Experiences With the TSP Technology Insertion

Ray Trechter
Sandia National Iaboratories

Iraj Hirmanpour
AMS, Ine.

Transitioning the Team Software Process™ (ISP™) methodology into an organization is not an easy or simple task. It
requires significant bebavior change by not only the developers, but also the major stakeholders. In this article, we share three
years of experience with the TSP transition team at Sandia National Laboratories with two intertwined perspectives: that
of the TSP coach, and that of the development manager supervising the TSP projects.

he mission of the Information

Systems Development Center of
Sandia National Laboratories in
Albuquerque, N.M. is to provide software
development and support services for a
variety of internal customers in support of
their national defense and energy-related
work. The organization’s software devel-
opment process, called Software and
Information Life Cycle (SILC), is used for
all work and is meant to embody
Capability Maturity Model® for Software
(SW-CMM®) Level 3 processes.

In 2001, the organization decided to
run a pilot Personal Software Process™
(PSP™) /Team Software Process™ (TSP*)
technology insertion program by training
developers in PSP and launching TSP
teams. The motivation for introducing
these processes was to supplement SILC
with personal/team processes that encout-
aged process improvement for the individ-
ual developer.

The SILC process is organized in phas-
es consisting of Planning, Analysis,
Design, Implementation, and Deploy-
ment. The organization’s business model
requires a proposal for each project, which
must be approved by both the customer
and management. After approval, the
SILC process is enacted throughout the
life of the project. The TSP projects
launched so far have, with the exception of
one case, started with the analysis phase.
Figure 1 shows the overlay of the TSP
process on the SILC process.

Early Experiences Using TSP

Since the initial pilot in 2001, a significant
number of development staff has been
trained in PSP and TSP. Fifty-six develop-
ers have completed the 10-day PSP class,
and 44 managers and non-developers have
completed the two-day Introduction to
PSP class. The TSP process requires a
multi-day project launch, which produces
an overall project plan and a detailed next
phase or cycle plan. A relaunch occurs at
the end of each phase or cycle to develop
the next cycle or phase detailed plan. The
first TSP launch occutred in February

March 2005

2002; currently, a total of eight projects
have used TSP with eight launches and five
relaunches.

During the early launches with TSP,
there was a lot of hesitation by teams
about using TSP in addition to the man-
dated SILC process. A great deal of dis-
cussion centered on whether TSP could
replace SILC outright since TSP already
has a defined process; the argument went
further on the congruity of SILC roles
and TSP roles. SILC defines a set of prod-
uct engineering roles such as analyst,
designer, builder, and database administra-
tor. The TSP defines roles that are a com-
bination of product engineering roles and
project/process management roles such
as design manager, implementation man-
ager, planning manager, process managet,
quality manager, support manager, and
test manager. Aligning these two role sets
consumed a fair amount of time and team
energy.

The Software Engineering Institute
prototype TSP tool also became a major
point of contention: the tool did not pro-
vide the user-friendly aspects developers
have come to expect. Phases in the TSP
tool did not align readily with SILC phas-
es, and users were not able to change them.
Even the TSP eatned value system came
under attack from some project leads who
had attended Project Management
Institute (PMI) training as different from
the PMI and Department of Defense
(DoD) definition of earned value. The
TSP earned value system focuses on effort
and does not address cost, while the PMI
and DoD version of earned value track
cost and budget burn rate. In addition to
the information on effort expended pro-

vided by TSP, project managers have to
monitor the organizations’ financial man-
agement system to have an accurate pic-
ture of total project costs.

Based on these early experiences, it
was not clear whether these struggles
would result in the outright rejection of
TSP as an organizational process. Two
developments led to a more favorable
view of TSP use within the organization.
Management issued a policy — without
specifying use of the TSP — that required
all projects to report their status based on
facts and data. The policy provided an
addendum to the SILC glossary, defining
terms such as plan and actual task hours,
percent work complete, unplanned task
hours, etc. This policy changed the nature
of the TSP insertion from a push from
above to a pu// from managers and project
leads that needed a way to satisfy the pol-
icy. Additionally, TSP began to be viewed
by project leads as a useful way to struc-
ture and run their projects.

Overall, it has taken some time to
build support for TSP among manage-
ment and practitioners. However, each
project provided some valuable lessons
learned and also provided greater visibility
into some of the organization’s issues.
Lessons learned from the eatly experi-
ences are described here.

