
BACKTALK

September 2007 www.stsc.hill.af.mil 31

Because this column has to be written several months in
advance, I am writing it at the 2007 Systems and Software

Technology Conference (SSTC) in Tampa Bay, Florida. Talk
about a bunch of geeks1! I mean this in a nice way, of course
(because I know I am one).

Seriously, the SSTC had some great exhibits this year. Most of
the exhibits, of course, displayed software products designed to
help you develop and maintain your systems, which leads me to
the topic of this column: Service-Oriented Architectures (SOAs).
SOAs are loosely defined as an environment made available as inde-
pendent services that can be accessed without knowledge of their underlying
platform implementation2. Interoperability – what a concept. You
see, it’s all evolutionary, because….

… IN THE BEGINNING was machine language. You
remember? 

BALR R14, R15
USING *,*? 

The problem was that machine language was so closely tied to
the machine that it wasn’t even transportable across different
machines from the same vendor. Thus, programs that ran on an
IBM 1401 with a specific memory configuration would not even
transport to another differently configured 1401. What we need-
ed was…

… HIGH-LEVEL LANGUAGES. FORTRAN, COBOL,
RPG, and eventually, languages like C and Standardized are trans-
portable (within limits) from one machine to another. Which
leads to….

… PARAMETER PROBLEMS. If a C program passed two
parameters (such as an integer and a real), but the receiving sub-
program read them as a real followed by an integer, it would try
and work and usually fail because the data was interpreted incor-
rectly. When I taught at the U.S. Air Force Academy back in the
’80s, we used Pascal and always taught that parameters had to
agree (between caller and callee) in number, order, and type.
Early on, software engineers found out that about 75 percent of
all errors occurred not directly in the code but in the code inter-
faces. So we tried to emphasize to students to always check the
number, order, and type of parameters. Of course, telling them
to check their parameters was not as good as … 

… ENFORCED PARAMETERS AND STRONGLY
TYPED LANGUAGES, Ada (and its successors), C++ (to an
extent), and Java. Want to pass four parameters that consist of
two reals and two floats? Then let the compiler and run-time
environment enforce the parameter number, order, and type. If
you tried passing them in the wrong order, then the program
would return an error and not attempt to convert incorrect data.
In fact, if you accidentally try and pass a floating point number
as an integer (and perhaps lose precision), the compiler/runtime
environment will also prevent that, giving you a better chance at
correct programs and preventing accidental parameter type mis-
matches. However, as programs grew larger and larger (and sys-
tems of systems evolved) the interfaces between multiple sub-
programs became larger and larger (with more and more para-
meters), which leads to…

… STANDARDIZED LIBRARIES. Why bother to pass a

zillion parameters to a handwritten user display procedure (which
took lots of time to write), when a completely pre-written
Graphical User Interface was available? All you have to do is use
an object-oriented language and development environment,
spend a little time researching which services and libraries are
available, and then inherit/instantiate the code you need. Don’t
write it – REUSE IT! However, to make standardized libraries
and reusable code/services efficient and cheap, we really need-
ed…

… STANDARDIZED OPERATING SYSTEM SER-
VICES. Back in the ’80s and ’90s, you couldn’t trust the operat-
ing system (OS) code. You used the OS to load your program,
but then you wanted to write your own memory management,
real-time scheduling, and other critical services. However, as OSs
became more and more standardized, they provided more and
more services. In fact, what you wanted was a reasonably secure
and reliable set of services that would let you not just reuse code,
but also let you utilize reusable services. Which is why we need…

… SERVICE-ORIENTED ARCHITECTURES. It’s all
about saving time and money. High-level languages are cheaper
than assembly language. Standardized OSs give you services that
are cheaper than roll your own. Reusing code saves you time and
money. So why not have take advantage of independent services with
defined interfaces that can be called to perform their tasks in a
standard way, without the service having foreknowledge of the
calling application, and without the application having or needing
knowledge of how the service actually performs its tasks. SOAs
are an evolutionary step above standardized OS services, and can
be regarded as a style of information systems architecture that enables the
creation of applications that are built by combining loosely coupled and inter-
operable services2. All of the good software engineering buzzwords
that we have tried to teach over the last 20 or so years are inher-
ent in an SOA: loosely coupled, interoperable, abstractions, and
enforced interfaces.

There you have it – engineering evolution in a nutshell. By
using an SOA, you will achieve savings in both development cost
and time. As a single example, interprocess communication and
network interface issues will have been solved in an SOA (and
when they need updating, the SOA will be updated, not your pro-
gram!). It’s just like plagiarism but without the moral dilemma.

Why do you want to reinvent the wheel when there are
already perfectly good wheels that somebody else has already
built?

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

dcook@aegistg.com

Notes
1. Well, where else could you find an audience that appreciates

the following? “Obviously, God LOVES the C programming
language, because in Genesis 1, verse 2, it clearly states that
the earth was without form, and it was VOID.” And, for you
FORTRAN programmers: “God is REAL (unless explicitly
declared INTEGER).”

2. Wikipedia <http://en.wikipedia.org/wiki/service-oriented_
architecture>.

Evolution in Action – Building Up to a
Service-Oriented Architecture

 


