
April 2007 www.stsc.hill.af.mil 11

The concept of agility is cropping up
more and more often throughout the

defense and commercial development
worlds. It has found its way into the
Quadrennial Defense Review, acquisition
plans and procurement requests, and even
into the language of defense executives1.
Promises of faster deployment and evolu-
tionary capability, delighted customers and
users, and fewer late-occurring acquisition
problems are irresistible to the resource-
strapped, schedule-limited, and continu-
ously harried program managers and
acquisition executives.

However, where can the agile benefit
really accrue? Primarily associated with
software development, does the concept
play into the large systems development
that is typical of the defense environment?
How does agility apply to the critical sys-
tems engineering processes? While
research is needed to fully answer these
questions, we can begin to identify touch
points that on the surface seem ripe for
agile approaches.

This article presents some thoughts on
agility and systems engineering – how sys-
tems engineering can be more agile and
how it can support agility in other disci-
plines. It is a concept discussion, not a spe-
cific how-to article. However, looking at
systems engineering through the agile lens
can extend the dialogue that began between
agile and plan-driven software proponents
into the systems engineering world [1].

First of all, why should we care about
agility within systems engineering? Table 1
identifies some of the changes in the envi-
ronment facing systems and software
developers. The rapid change in threats,
requirements, and programmatic parame-
ters has pushed traditional approaches to
the limits of their capabilities. As a result,
there is a growing zeitgeist that somewhat
unfairly casts traditional systems engineer-
ing as a holdover from the 1950’s and
1960’s and as a part of the systems acqui-
sition and development problem. Agilists
generally view systems engineering as rigid
and waterfall-based, overly process-
bounded (MIL-STD-499, MIL-STD-
1521, Institute for Electrical and

Electronics Engineers [IEEE]-15288).
Myopically focused on early correctness,
systems engineering can seem to value
precision over accuracy and complete-
ness over rapid user satisfaction. Figure 1
shows the traditional systems engineering
V-model as it was developed for large sys-
tems. The model has evolved over time,
but the fundamentals still provide a basis
for the life cycle used by defense system
acquirers. That is, establish requirements,
establish an architecture, decompose the
system into subsystems, design the sub-
systems, build the subsystems, test the
subsystems, integrate the subsystems, and

then test the system.
At the same time, agile approaches are

portrayed as the promised land. Praised as
a panacea for all the developmental ills,
agile approaches claim victory over rapid
change, increased complexity, emerging
requirements, and the ubiquitous schedule-
busting integration fiascos. Figure 2 (see
page 12) shows a typical agile process.
Note the iterative rather than sequential
nature. While an iteration could represent
a mini-waterfall, that is not always the case,
particularly in risk reduction activities.

Of course, neither of the broad char-
acterizations of the approaches is particu-

Toward Agile Systems Engineering Processes

Agile software development approaches have been highly successful in a variety of domains. Could they be effective if applied
to systems engineering? This article begins a discussion to answer this question by comparing core agile characteristics to those
of traditional systems engineering.

Dr. Richard Turner
Systems and Software Consortium

Validation

Reporting

User Acceptance

Testing

System

Testing

Installation

Qualification

Unit and

Integration Testing

System Configuration

and Development

Validation

Planning

User

Requirements

System

Requirements

Technical 

Architecture

Detailed

Design

Verification

Tracability

Verification

Tracability

System sliced vertically,

evolved iteratively.

Validation

Tracability

Validation

Tracability

Validation

Tracability

Validation

Tracability

Validation

Tracability

Figure 1: V-Model of a Conventional, Large-System Development Process

Table 1. Some Software-intensive System Trends

Traditional Development Current/Future Trends

• Standalone systems • Everything connected (maybe)

• Relatively stable requirements • Rapid requirements change

• •

• Control over evolution of custom

systems

• No control over evolution of

• Enough time to keep stable • Ever-decreasing cycle times

• Stable jobs • Outsourced jobs

• Failures locally critical • Failures broadly critical

• Completely defined systems with

specific functionality

• Complex, adaptive, emergent

systems of systems

• Repeatability-oriented process,

maturity models

• Adaptive process models

Attribute Comment

Learning attitude • Take advantage of lessons learned and adapt both

processes and systems to meet customer needs.