Lessons Learned From the

Initial Experiences Using TSP

Most participants in the early TSP project
saw the potential of this methodology, if
some of its concerns could be addressed.
The use of TSP highlighted several
process improvement areas for the organi-
zation as a whole. While the launch meet-

Figure 1: Insertion of TSP into SILC Process

Project Analysis Implementation Deployment
Planning

—

TSP Launch
Relaunch

—

www.stsc.hill.af.mil 13

Team Software Process

ing scripts and requirements engineering
improvements were specific to TSP, proj-
ect time accounting and the number of
projects per developer applied to the
organization as a whole.

Launch Meeting Scripts

First, everyone agreed that the TSP launch
process requiring extended discussion on
project issues between team management
and customer, and among team members
was highly beneficial. One developer com-
mented, “The most beneficial aspect of
this process was the TSP launch.

“The launch gave us the opportunity
to step away from work for a few days,
think about what the project required, and
plan for the project accordingly” The
launch scripts were altered to include
SILC-mandated management reviews at
the end of each launch. Stakeholders,
including funding sources, end-user repre-
sentatives, and project management were
able to see the results of the launch and
were presented with an accurate plan of
what the project would accomplish in the
next three to four months.

Requirements Definition

Through the use of both SILC and TSP, it
was discovered that the feature-level
requirements typically found in a SILC
proposal did not provide enough detail for
systems analysts and designers to create
their TSP plans. Some early TSP launches
were suspended while the team worked
requirements to the point where the team
had a common mental model of what was
needed from the system. It was decided
that the minimum knowledge of require-
ments and systems characteristics needed
was equivalent to the information required
by a concept of operations document
(IEEE Standard 1362-1998). A concept of
operations document is now required for

TSP launches.

Time Tracking

The idea of time logging was initially not
well received by the practitioners. It was
not clear to them how this data would be
used and some worried that management
might use the data to judge their perform-
ance. Over time, teams have come to real-
ize that the increased visibility provided by

this data not only helps management, but
also the teams have a better understanding
of project progress.

Task Time

Task time is defined by TSP as time spent
on project-related tasks. All other activities
such as attending meetings, e-mailing, tak-
ing a break, etc. are not considered task
time. The organization did not have the
metrics to know the amount of task time
available for developers. When the TSP
coach suggested starting with 20 hours per
week for planning purposes, one manag-
et’s reaction was, “What will we do with
the other 50 percent of the time?” After a
few projects, data showed that 20 hours
per week was not possible due to other
duties and the dynamic nature of the envi-
ronment.

Multiple Projects Per Developer
Developers were divided among several
projects; some developers were divided
among as many as four or five projects
making task time availability for the TSP
project only 10 percent (two hours per
week) or 20 percent (four hours per week)
using the measure of 20 hours of available
task time per week. Data showed that such
a limited resource assignment method is
inefficient. The practice has now been
changed to allocate each developer to a
maximum of two projects.

Moving Up to the Next Level

As mentioned earlier, last year the
Information Systems Development Center
mandated that projects report their status
with facts and data. Guidelines for a
reporting system and a glossary of terms
were published to help management and
practitioners understand the policy
requirements. When a new manager (co-
author of this article) took over the man-
agement of a department within the
Development Center, one of 10 such
units, he was faced with the mandate of
data reporting,

The new manager made the tactical
decision to make TSP available to any team
that requested it. So far, three teams have
selected the TSP as their method of choice
to manage their data projects. The experi-
ence this time around is markedly different

Table 1: A Developer’s Weekly Status Report

Weekly Data
Project hours for this week
Project hours this cycle to date
Earned value for this week
Earned value this cycle to date
To-date hours for tasks completed

Plan Actual Plan/Actual
20.0 22.6 0.88
33.0 28.0 1.18
19.2 36.3 0.53
30.0 51.1 0.59
49.7 25.7 1.93

1 4 CrossTALK The Journal of Defense Software Engineering

from our initial experiences with TSP In
what follows, we desctibe the policy for
managing projects with data and our new
experiences with TSP. We also describe the
behavior of a TSP practitioner, and the
TSP reporting system that provides status
reports that one can act on. Finally,
insights are offered on how we use the
data to manage a portfolio of projects.

A Typical Day in a TSP

Practitioner’s Life

The TSP practitioners in the group noted
previously exhibit very different behavior
patterns from those in the past. They like
the model of personal and team planning
as opposed to a plan handed to them by a
project lead. They take ownership of the
project and not just of the tasks assigned
to them.

A typical day for a TSP practitioner is
partitioned into two areas: the time spent
on tasks related to the TSP project and
time, and the time spent on other activities.
TSP practitioners keep track of project
task time to the minute using a time log.
Individual developers use a defined
process to develop software and record
time based on phases of their personal
process; it is rich with personal reviews for
eatly defect removal.

