
October 2006 www.stsc.hill.af.mil 21

For most of us who have endured a
hardware-software integration (HSI)

effort, we can all attest to the fact that not
only was there technical challenge but pro-
grammatic challenge as well. From an
engineer’s perspective, maybe manage-
ment just really did not understand what
support was needed, that schedules need-
ed to include contingency time, and that
there just might have been the added cost
of one more analyzer.

There is a flip side, however. From the
manager’s view, could the tools have not
been anticipated, how much schedule
allowance is really needed, and maybe more
to the point, how could the risk be proper-
ly assessed and subsequently mitigated?

It is very easy and somewhat simplistic
to think of merging software and hard-
ware as a purely technical issue; instead, it
is a mix of technical, programmatic, and
personnel interrelationships. In order to
understand the interrelationships between
these areas, it is important to recognize
what merging hardware and software is
and what it is not.

Hardware/software merge activities
are not limited to just the following:
• Activities during integration. They

really exist throughout the entire
development cycle.

• Embedded applications or real-time
systems. This applies to being able to
move data from a bar code scanner to
a database as well as controlling a radar
system.

• Device drivers and interrupt handlers.
These facilitate the interface but do
not form the complete description of
the interface.

• Reliance on interface definition. But
instead, a successful allocation of
functions to satisfy the requirements
for a system.

To make it more clear, the following are
examples of a hardware/software merge
activity:
• Models and algorithms (software) have

a physical impact (hardware).
Otherwise, software is just an algorithm
and the hardware is just a machine

• Engineering disciplines share common
ground. This means common mile-
stones, common understandings, and
common requirements.

• Demos, prototypes, and products are
made possible until the point at which
the system is typically depicted as a
collection of models, simulations, and
emulations.
As a general observation, I have seen

many software engineers grow frustrated
with trying to trace a software bug only to
find it was really a hardware flaw. Likewise,

I have seen hardware engineers grow frus-
trated with a software engineer who does
not understand the physical limitations of
the device. Sometimes you just cannot
make the hardware do everything software
can or vice versa.

Characterizing a
Hardware/Software Project
Regardless of how a project is character-
ized and modeled, it is usually possible to
identify some simple and high-level phas-
es that constitute its life cycle (iterative,
spiral, waterfall, etc.). For the purpose of
this article, we will assume the presence of

these phases since these can usually be
found in some form in any life-cycle
model: requirements analysis, develop-
ment, integration, and test/verification.

Each of these phases has a technical
and management component that plays a
part in the overall effort of merging hard-
ware and software. These technical and
managerial activities can be described by a
set of activities and characteristics. The fol-
lowing is a look at those activities as they
pertain to merging hardware and software.

Requirements Analysis
During the requirements analysis phase, it is
generally expected that concepts will be
pinned down, requirements will be identi-
fied, and top-level allocations of functions
will be made to subsystems and possibly
between hardware and software compo-
nents. Management is usually busy setting
customer expectations and managing the
natural influx of ad-hoc requirements. It is
important to realize that the customer as
well as the product team will be sources of
capabilities that are not originally within
the product’s scope.

Development
Development is almost always planned
and implemented with a discipline or spe-
cialty focus (product team, hardware/soft-
ware, logistics/training, etc). Work natu-
rally gets segregated to the groups that
make up the development organization.
As a result, stovepiping is not only common
but is considered normal. It is typically very
difficult to integrate these groups during
development whether from a cost and
schedule perspective or by an engineering
task. Management is usually busy facilitat-
ing information flow and keeping the
independent disciplines coordinated. It is
during this time of a project that empha-
sis is placed on schedules and milestones;
there is little else (aside from status meet-
ings) that a manager has available to keep
these groups coordinated.

Integration
As happens with any project, the day

A System View of Merging
Software and Hardware

No single example is universally applicable in describing the merging of hardware and software into an integrated system.
Likewise, no single recipe can be given for making the effort a successful one. In spite of this, there are generalizations that
can be identified. The observations presented in this article and the subsequent recommendations are intended to make the
effort of merging hardware and software a successful one. 

Mike McNair
Science Applications International Corporation

“It is very easy
and somewhat

simplistic to think
of merging software and

hardware as a purely
technical issue; instead, it

is a mix of technical,
programmatic, and

personnel
interrelationships.”



Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering October 2006

comes when the products of the develop-
ment effort have to fit together. Whether
the pieces have been integrated in an iter-
ative or spiral type approach or done all at
once as a part of a waterfall life cycle,
there is a real incentive to make the system
work. Technically, if all goes well, initial
indications are that the software seems to
make the hardware do something; yet, if
problems are encountered, they can be
difficult to isolate and fix. From a man-
agement perspective, there can be very
real cost and schedule impacts – either
making up lost schedule when integration
goes well or losing schedule when solu-
tions seem difficult and elusive.

