
4 CROSSTALK The Journal of Defense Software Engineering June 2007

COTS Integration

The past 10 to 15 years have seen a
strong push within the Department of

Defense and other government agencies
toward the use of COTS software prod-
ucts in system acquisition. On the surface,
this makes a lot of sense – why build
something from scratch that already exists,
especially if it is a mature product? In fact,
with the increasing complexity of today’s
systems, a total custom system is no
longer practical. With the continued use of
COTS components in building systems, it
is a worthwhile objective to identify
sources of cost and approaches to manag-
ing them. It is the intent of this article to
identify these sources.

As part of an effort to collect data to
calibrate a cost model for systems consist-
ing of COTS components, a number of
interviews were conducted with project
managers, team leads, and other project
members maintaining COTS-intensive
systems. People consistently told us that
these systems were more expensive to
maintain than originally estimated and, in
fact, were more costly than a comparable
custom-built system to maintain. At the
same time, we heard frustration expressed
about the difficulty of communicating to
upper management the reasons why
COTS-based systems are so expensive to
maintain. If COTS-based systems really
are more costly to maintain, what are these
additional costs? Are there strategies for
managing or minimizing them? These
questions are addressed in this article3.

Before proceeding to answer these
questions, we need to define some terms.
A COTS software component is defined
as it was used in the COCOTS model [2].
This definition contains the following four
parts:
1. A COTS component is sold, leased, or

licensed for a fee (which includes ven-

dor support in fixing defects if they
are found).

2. The source code is unavailable.
3. The component evolves over time as

the vendor provides periodic releases
of the product (upgrades) containing
fixes and new or enhanced functional-
ity.

4. Any given version of a COTS compo-
nent will reach eventual obsolescence
or end of life in which it will no longer
be supported by the vendor.

All four parts of this definition have
major implications for the added costs of
maintaining COTS-intensive systems
(compared to comparable custom-devel-
oped systems).

At any given time for any given com-
ponent, there is a choice between upgrad-
ing to the next version or doing nothing.
There are risks inherent in either strategy.
If the first choice is made to upgrade to a
new version, there may be unintended
interactions with other components, there
may be defects introduced as well as
unneeded functionality. These types of
impacts are discussed in more detail in this
article.

If the second choice is made to do
nothing, the component will eventually
reach end-of-life and will no longer be
supported by the vendor. If a problem
with the component surfaces at this point
in time, the vendor will not fix it and the
system maintenance team cannot do much
because they do not have access to the
source code.

Also, before proceeding, it is impor-
tant to clarify the type of projects the
interviewed managers were involved in.
The Software Engineering Institute (SEI)
has made a distinction between COTS-
solution and COTS-intensive systems [3].
COTS-solution systems are the typical

business or standard information technol-
ogy systems that are comprised of large
application COTS products. Examples
include Enterprise Resource Planning
applications, human resource, and finan-
cial systems. The major COTS component
is essentially the system. It provides a user
interface, has its own architecture, and has
internal business logic that must be fol-
lowed to be used. On the other hand,
COTS-intensive systems are comprised of
many COTS components. In these sys-
tems, no single component is king. There
may be many components that handle
user interface, data transmission and stor-
age, and data manipulation and transfor-
mation. These components interact with
each other through custom-developed glue
code using vendor-provided application
program interfaces and with custom-
developed application code. The business
logic is spread across components and is
guided by the way the components are
used.

The systems that predominantly made
up our sample are mission-critical systems
with high reliability and performance
requirements and would be classified as
COTS-intensive. A number of our pro-
jects were air-traffic control systems; we
also had ground control systems for mis-
sile launches and two ground control sys-
tems for satellites. In addition to the high
performance and reliability requirements,
these systems typically had a large amount
of custom application code along with a
large number of COTS products
(between 10 and 50 was typical).

Two additional points are worth bring-
ing up before discussing the specific
sources of added costs for these COTS-
intensive systems. We deliberately chose
the term maintenance rather than the more
commonly used term sustainment because,

Added Sources of Costs in 
Maintaining COTS-Intensive Systems

Dr. Betsy Clark and Dr. Brad Clark
Software Metrics Inc.