Requirements determine capabilities Commercial off-the-shelf (COTS)

capabilites determine requirements

COTS products

Table 1: Some Software-Intensive System Trends

 



Agile Development

larly accurate as stated, but they do pro-
vide insight into the turmoil that has con-
tinued to bubble. Regardless of the hype,
there is no denying the need for leaner,
more responsive development processes.
If agile approaches can be harnessed in
systems as well as software engineering,
they are certainly well worth the effort.

But what, you ask, is Agile? There are
nearly as many definitions of Agile as
there are Agile practitioners. I believe,
however, that there are common, key
aspects that must be present to capture the
essence of Agile. Table 2 captures my own
essential list of agile features.

Agility and Systems
Engineering Processes
So how do these attributes apply to sys-
tems engineering? How can we mature
systems engineering to encompass these
attributes? Let us look more closely at a
few of the attributes that seem to address
the engineering process.

Systems Engineering as a
Learning-Based Process
One of the characteristics of traditional
project management, and by implication

much of traditional systems engineering,
is the assumption by all stakeholders that
foreknowledge is perfect. We can define
complete, consistent, testable, and build-
able requirements; decompose perfect
requirements to perfect specifications;
accurately estimate effort, cost, and sched-
ule for the specifications; schedule work
according to this information early in the
program; and measure progress using
earned-value management or similar tech-
niques. While program managers, execu-
tives, sponsors and fund providers may
believe this, engineers know that with any
sufficiently complex system, particularly
unprecedented systems, it is unrealistic to
assume this kind of knowledge. As Philip
Armour said, … for the most part, engineers do
not know how to build the systems they are trying
to build; it is their job to find out how to build
such systems [3]. That is why systems engi-
neering can be visualized as a set of tools
and approaches that allow us to seek
information that fills the gaps in the initial
descriptions. By doing so, it adjusts the
development to fit the reality of what we
have learned. Trade studies, requirements
analysis, demonstrations, prototypes,
models, design evaluations, allocation
analyses, and verification and validations

are all ways to learn about the system
being developed. So, there is no funda-
mental reason systems engineering cannot
be considered a learning process.
Unfortunately, the traditional view of the
systems engineering V-model often is
interpreted so that it provides only a limit-
ed, one-time through chance to learn. By rein-
terpreting the V-model from an agile per-
spective and using timely iterative feed-
back, the learning process can be richer.

Systems Engineers (SEs) as
Focused on Customer Value
SEs are often isolated from the cus-
tomers because their customers are con-
sidered fully represented by the pre-
defined requirements and operational
concepts. These ostensibly perfect
requirements are generally value-neutral,
with no sense given to their importance
in relationship to each other, save some
very high-level key performance parame-
ters or possibly some value thresholds
within a particular requirement. This puts
the learning systems engineer at a huge
disadvantage by debilitating an entire
dimension of the trade space: the ability
to consider the relative value to the cus-
tomer of a requirement in deciding to
defer or relax it in order to meet some
other requirement or for other engineer-
ing reasons. The tradeoff between cross-
cutting aspects like safety, security, main-
tainability, and performance has been
identified as the number one risk by a
University of Southern California survey
of systems and software engineers [4].
The relative importance of the require-
ments must be interpolated using the
engineer’s experience, physical con-
straints, and domain knowledge so that
fundamental engineering decisions can be
made. It would be much easier if the
requirements were not only clear and
concise but also ranked in terms of
importance. There is nothing to prevent
including this dimension by having more
complete and multi-faceted interfaces
with the customer, but the traditional sys-
tems engineering requirements activities
generally do not support it.