Test/Verification
Finally, the test and verification team has
an opportunity to determine what the
integrated whole actually is able to do. The
engineering team is reminded of the
requirements, and an outside team is able
to assess how effective the effort to date
has been at providing the product as it is
specified. As the results are unveiled, the
functions become capabilities and the
problems become limitations.
Management is again working with the
customer to reset expectations and to
define the measures of success. If success
can be properly defined, the product is
released and put into use.

The Big Picture
Along the way and with each program
phase, software and hardware have been
merged. If we review the development
phases with this in mind, we begin to
understand what role merging hardware
and software has in the overall process.

In the requirements analysis phase, alloca-
tions are identified between hardware and
software. The processors for the software
to run on are assessed and selected. The
interfaces to the different devices are
specified, which in turn results in design
decisions for the software. As algorithms
are developed and models are created,
hardware selections are made to achieve
necessary performance. During the develop-
ment phase, these allocations are used to
allow detailed work to progress. Interfaces
are identified, defined, and refined. The
effort is managed in terms of the work
packages that result from these alloca-
tions. During the integration phase, these
same interfaces and allocations are used to
identify hierarchical levels of testing with
an eye toward increasing levels of integra-
tion with each successive level. Finally the
product undergoes test and verification.
Internal interfaces in essence go away and
the external interfaces characterize the

system. Internal interfaces are seams of
the product that either strengthen the set
of capabilities or cause stress points where
the system can be broken.

Merging Hardware and
Software Successfully
From the experiences of all of this, there
are some valuable principles that can be
identified. With each new project, the
hope is for the disciplines to work togeth-
er better and to act in a more integrated
fashion. There is a push for resources and
risks to be identified and assessed through
lessons learned. It is hoped that the devel-
opment environment and test tools can be
standardized to increase familiarity and
make the whole engineering effort run

more smoothly and enhance the creativity
of the engineering staff. While there are
many ways to document these principles
(certainly the following list is not compre-
hensive), these principles and observa-
tions can make the merging of hardware
and software more productive.
• Observation One: Interfaces are viewed

differently by different groups. Systems
engineering uses interfaces as a means
of identifying allocation boundaries
and defining allocated component
interactions (not behavior).
Development engineering uses inter-
faces as a means of determining what is
mine and what is yours for the purpose of
bounding the solution space. The inte-
grators use interfaces as the means of
identifying components and how they
bolt together. Here, interfaces are not
just boundaries; interfaces are how
expected functionality is scoped. The
test and verification team relates to
interfaces depending on where they
are: Internal interfaces are the seams

where the product is most likely to
break, whereas external interfaces cre-
ate customer perceptions and expecta-
tions.

• Observation Two: Software and hard-
ware groups use interfaces differently. These
two groups see each other in a very
unique way, but it all boils down to one
basic premise: Software executes on
hardware and hardware is exercised by
software. This principle is exemplified
where hardware and software merge.
The software team sees interfaces in
terms of messages, queues, services,
etc. Interfaces, including where hard-
ware needs to be controlled, are a part
of an abstract model that is depicted in
code and data models. The hardware
team sees interfaces in terms of
wiring, connectors, drivers, etc.
Interfaces are a means of achieving
connectivity with other components in
the system. The usual pitfall is that nei-
ther group focuses on system-level
functions – both groups tend to lose a
system view and the role they play in
the overall system capability. It is not
sufficient to know the interface; it
must be understood that the interface
is a piece of the whole system.

• Observation Three: People personalize
the components. When hardware and
software do not merge easily, it is easy
to fall into the traps of I said/you said,
the interface spec is wrong, we are dealing
with bad requirements, and other finger-
pointing type phrases. Engineers dis-
cuss components in terms of I will send
you the message or with this signal, I will
enable an actuator. Personalities become
an inherent part of the system. In
short, people take ownership of parts
of the system and personally associate
with it. While it is good to take owner-
ship of the assigned task, it must be
remembered that functions as well as
defects are a characteristic of the
product and not the person.

• Observation Four: Hardware/software
allocation is becoming more a difference in
performance than functionality. As a project
moves through requirements analysis
and into design, functional require-
ments are allocated to some combina-
tion of hardware and software for
implementation. Before the introduc-
tion of Application Specific Integrated
Circuits, Floating Point Gate Arrays,
microcontrollers, and other special
purpose processor targets, the alloca-
tion approach was simple. Now,
instead of just relying on general pur-
pose processors that execute applica-
tion specific code, algorithms can be

“While it is good to
take ownership of the
assigned task, it must
be remembered that
functions as well as

defects are a
characteristic of

the product and not
the person.”



A System View of Merging Software and Hardware

October 2006 www.stsc.hill.af.mil 23

embedded on the processor itself, thus
bringing in the added option of appli-
cation specific hardware. Identifying
the proper allocation of a system func-
tion can now be through software or
application-specific hardware. The ini-
tial factor in making this allocation
decision usually rests with satisfaction
of the system performance require-
ments.