A typical TSP developer’s personal
process would have phases such as design,
design review, code, code review, compile, and fest.
All these steps are measured in terms of
time spent and defects injected or
removed. By collecting the three basic
measures of effort, defect, and size, and by
recording task completion date, a host of
metrics is available to the developer. These
metrics help the developer manage work,
and compare actual work with planned
work at a personal level. An example of
the type of metrics derived from the three
basic core measures is the dashboard style
data shown in Table 1.

The data in Table 1 is from a develop-
er’s plan in week three of an eight-week
project. It shows that, so far, effort esti-
mation has been twice that of actual effort
needed for completed tasks. As a result, it
shows that the project is ahead of sched-
ule: 51 percent complete compared to the
planned 30 percent complete. Clearly, this
is good information to have at an early
stage, as there inevitably is someone else
who may be behind in his plan. During the
TSP weekly meeting, one of the activities
is load balancing when the data indicates
the need.

The practitioner submits his/her pet-
sonal plan to the planning manager (a
member of the team) for consolidation on

March 2005

a weekly basis. The planning manager cre-
ates a consolidated plan for the team
leader to use for weekly status reporting, as
well as for periodic management reporting,
This consolidated plan allows the team to
know the true status of a project and to
take corrective actions when necessary. A
similar view is available for the team to
analyze the status of the project.

TSP Project Reports

The primary outcome using the TSP model is proj-

ect reports. Petiodic review of project deliv-

erables and regular status reports are built
into the TSP process. These reports need
to be accurate, actionable, and based on
verifiable project data. In essence, these
status reports can be thought of as dials on

a development managet’s equivalent of a

pilot’s instrument panel that show the sta-

tus of many projects. A continual scan of
the dials should reveal unfavorable project
trends and allow for their early correction.

Status reporting for a software devel-
opment project — the dials — provides a
quantitative answer for some typical status
questions such as the following:

1. How much of the project is complete
at this time?

2. Given the progress at a given point in
time, when will the project finish?

3. How much time has the development
team been able to devote to project
tasks?

4. Has the team spent substantial time on
unplanned work?

Two charts can be created that will
quickly provide answers to these ques-
tions. The first chart uses a measure called
earned valwe. Barned value is one way to
determine how much of a project is com-
plete, and predict when it might finish.
This measure is calculated by comparing
the planned hours for completed tasks to
the total planned hours for a project. A
couple of comments on the earned value
calculation: It is important to stick to the
planned hours when calculating earned
value even though more actual hours were
needed to complete the tasks involved.
Also, the hours for completed tasks
should only include those tasks that are
100 percent complete. In other words, a
task is done or it is not done. This pre-
vents counting tasks that are perpetually
90 percent complete and thereby overstat-
ing a project’s progress.

Figure 2 shows an earned value chart
for a project. Notice that the actnal earned
value, or the sum of the hours for com-
pleted tasks, is shown against the planned
earned value. In a straightforward way,
these two lines show how well the project
is tracking against the original plan. Ideally,

March 2005

Experiences With the TSP Technology Insertion

A Typical Project
Cumulative Earned Value

100
00 L —&— % Planned Work
8o I —— % Work Completed
70
S 60 y
©
>
3 50
c 40
S 30 =
20
10
o ' ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ !
\0@ & ((,9@‘ & &6 & VQ«% & 9@ S 0@@ é’é
Oo @ 4 Sbo & @ o x@
S & & %Q,Q

Project Duration

Figure 2: Planned Versus Actual Earned 1 alue

these two lines will overlay each other, thus
signifying a project that is on plan. As is
often the case, however, actual earned
value will lag behind planned earned value.
When this lag is 10 percent or less, the
cause may lie with major tasks that will
soon finish or project conditions that will
respond to minor corrections.

When actual earned value deviates by a
larger amount, stronger corrections may
be needed. One of the causes of this devi-
ation often is unplanned work. Work that
was not anticipated and included in the
project’s planning, but was deemed neces-
sary. A line plotting the hours for
unplanned work is included in Figure 3 to
track this phenomenon.

From looking at the carned value chart
in Figure 2, overall project progress is eas-
ily determined. Since only completed tasks
are counted, the actual earned value readi-

ly shows that the project is 40 percent
complete. An expected time of comple-
tion can also be surmised from this data.
Given a constant earned value rate for the
project, a 10 percent variance on a 52-week
plan would cause the project to finish
approximately five weeks after the planned
finish date. Alternatively, the development
manager could attempt to recover and
catch the project up by requiring overtime
or assigning additional staff.