Systems Engineering With
Short Iterations
Because systems engineering has been
often viewed as a one-pass process (the
strict V-model), iterations of systems
engineering may sound foreign.
However, there are ways to do iterative
systems engineering. Prototyping, model-

12 CROSSTALK The Journal of Defense Software Engineering April 2007

Validation

Reporting

User Acceptance

Testing

System

Testing

Installation

Qualification

Unit and

Integration Testing

System Configuration

and Development

Validation

Planning

User

Requirements

System

Requirements

Technical 

Architecture

Detailed

Design

Verification

Tracability

Verification

Tracability

Envision

and Prepare

Adjust

and Predict

Iteration

Develop

Iteration

Demo and

Retrospect

Deploy and

Support

System sliced vertically,

evolved iteratively.

Management/

Government

2-4 week

iterations

Validation

Tracability

Validation

Tracability

Validation

Tracability

Validation

Tracability

Validation

Tracability

Figure 2: Disciplined Agility Process, Basic Model [2]

Agility and Process Maturity

It is important to understand that agility is not anti-process, but can conform to
Capability Maturity Model Integration (CMMI®) and other process standards. In fact,
the Systems and Software Consortium is currently developing a Process
Implementation Indicator Description table for CMMI Lead Appraisers to use in
appraising agile projects.

Agile concepts in many ways embody Level 5-ness by continuously improving or
adjusting processes. By conducting a retrospective/reflective activity after each itera-
tion, recommendations for improvement can be immediately implemented. Agile mea-
sures can then confirm or contradict the value of changes within the next few iterations
rather than waiting for the next project.

Agile does not specifically address the organizational aspects of many process
standards (e.g. Organizational Process Focus, Organizational Process Definition, and
so forth in CMMI), but is not a stumbling block to satisfying them. Usually, there needs
to be agile instantiations in the set of organizational standard processes to limit tailor-
ing confusion and support agile approaches.

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.



Toward Agile Systems Engineering Processes

ing, demonstrating, and testing can all be
iterative within an integrated systems
engineering and development cycle. The
difference in truly agile iterations is that
each of these should describe a complete
operable system with functionality that is
valuable to the customer. However, in the
early systems engineering phases, deploy-
able operational aspects may not be as
valuable to the customer as reduced risk,
requirements validation, operations con-
cept validation, interface and interoper-
ability verification, or technical feasibility.
Systems engineering activities in later
iterations are focused on operational
capabilities. Development processes
where systems engineering is seen as an
up-front process and the SEs complete
their trades and decomposition tasks and
then move on to another program until
needed for validation (sometimes
referred to as the do it once and the SEs do
lunch approach) are not conducive to iter-
ative work. One of the most creative
ways of envisioning systems engineering
iterations is Barry Boehm’s characteriza-
tion of systems engineering as a
Command and Control, Intelligence,
Surveillance and Reconnaissance (C2ISR)
activity (Figure 3), consisting of numer-
ous Observe, Orient, Decide, Act
(OODA) loops and ongoing intelligence,
surveillance and reconnaissance tasks [5].
This counters the traditional cycle of
requirements, delay, and surprise.

Systems Engineering and
Neutrality to Change
This involves the architectural and design
approach more than pure systems engi-
neering. Unless systems engineering per-
forms its activities and processes with an
eye toward supporting change rather than
avoiding or denying it, change will become
an enemy (rather than an annoying but
faithful family member). System engineer-
ing can use change as a dimension in its
trade studies, evaluate the ease of modifi-
cation or extension within architectural
reviews, and even add requirements and
design constraints that support change
neutrality.

Systems Engineering, Continuous
Integration, and Test Driven
Development (TDD)
Once we accept the idea that SE itera-
tions are feasible, then continuous inte-
gration and TDD are not as problematic.
In order to provide an operable system
that demonstrates value, there must be
ways to maintain the configuration over
time and use it as initial validation of

operational capability, interoperability,
and interface quality. Most likely done in
a completely simulated or hardware-in-
the-loop environment, frequent integra-
tion and requirements based testing
(especially where there are external com-
ponents that you may or may not con-
trol), can identify anomalies, misinterpre-
tations, and downright errors in the inter-
face specifications or implementations
much earlier than traditional late-in-the-
process integration. This does require a
change in the once-through V-model, but
can be thought of as concurrent execu-
tion of processes within the V-model
framework. One way to think of this is to
agree that the processes that define the V-

model are only required to complete in
the order they appear rather than to pro-
ceed sequentially.