Ten years ago, work was begun at the Center for Systems and Software Engineering at the University of Southern California
to develop a cost model for commercial off-the-shelf (COTS)-based software systems1. A series of interviews were conducted
to collect data to calibrate this model 2. A total of 25 project managers were interviewed; for eight of these projects, data was
collected during the original system development and maintenance phases. A common sentiment heard from the people main-
taining these systems was that they turned out to be more expensive to maintain than originally envisioned and, in fact, were
more costly than a comparable custom-built system. At the same time, several people expressed frustration about the difficul-
ty of communicating to upper management the reasons why COTS-based systems were so expensive to maintain. Anecdotal
evidence from these interviews is used to discuss the added sources of maintenance cost. Three different approaches or strate-
gies for system maintenance were observed and are summarized in this article.

 



Added Sources of Costs in Maintaining COTS-Intensive Systems

like hardware, a COTS-intensive system
will, in effect, degrade without dollars and
effort spent to manage the impact of mul-
tiple components evolving over time. This
is the central thesis of this article and is
the source of additional cost for these sys-
tems.

We do not want to leave the impres-
sion that we are against the use of COTS
components. Given the complexity of
many of today’s systems, total custom
development is no longer feasible. In addi-
tion, the use of COTS components allows
system developers to take advantage of
the best that the marketplace has to offer
and removes the unnecessary reinvention of
the wheel seen prior to the widespread use
of COTS components. Our objective is to
help people anticipate and manage the
added sources of costs in maintaining
COTS-intensive systems.

Major Sources of Added Costs
in Maintaining Systems With
COTS Software Components
This section discusses the factors that
were found to impact the cost of main-
taining COTS-intensive systems. Each of
the following factors is compared to cus-
tom developed systems.

Licensing
The most obvious additional cost burden
is component licensing fees. Fees can
range from a one-time fee to yearly renew-
al. The license may be enterprise-wide,
site-specific, or per seat (one computer).
With one exception, licensing fees did not
cause concern among the project members
interviewed, presumably because this was
an expected, known life-cycle cost. The
one exception occurred for a COTS-solu-
tion system that was used on a pilot basis
at one location. Following a successful
pilot, the decision was made to deploy the
system worldwide which would entail hun-
dreds of sites. Much to the surprise of the
project manager, the per site fee was
increased by the vendor. At the time of the
interview, he indicated that he assumed
that they would get a quantity discount.
The price per copy was actually going up.
The increase in price was so great that he
was seriously considering starting over,
this time writing the system themselves
from scratch. There are no comparable
fees for custom-developed systems.

There is effort required in tracking
licensing requirements to ensure that
renewals are paid. With different types of
licensing and support agreements across
different COTS components and vendors,
this tracking can become an administrative

burden. There is no comparable effort
required for custom systems.

Evaluation of New Releases
A major source of cost stems from COTS
component volatility.

Volatility in this case means the fre-
quency with which vendors release
new versions of their products and
the significance of the changes in
those new versions, i.e. minor up-
grades versus major new releases. [4]

In contrast to custom-developed code,
a COTS software component is controlled
by the vendor. The timing and content of
releases is at the discretion of the vendor.
Major effort may be required to evaluate
and understand the implications of
upgrading to a new component or per-
haps switching to a whole new product
entirely.

COTS software component evaluation
addresses the following questions:
1. Are there interactions with other parts

of the system?
2. Are there any performance impacts on

the system as a whole?
3. Will we need to rewrite glue code or

application code?
4. Are there any impacts on any custom

code?
5. Are there new features that need to be

disabled?
6. If there are multiple hardware config-

urations in the field, can we be sure
there are no unintended interactions
for any of these?

