, 1995: 160-162.

7. Meyer, B. On Formalism in Specifi-
cations. IEEH Software 2.1 (1985): 6-26.

8. Rosca, D. “An Active/Collaborative
Approach in Teaching Requirements
Engineering.” Proc. of 30th Annual
Frontiers in Education Conference.
Kansas City, MO., Oct., 2000: 9-12.

9. Lethbridge, T.C. “What Knowledge Is

Lulu He is a doctorate.
student in the Computer
Science and Engineering
Department at Mississ-
| ippi State University. She
B teccived her bachelor’s

and master’s degrees in computer sci-
ence from Wuhan University, China in
2001 and 2004, respectively. She also
received a master’s degree in computer
science from Mississippi State University
in August, 2007. Her research interests
include Software Quality, Software
Inspections, Software Architecture, and
Software Engineering for Scientific and
Engineering Computing;

Computer Science

and Engineering

PO Box 9637

Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-8798
E-mail: |h22 | @msstate.edu

January 2008

Important to a Software Profession-
al?” Computer 33.5 (2000): 44-50.

10. Vaughn, R.B, and J. Lever. “Third
Party Walkthrough Inspections: A
Joint Navy/University Empirical
Software Engineering Project.” Proc.
of Fourteenth Annual Systems and
Software Technology Conference, Salt
Lake City, UT, Apr. 29-May 2, 2002.

11. Vaughn, R.B., and J.C. Carver.
“Experiences in N-Fold Structured
Walkthroughs of Requirements Docu-
ments.” Proc. of Canadian Air Force
Software Engineering Symposium,.
Royal Military College of Canada,
Kingston, Ontario. 24-25 May, 2007.

12. Martin, J., and W. Tsai. “N-Fold
Inspection: A Requirements Analysis
Technique.” Communications of the

ACM 33.2 (1990): 223-232.

About the Authors

Jeffrey Carver, Ph.D., is
an Assistant Professor in
the Computer Science
and Engineering Depart-
ment at Mississippi State
University. He received

his doctorate degree from the University
of Maryland in 2003. His research inter-
ests include software process improve-
ment, software quality, software inspec-
tions, and software engineering for sci-
entific and engineering computing. He
has more than 30 refereed publications
in these areas. His research has been
funded by the US. Army Corps of
Engineers, the US. Air Force, and the
National Science Foundation.

Computer Science

and Engineering

PO Box 9637

Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-0004

Fax: (662) 325-8997

E-mail: carver@cse.msstate.edu

Using Inspections to Teach Requirements Validation

13. Basili, V.R,, et al. “The Empirical
Investigation of Perspective-Based

Reading” Empirical Software FEngi-

neering: An International Journal 1.2
(1996): 133-164.

14. Laitenberger, O., K.E. Emam, and
T.G. Hatbich. “An Internally Repli-
cated Quasi-Experimental Compari-
son of Checklist and Perspective-
Based Reading of Code Documents.”
IEEE Transactions on Software
Engineering 27.5 (2001): 387-421.

15. Fagan, M. “Design and Code
Inspections to Reduce Errors in
Program Development.” IBM System
Journal 15.3 (1976): 182-211.

16. Shull, E, I. Rus, and V.R. Basili. “How
Perspective-Based ~ Reading Can
Improve Requirements Inspection.”
IEEE Softwate 33.7 (2000):73-79.

Rayford B. Vaughn,
Ph.D., received his doc-
torate from Kansas State
University in 1988. He is
a William L. Giles Dis-
tinguished Professor and
the B1lhej Ball Professor of Computer
Science and Engineering at Mississippi
State University and teaches and con-
ducts research in the areas of Software
Engineering and Information Security.
Prior to joining the university, he com-
pleted a 26-year career in the U.S. Army
retiring as a Colonel and three years as a
Vice President of Defense Information
Systems Agency Integration Services,
and EDS Government Systems. Vaughn
has more than 100 publications to his
credit and is an active contributor to
software engineering and information
security conferences and journals. In
2004, he was named a Mississippi State
University Eminent Scholar. Vaughn is
the current Director of the Mississippi
State University Center for Critical
Infrastructure Protection and the Center
for Computer Security Research.

Computer Science

and Engineering

PO Box 9637

Mississippi State University
Mississippi State, MS 39762
Phone: (662) 325-7450

Fax: (662) 325-8997

E-mail: vaughn@cse.msstate.edu

wwwistsc.hillafmil 15