Systems Engineering and Lean
Lean, as I interpret it here, is the removal
of low value or unneeded activities as well
as the delay of significant end-user deci-
sions until the latest possible moment. We
have talked about rethinking some activi-
ties to make them more useful, and cer-
tainly most processes have some fat in
them somewhere. However, delaying deci-
sion making in systems engineering is not
easy. There is a drive to complete specifi-
cations, finalize allocations, and set archi-
tectural structures as early as possible.

April 2007 www.stsc.hill.af.mil 13

Attribute Comment

Learning attitude • Take advantage of lessons learned and adapt both

processes and systems to meet customer needs.

Focus on value to customer • Customer prioritizes requirements and progress is

measured by operational features.

Short iterations delivering

value

• Goal of each release is a working system.

• Rolling planning horizon.

• Risk-driven, reality-based iteration planning.

• Change is seen as inevitable; ergo embrace

change applies.

Continuous integration • Integration is an ongoing activity.

• Integration and testing are as automated as

possible.

Test-driven (demonstrable

progress)

• Tests are written before any other artifacts (design,

code).

• Capabilities (requirements) are defined by the tests

(empirical evidence) that validate them.

Lean attitude (remove no-

value-added activities)

• As little ceremony as necessary; just enough (or

just too little) process.

• Decisions delayed until latest feasible time.

Team ownership Team has primary responsibility and authority over

its own plans and processes.

• Quality/performance is everyone’s responsibility.

Neutrality to change (design

processes and system for

change)

•

Table 2: Key Characteristics of Agile

Orient with respect to stakeholders'

priorities, feasibility, and risks.

• Risk/Opportunity analysis.

• Business case/mission analysis.

• Prototypes, models, simulations.

Operate as current system.

Accept new system.

Act on plans and specifications.

• Keep development stabilized.

• Change impact analysis,

 preparation for next cycle

 (mini OODA loop).

Decide on next-cycle capabilities,

architecture upgrades, and plans.

• Stable specifications, COTS upgrades.

• Development, integration, verification and

 validation, risk-management plans.

• Feasibility rationale.

Life Cycle Architecture Milestone for Cycle

Observe new/updated objectives,

constraints and alternatives.

• Usage monitoring.

• Competition, technology,

 marketplace intelligence,

 surveillance, and

 reconnaisaince.

Figure 3: Systems Engineering as C2ISR With Spiral OODA Loop



Agile Development

This is especially critical when there are
long lead manufacturing items in the mix.
Remember, though, Lean does not delay
all decisions, just those that can have sig-
nificant impact on operational acceptance
or high priority functionality and that can
be feasibly delayed. Once you lose the
early omnipotence syndrome, delayed
decisions can retain design flexibility
longer, enabling more rapid reaction to
internal or external changes.

Systems Engineering and
Team Ownership
This may be the most controversial agile
attribute in a process-focused organiza-
tion. If the systems engineering team
owns its own process and can manipu-
late it to meet its project needs, how can
the quality assurance folks ensure that
the correct process is being followed?
This is essentially a management deci-
sion to support empowered teams in
more than name only. While it may
impact the management control residing
with some of the stakeholders, provid-
ing the systems engineering team with
the authority and flexibility of owning
their own process could radically
improve their effectiveness.

Software Considerations for
Agile Systems Engineering
In the introduction, I indicated that sys-
tems engineering could support Agile in
other disciplines. Software is a prime
example. The role of software is a signifi-
cant systems engineering issue that
requires adjustments, if not agility, from
systems engineering processes. As systems
become less hardware with some software that
helps, and become more software with some
hardware to run on, the need for software as
a full participant in systems engineering
becomes critical. This summer, the
National Defense Industrial Association
(NDIA) convened a group of industry,
government, and academia participants to
define the top problems in software-inten-
sive systems (the majority of the systems
currently built) [6]. One of the critical
findings was that fundamental system engineer-
ing decisions are made without full participation of
software engineering.