7. Should we continually upgrade as new
versions appear or should we only
upgrade for a critical fix?
Evaluation activities require a test bed

that can replicate all deployed system con-
figurations of hardware and software. For
safety-critical systems, the amount of
analysis can be large even though the ulti-
mate decision may be to do nothing. As
one person stated, even when we don’t change
a version, there is a lot of analysis required. It
can be difficult to verify implications with a black

box. The need for this ongoing black-box
evaluation is unique to systems with
COTS components.

Defect Hunting
Defects appear to be more problematic
for COTS-intensive systems than with
custom code. After documenting and con-
firming the existence of a defect, the next
step is finding the source within the sys-
tem. Projects reported that it can be much
more difficult with a COTS-based system
to pinpoint the source of a problem. It
can be difficult to know whether a defect
is coming from a COTS component or
from other custom developed code. We
heard of finger-pointing situations in
which a defect was in a COTS product,
but the vendor was unable to replicate it
because they did not have the same hard-
ware configuration. (Incidentally, this is a
problem that may occur during develop-
ment as well as at any point in the life
cycle.) All of this can take time and effort,
translating into additional costs.

With a custom system, one can see
inside the box. Debugging can follow the
path through the code without running
into component boundaries. This elimi-
nates finger pointing.

Vendor Support
Vendor support is often used in mainte-
nance to fix defects quickly, provide assis-
tance with the latest product upgrades, or
make adjustments to the COTS compo-
nent in the presence of other product
upgrades. The support may range from
24/7 call service to dedicated on-site
staffing. If a defect is found and it looks
like the source is a COTS component, it is
the vendor who must fix the problem
(provided the vendor agrees their product
has the problem – as noted above, this res-
olution can take a lot of time and effort).
A variety of contractual mechanisms can
be in place to guarantee 24/7 support and
immediate fixes (this, too, can be a quag-
mire if the support is unsatisfactory). If
the latest release of a COTS software
component has new features or interfaces,
a vendor’s support may be required to
integrate a component into the current
system. This support may include some
tailoring by the vendor to get their com-
ponent to cooperate with the existing sys-
tem architecture. Finally, if a vendor has
gone out of business, support may be
unavailable. Risk-mitigation strategies are
discussed later that address this situation.

Upgrade Ripple Effect
After a new version of a COTS compo-
nent has been evaluated, the installation of

June 2007 www.stsc.hill.af.mil 5

“Evaluation activities
require a test bed that

can replicate all deployed
system configurations of
hardware and software.”



COTS Integration

the component into the system may have
a ripple effect. Due to the new, additional
functionality in a component, the system
may require changes to custom code, glue
code between components, or tailoring of
other COTS components. In custom-
developed code maintenance, only the
fixes and enhancements that are needed
are implemented, thus minimizing (but
not eliminating) ripple effects.

Hardware Upgrades
People found that upgrades to new soft-
ware components sometimes required
upgrades to new hardware as well. One
person noted that vendors were constant-
ly driven to add functionality, putting
more demands on the hardware. They
have not been able to upgrade the hard-
ware as quickly as they would like.

In a comparable custom maintenance
upgrade, hardware performance is consid-
ered as part of the upgrade activity. With
only the required features implemented,
minimal impact to hardware performance
can be preserved.

Disabling New Features
There may be new features that need to be
disabled for security or performance rea-
sons. The added cost is in the form of
additional tailoring of the COTS compo-
nent. This may require discovering how to
disable new features or custom code writ-

ten to hide or disable the new features.
Disabling a feature is not characteristic of
custom systems.

Early Maintenance
Because COTS components continue to
evolve in the marketplace, it is possible
that upgrades may begin before the system
is deployed, particularly if the develop-
ment spans several years. If the compo-
nents are not upgraded, it is possible that
much of the system may have reached end
of life before the system is even delivered.
This was the case according to one of the
project managers interviewed; this system
had an application base totaling more than
one million lines of custom code plus a
total of 45 COTS components. Almost
half of these components were obsolete
by the time the system was deployed.