• Observation Five: Not everyone is adept
at merging hardware and software. Every
member of the project team brings
experience and training to apply to the
problems they are assigned to solve.
These differences in experience and
training generally result in some peo-
ple having a knack for requirements
analysis over design, or test over inte-
gration. It is especially important to
recognize this when selecting person-
nel to conduct the integration effort.
When software and hardware meet,
the integrator cannot necessarily be
someone who just happens to have
some spare time. Integration is not
usually viewed as the fun part of a pro-
ject. In fact, people are usually recruit-
ed from an engineering group or inte-
gration is assigned to the test team.
Neither of these provides the inde-
pendence and immersion in the effort
that is required.

If the effort cannot be staffed
with someone focused on the effort of
making hardware and software meet
and work together, the risks increase,
and as the risks are realized the sched-
ules stretch, the engineering teams lose
their effectiveness and the costs seem
to skyrocket. Someone must be
responsible for managing an engineer’s
desire to get results and a manager’s
need for trade-offs and options. That
person has to understand that there is
a decision and not a solution.

• Observation Six: A properly specified
and defined interface is not the end all to suc-
cessful integration. Integration cannot rest
completely on the definition of the
interfaces. The interfaces were identi-
fied in the first place through an act of
allocating capabilities to systems and
components – both hardware and
software. If the allocation is wrong or
ineffective, no amount of interface
definition will help the system.
Interfaces, when they are identified,
are expressed in terms of software
interfaces (possibly documented in
Interface Requirement Specifications
and Interface Description Documents)
and hardware interfaces (similarly doc-
umented in Interface Control

Drawings). What is missing is the role
they play in overall system functionali-
ty and the identified system compo-
nents. In the final product, internal
interfaces existed to provide intercon-
nections. If they cannot provide this
between properly allocated systems
and components, integration (includ-
ing merging hardware and software)
will be very painful to accomplish.

• Observation Seven: Vendor support is
beneficial. There are times when you just
need to find an expert who can help
you build your system. Usually at a
time when schedules, budgets, and
patience have all been stretched thin,
calling in help is not at the top of the
to-do list. The usual fears abound of

unplanned cost, uncertain return, lack
of domain knowledge, etc., but these
are combined with the realization that
money is running low, the delivery date
is quickly approaching, and there are
still significant problems to solve.
Admittedly, calling in a consultant or
some kind of niche expert brings its
own set of risks.

The better solution is to use
these experts along the way, whether
from your tool vendor or as a consul-
tant. These subject matter experts
(SMEs) tend to have very specific
exposure to problems and solutions
that the more general development is
likely not to have. Allowing an SME to
provide a third-party assessment of
technical approach can be a great
source of implementation alternatives
as well as a source of lessons learned.
Keep in mind that a vendor has prob-
ably seen many more applications of
their products than either you or any-
one else on your team. Make use of
their expertise through training, phone
calls, e-mail, Web support, and even
on-site support when necessary.

Closing Thoughts
The observation that stands out the

strongest and the lesson that is relearned
the most is that hardware/software pro-
jects are tough and as such demand care-
ful and realistic planning and execution.
While every system and application is dif-
ferent, one thing is clear: Merging hard-
ware and software crosses teams and dis-
ciplines. In order to be successful, all
members of the project team must
acknowledge their part in working as an
integrated team that will deliver an inte-
grated product.u

Background Reading
1. Walker, Royce. Software Project

Management: A Unified Framework.
Addison-Wesley, 1998.

2. CMMI Product Team. “Capability
Maturity Model Integration Version
1.1 Continuous Representation.”
Pittsburgh, PA: Carnegie Mellon
University, Mar. 2002.

3. Project Management Institute. “A
Guide to the Project Management
Body of Knowledge (PMBOK
Guide).” 3rd ed. Newton Square, PA:
Project Management Institute, Oct.
2004 <www.pmi.org>.

Additional Reading
1. SoftwareProjects.org <https://www.

softwareprojects.org>.
2. Software Program Managers Network

<http://www.spmn.com>.

About the Author

Mike McNair is a senior
systems engineer for
Science Applications In-
ternational Corporation
where he is a part of the
chief engineer team for

unmanned ground vehicles on contract
to the U.S. Army. His background
includes more than 20 years of experi-
ence as a programmer, technical lead,
and software program manager on pro-
jects ranging in size, complexity, and tar-
gets for a variety of customers. McNair
has also served on several process
improvement (including Software
Engineering Process Group lead) and
training initiatives.

8303 N Mopac EXPY
STE B-450
Austin,TX 78759
Phone: (512) 366-7834
Fax: (512) 366-7860 
E-mail: mcnairmk@saic.com

“Every member of the
project team brings

experience and training
to apply to the problems

they are assigned
to solve.”