Software can no longer be relegated
to a secondary activity. The days of soft-
ware coders carrying out specific instruc-
tions from engineers are over. Software is
what provides capability, enables flexibil-
ity, supports net-centric operations,
allows quick response to new threats and
environmental factors, and represents the
majority of the value of a specific sys-

tem, even though the hardware produc-
tion may be the most expensive (and
often most profitable) activity. Initial deci-
sions must consider software architecture
or they can impact the feasibility of soft-
ware solutions and result in disjointed,
untestable, and unmaintainable software
components. The previously referenced
NDIA report states the following:

Complex, distributed, interoperat-
ing systems and evolving software
capabilities have permanently
altered the system level trade space.
Key architectural decisions early in
the system life cycle have great
impact on software capabilities,
attributes, and architectural/design
approaches, yet the software engi-
neering discipline is not consistent-
ly involved in these decisions.

I like to think of this as software-first
engineering. By considering software first,
the SEs can take primary advantage of the
flexibility and adaptability of software,
define the system and its components in
such a way that software development is
less complex, and the system architecture
and design support the effectiveness of
software assurance, safety, and security.
These are attributes that simply cannot be
added on later, particularly in systems of
systems or net-centric systems.

Final Thoughts
I have postulated that traditional systems
engineering may not fit today’s and
tomorrow’s systems because of its inher-
ent rigidity and its often interpreted

waterfall orientation. On the other hand,
agility is much more a state of mind or
philosophical approach than a set of
rules that have to be followed regardless
of appropriateness.

Despite the disagreement from some
agile proponents, process is not the enemy
– bad process is. To encourage agility,
processes should not be dictated by the
process police, but be under the control of
the actors. Process experts can provide
constructive support and guidance when
needed, and process asset libraries
should include agile or agile-friendly
processes that can be used where the
development environment or risk profile
indicates a need for agility.

The fundamental goals of systems
engineering have not changed. However,
as systems grow larger and more com-
plex, new ways of dealing with abstrac-
tion, concurrency, and uncertainty need
to be developed. Agile approaches do
offer reasonable and elegant ways of
evolving systems and software engineer-
ing toward handling these issues.

There are still no silver bullets [7], but
we can accept that there are new kinds of
regular bullets available, new tactics by
which they can be used, and that inte-
grating them into our current operations
can significantly improve the capability
of our existing systems engineering arse-
nals.

As I said in the introduction, my
intent with this article is to extend the
dialogue about innovative ways to con-
sider and apply systems engineering. I
have not included examples, but I believe
there are many systems and software
engineers that have applied some of
these approaches to systems engineering.
I would be grateful if they joined the
conversation by providing their experi-
ences, successful or not, so that we can
create better ways to balance the disci-
pline of systems engineering with the
agility required to develop today’s com-
plex defense systems.u

References
1. Boehm, Barry, and R. Turner.

Balancing Agility and Discipline: A
Guide for the Perplexed. Addison-
Wesley: Boston, 2004.

2. McCabe, R., et al. “Disciplined Agility
Guidebook.” Proprietary Internal
Report. Systems and Software
Consortium, 2006.

3. Armour, Phillip. The Laws of Soft-
ware Process. Auerbach: Boca Raton,
2004.

4. Boehm, Barry, and Jesal Bhuta. USC
CSSE Top 10 Risk Items: People’s

14 CROSSTALK The Journal of Defense Software Engineering April 2007

“While it may impact
the management control

residing with some
of the stakeholders,

providing the systems
engineering team with

the authority and
flexibility of owning their

own process could
radically improve their

effectiveness.”



Toward Agile Systems Engineering Processes

April 2007 www.stsc.hill.af.mil 15

Choice Awards. 2006 <http://csse.
usc.edu/BoehmsTop10/>.

5. Boehm, Barry, and Jo Ann Lane. “21st
Century Processes for Acquiring 21st
Century Software-intensive Systems of
Systems.” CrossTalk, May 2006.

6. NDIA Systems Engineering Division.
“Top Software Engineering Issues
within Department of Defense and
Defense Industry.” Aug. 2006.