Market Watch
Because COTS vendors can go out of
business, a number of those interviewed
suggested that a market watch be estab-
lished as a risk mitigation strategy to han-
dle such an event. If a vendor goes out of
business, either the component source
code or a different component can be pur-
chased. With custom-developed systems,
this activity is not required.

Continuous Funding
Another difference between a COTS-

based and a custom system is that the sys-
tems with COTS components require a
more stable funding base. When budgets
get tight, funding for maintenance is often
sacrificed. With a custom system,
enhancement can be delayed until funding
is obtained. The consequences of delaying
funding with a COTS-based system is that
licenses may lapse, bug fixes and upgrades
become unavailable, or vendors go out of
business with no resources to exercise the
risk mitigation identified in a market
watch.

Number of Components Versus
Maintenance Costs
One consistent comment we heard is that
the number of COTS components in a
system has a strong impact on mainte-
nance costs. A model adapted from one
proposed by Chris Abts, called COTS-Life
Span Model (LIMO) [5], attempts to
explain this phenomenon. The model,
depicted in Figure 1, shows two regions
divided into maintenance economies
(overtime costs go down) and mainte-
nance diseconomies (overtime costs go
up). As explained in COTS-LIMO, main-
tenance costs for a single COTS compo-
nent go down over time as the experience
gained by system maintainers increases,
thus improving productivity. The increase
in productivity can outpace the increased
effort required to maintain the system as
the COTS products mature and evolve in
divergent directions. However, there is a
break-even point with the number of
installed COTS software components, (n),
where maintenance costs increase dispro-
portionately to the number of COTS
products, regardless of the efficiencies
gained.

Factors that contribute to the COTS
maintenance diseconomies in Figure 1 are
those that are discussed in this article. For
instance, issues raised with COTS licens-
ing is much more complex with more
components. A COTS-intensive system
presents multiple licensing strategies, dif-
ferent renewal periods, and different
license cost structures. People reported
that this can become an administrative
nightmare.

Evaluating the impact of upgrades is
considerably more burdensome if there
are a lot of components (greater than n).
The number of possible interactions
between components increases exponen-
tially as the number of components
increases. When trying to hunt down
defects, the complex interactions of many
components make the task even more dif-
ficult. Configuration management be-
comes more complex when many compo-

6 CROSSTALK The Journal of Defense Software Engineering June 2007

n + x

n + 2

n + 1

n

3

2

1

COTS Maintenance

Diseconomies

COTS Maintenance

Economies

C
o

s
t

o
f

M
a

in
te

n
a

n
c

e

Time

n = Number of COTS Software Components in System

Figure 1: COTS Maintenance Economies Versus Diseconomies



Added Sources of Costs in Maintaining COTS-Intensive Systems

nents and configurations exist in a system.
The possibility of a ripple effect is higher
with the impact of component upgrades.
There are more unwanted features with
more components. The market watch
becomes a large-scale activity.

The idea of this model was verified
when we kept hearing that the complexity
of maintaining a COTS-based system
increases dramatically as the number of
different COTS components increases.
There is much more potential for interac-
tion as well as more potential upgrades
that have to be examined.

Three Risk-Mitigation
Strategies to Deal With the
Challenges of Maintaining
COTS-Intensive Systems
This article has discussed sources of addi-
tional cost in maintaining COTS-intensive
systems. Across the projects interviewed,
three strategies for dealing with COTS
volatility were observed. Each of these
strategies is discussed next.

Revert Back to Source Code
Several of the projects interviewed opted
to maintain one or more critical COTS
components themselves. In one case, the
product (an operating system) was allowed
to reach end of life and the project pur-
chased the source code from the vendor.
From that point on, they no longer had
vendor support but were able to make
fixes themselves. This decision was made
because it avoided the necessity for hard-
ware upgrades. It removed the risk of
being unable to fix future problems.
Alternatively, several other projects
replaced critical COTS components with
their own custom-developed software.

This strategy places control for fixing
problems back in the hands of the main-
tenance organization. A downside is the
additional expense (purchasing the source
code or developing it from scratch). In the
case given dealing with the operating sys-
tem, this strategy was part of a larger
strategy to freeze the hardware configura-
tion, much of which was special purpose,
for a period of time until the next genera-
tion system could be deployed.

Divide and Conquer
This strategy divides the COTS software
components into two categories: non-crit-
ical and critical. The non-critical COTS
components are not upgraded. Resources
are focused on the set of critical compo-
nents. For these components, market
watch and evaluation activities occurred
and the decision to upgrade was made

individually for each critical component.
This strategy is driven by the need to

balance the ongoing costs required for
maintaining a COTS-intensive system
with limited resources. The upside of this
strategy is that it saves money by ignoring
a subset of components. The downside of
this strategy is that a portion of the sys-
tem remains stagnant and unsupported.

Design for Change
The third strategy uses information hiding in
the form of wrappers to protect the sys-
tem from unintended negative impacts of
multiple component upgrades. One inter-
viewee said when describing this strategy
that they wanted to be able to replace a
product without damage to the rest of the
system. As an example, they had a wrap-
per around the database. It could be a flat
file or relational database – the custom

application didn’t care. This strategy
requires more thought and effort up front.
The project in our sample that used this
strategy had a strong project sponsor right
from the beginning who argued success-
fully for additional resources to design for
change from the beginning. This was a
project that was planned for a long life
with safety-critical requirements.

The advantages of this strategy are
clear: There is much more assurance
against unintended ripple effects from
upgrades or even product replacement
with a product from another vendor. The
disadvantage is the necessity for resources
early in system development when the typ-
ical focus is on getting the system

deployed rather than worrying a great deal
about the life-cycle consequences of deci-
sions.

Concluding Remarks
This article has discussed the sources of
additional costs required to maintain
COTS-intensive systems. As noted in the
introduction, we do not want to leave the
impression that we are against the use of
COTS components. One of the people
interviewed expressed the view that the
continual evolution and maturation of
COTS components is, in fact, one of the
real positives of using commercial com-
ponents in a system.

It is the authors’ objective to help peo-
ple understand some of the added sources
of costs in maintaining a COTS-intensive
system, particularly by bringing attention
to areas that may not have been anticipat-
ed. In particular, projects should under-
stand the life-cycle implications of inte-
grating a large number of COTS compo-
nents. More thought should be given early
to the impact of upgrades on the entire
system, the reliance on vendors to fix
problems, and the strategies that will be
used in dealing with multiple products,
each evolving at the discretion of the ven-
dor. These concerns become especially
problematic with high assurance, high per-
formance systems.

The sources of added costs discussed
in this article were identified through
anecdotal evidence obtained from inter-
views. The next step is to quantify these
sources and the parameters that impact
each. We are looking for opportunities to
continue this investigation.u

References
1. Reifer, D.J., V.R. Basili, B.W. Boehm,

and B. Clark. “COTS-Based Systems –
Twelve Lessons Learned about
Maintenance.” COTS-Based Software
Systems, Third International Confer-
ence, ICCBSS 2004, Redondo Beach,
CA.

2. Center for Systems and Software
Engineering. COCOTS <http://sun
set.usc.edu/research/COCOTS/
index.html>.

3. Oberndorf, Tricia, Lisa Brownsword,
and Carole Sledge. “An Activity
Framework for COTS-Based Sys-
tems.” Carnegie Mellon University
(CMU)/SEI-2000-TR-010. Pittsburgh:
SEI, CMU, 2000.

4. Abts, Chris. “COTS-Based Systems
and Make vs. Buy Decisions: The
Emerging Picture.” International
Workshop on Reuse Economics,
Austin, TX. 16 Apr. 2002 <www.

June 2007 www.stsc.hill.af.mil 7

“The sources of added
costs discussed ... were

identified through
anecdotal evidence

obtained from interviews.
The next step is to

quantify these sources
and the parameters that

impact each. We
are looking for

opportunities to continue
this investigation.”