7. Brooks, Frederick P. “No Silver Bullet:
Essence and Accidents of Software
Engineering.” Computer 20.4 (Apr.
1987): 10-19.

Note
1. Mr. Krieg, Under Secretary of

Defense (Acquisition, Technology,
Logistics), used agile, agility, flexibility
or related words nearly once a minute
in a recent presentation to business
executives. Mark Schaeffer, Director
for Systems and Software Engineering
in the Office of the Secretary of
Defense, encouraged the process
improvement world to become more
agile in remarks at the 2006 NDIA
CMMI Technology Conference.

About the Author

Richard Turner, D.Sc.,
a Fellow at the Systems
and Software Consor-
tium, is a researcher and
consultant with 30 years
of international experi-

ence in systems, software, and acquisi-
tion engineering. He is a frequent collab-
orator with a wide range of research
organizations and system developers to
transition new software-related technol-
ogy to defense acquisition programs.
Turner is co-author of Balancing Agility
and Discipline: A Guide for the Perplexed,
CMMI Distilled, and CMMI Survival
Guide: Just Enough Process Improvement.

Systems and Software Consortium
2214 Rock Hill RD
Herndon,VA 22017
Phone: (703) 742-7116
Fax: (202) 390-3772
E-mail: turner@systemsand

software.org

Agile Manifesto
www.agilemanifesto.com
On February 11-13, 2001, at The Lodge
at Snowbird ski resort in the Wasatch
mountains of Utah, 17 people met to
talk, ski, relax, and try to find common
ground. What emerged was the Agile
Software Development Manifesto. Rep-
resentatives from eXtreme Program-
ming, SCRUM, Dynamic Systems
Development Method, Adaptive Soft-
ware Development, Crystal, Feature-
Driven Development, Pragmatic Pro-
gramming, and others sympathetic to
the need for an alternative to documen-
tation driven, heavyweight software
development processes convened. Cur-
rently, a larger gathering of organization-
al anarchists would be hard to assemble.
The emergence of the Manifesto for
Agile Software Development symbolizes
the participants’ intents. 

Agile Advice
www.agileadvice.com
Agile Advice is a blog about agile meth-
ods such as SCRUM, Lean, and eXtreme
Programming. However, it does not
focus on agile software development.
Rather, the focus of Agile Advice is on

agile methods applied to other types of
work such as managing, video-making,
teamwork in general, creative working,
training, writing, etc. Much of the mate-
rial here is based on Mishkin Berteig’s
experiences as an agile coach, consultant
or trainer to teams and management in
organizations across North America.
From time to time, other people con-
tribute articles to Agile Advice. You are
welcome to contribute as well, particu-
larly if you have a story about agile meth-
ods, agile principles, or agile practices
applied outside of software development.

The Agile Journal
www.agilejournal.com
The Agile Journal is an online magazine
and monthly e-newsletter focused on
providing readers with the need-to-know
information and resources they need to
develop software for an agile business.
Among the topics covered: Open source
solutions, service-oriented architecture,
globally distributed development envi-
ronments, Agile and iterative processes,
integrated tools, and reuse and collabora-
tion.

WEB SITES

COMING EVENTS

May 7-11
DMSC 2007

Defense Modeling and
Simulation Conference

Hampton, VA
www.ndia.org

May 7-11
PSQT 2007 West

Practical Software Quality and Testing
Las Vegas, NV

www.psqtconference.com/2007west

May 14-16
SATURN 2007

3rd SEI Software Architecture Technology
User Network Workshop

Pittsburgh, PA
www.sei.cmu.edu/architecture/

saturn/index.html

May 14-18
STAREAST 2007

Software Testing Analysis and Review
Orlando, FL

www.sqe.com/stareast

May 19-21
ICSP 2007

International Conference on 
Software Processes
Minneapolis, MN

www.icsp-conferences.org/icsp2007

May 20-26
ICSE 2007

29th International Conference on
Software Engineering
Minneapolis, MN

www.icse-conferences.org/2007

June 18-21
2007 Systems and Software 

Technology Conference 

Tampa Bay, FL
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.