COTS Integration

favaro.net/john/icsr7/papers.htm>.
5. Abts, Chris. “COTS-Based Systems

Functional Density – A Heuristic for
Better CBS Design.” Proc. First
International Conference on COTS-
Based Software Systems, Feb 2002.

Notes
1. This model, named Constructive

COTS Model (COCOTS), is one of

the COCOMO family of models.
2. The interviews and model calibration

were sponsored by the Federal
Aviation Administration’s (FAA) Soft-
ware Engineering Resource Center.
The interviews were conducted by Dr.
Chris Abts and Dr. Betsy Clark.

3. For a discussion of lessons learned in
maintaining COTS-intensive systems,
see Reifer, et al. [1].

8 CROSSTALK The Journal of Defense Software Engineering June 2007

About the Authors

Brad Clark, Ph.D., is an
independent consultant
in the area of software
measurement with 12
years experience in soft-
ware development and

management best practices. He is vice-
president of Software Metrics, Inc., and
specializes in the area of software cost
and schedule risk analysis. Clark is a
research associate with the Center for
Systems and Software Engineering at the
University of Southern California. He
has co-authored the book Software Cost
Estimation With COCOMO II with Barry
Boehm and others. Clark helped define
the COCOMO II model, collected and
analyzed data, and calibrated the model.
He has a bachelor’s degree in computer
and information science from the
University of Florida, a master’s degree
in software engineering, and a doctorate
in computer science from the University
of Southern California. He is a former
Navy A-6 pilot.

Software Metrics, Inc.
4345 High Ridge RD
Haymarket, VA 20169
Phone: (703) 754-0115
Fax: (703) 754-3446
E-mail: brad@software-metrics.com

Betsy Clark, Ph.D., has
been involved in the
practical application of
measurement for pre-
dicting, controlling and
improving software pro-

cess and product quality since 1979. She
is the president of Software Metrics,
Inc., a Virginia-based consulting compa-
ny she co-founded in 1983. Clark is a pri-
mary contributor to Practical Software
Measurement: A Guide to Objective Program
Insight. She was also a principle contribu-
tor to the SEI’s core measures. She has
contributed to numerous studies of soft-
ware best practices for the DoD and
FAA. Clark is a research associate at the
Center for Systems and Software
Engineering at the University of
Southern California. She worked with
Barry Boehm and Chris Abts to develop
and calibrate a cost-estimation model for
COTS-intensive systems under sponsor-
ship of the FAA. She is currently sup-
porting the U.S. Customs and Border
Protection’s Cargo Systems Program
Office, working to implement perfor-
mance measures within the framework
of the Office of Management and
Budget’s Performance Reference Model.
Clark has a bachelor of arts in psycholo-
gy with distinction from Stanford
University and a doctorate in cognitive
psychology from the University of
California, Berkeley. She is also an
accomplished equestrian, having earned
a Gold Medal from the United States
Dressage Federation.

Software Metrics, Inc.
4345 High Ridge RD
Haymarket, VA 20169
Phone: (703) 754-0115
Fax: (703) 754-3446
E-mail:betsy@software-metrics.com

COMING EVENTS

July 9-11
CBSE 2007 10th International ACM

SIGSOFT Symposium on
Component – Based Software

Engineering
Boston, MA

www.csse.monash.edu.au/~hws/
CBSE10

July 9-11
SEDE 2007

16th International Conference on
Software Engineering and Data

Engineering
Las Vegas, NV

http://sede07.cs.uh.edu

July 9-11
SEKE 2007

19th International Conference on
Software Engineering and Knowledge

Engineering
Boston, MA

www.ksi.edu/seke/seke07.html

July 9-12
SETP 2007

International Conference on Software
Engineering Theory and Practice

Orlando, FL
www.promoteresearch.org/2007/

setp/index.html

July 15-18
SCSC 2007 Summer Computer

Simulation Conference
San Diego, CA

www.sce.carleton.ca/faculty/wainer/
SCSC07/SCSC’07.htm

2008

Systems and Software Technology
Conference

www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.