The planned and actual team hours
shown in Figure 3 can often provide clues
on why the project’s earned value is lag-
ging. In this case, the team’s actual hours
are behind what was planned; for some
reason, team members were not able to
devote as much time to the project as
expected. This could result from an esti-
mation error — typical software engineers
can expect to put in 20 hours of a 40-hour

Figure 3: Planned Versus Actual Honrs

A Typical Project

Cumulative Team Hours: Planned, Actual and Unplanned by Month

3500 -
—e— Cumulative Planned Team Hours
3000 Pt
—s—Cumulative Actual (against plan)
2500 L Team Hours
—a—Team Hours on Unplanned Activities /
2000 /
1500 /'/A
1000
500
0 4

Project Duration

15

www.stsc.hill.af.mil

Team Software Process

week on project work. The rest go to
meetings, ad-hoc assignments, etc. This 50
percent productivity factor can be lower
depending on the environment. Other
projects with competing priorities may
have pulled team members away. Also,
team hours used on unplanned activities
are worth tracking and monitoring; this is
the time spent on project-related work that
was not anticipated or included as part of
the project plan. Often these hours can be
substantial, and one can see an increase in
unplanned activities that are usually
accompanied by a corresponding decline
in actual team earned value.

Stepping back and taking a look at
both charts, the development manager can
draw the following conclusions. This proj-
ect started to deviate from estimates as
carly as January. Progress appears to be
hampered by the amount of time the team
is able to apply to the project; if no action
is taken, the project will miss its comple-
tion date. This is an early warning for the
development manager to talk to the team
lead and project members, ask some
pointed questions, and develop a much
richer picture of the project’s status and
obstacles.

In addition to schedule data, the TSP
reports provide a rich set of quality data
and an early warning system related to the
quality being built. Although the previous
two charts help us to track schedule
progress, we also need to know that the
product being built is of acceptable quali-
ty so it will not get bogged down duting
the test phase — a typical scenatio in many
software projects.

One djal that TSP does not provide the
development manager with is projected
and actual projects costs. There are a num-
ber of reasons why TSP-supplied data is
not sufficient for providing financial sta-
tus. TSP plans and measures activity in
terms of available hours, and even though
the typical software engineer has 20 hours
available per week, he or she must be paid
for the full week. There is also no provi-
sion for tracking common project expens-
es such as training and purchases. A
scheme for loading available hours to
accommodate these costs seems possible
but has not been attempted in the projects
in which either author has been involved.
That said, TSP’s performance and sched-
ule have proven very useful at Sandia, and
the use of the organization’s financial sys-
tem to help provide the overall project sta-
tus has not been burdensome.

Managing Project Portfolio
The secondary ontcome using the TSP model is
the ability to manage a portfolio of projects. As

mentioned before, Sandia’s Information
Systems Development Center has many
projects at any given time; currently only
three projects are using the TSP. However,
development managers must report status
on all projects in their portfolio to their
superiors and funding sponsors.
Understandably, these stakeholders want
visible and objective measures of progress
for the projects involved. Again, the desire
is to stay abreast of the development port-
folio and intervene should the develop-
ment manager need assistance keeping
projects on track. Whether that report is a
scorecard or takes another format, accu-
rate data that reflects the true state of
affairs is needed.

The difference between two types of
projects (TSP vs. non-TSP) is like day and
night when one tries to prepate scorecard
reports. The TSP projects have all the data
collected as part of their process; with
non-TSP projects, the project lead must
work much harder to collect time worked,
the numbers are often less accurate, and it
is harder to determine the true status of
the project. After having experienced both
reporting systems, undoubtedly the TSP
satisfies management by data requitements
without any additional effort. As men-
tioned eatlier, the developers readily see
the value of data collection from their pet-
sonal work processes, and when meeting
weekly as a team.

Summary and Conclusion

We do not intend to leave the impression
that all issues are resolved, and that TSP is
being used seamlessly in this organization.
The size issue raised during the first launch
has not gone away. The organization uses
function points to measure project size by

personnel outside of the project. The TSP
teams ate not completely trained to use
function points for their size estimates and
are resistant to using lines of code as their
measure. Developers reason that since
they are working in a multi-tier architecture
environment using multiple languages,
using lines of code does not make sense
for their application environment. The col-
lection of defects at the personal level is
just getting started, and defect-counting
standards for design have been created.
Developers have been hesitant to record
defects, fearing that this information may
fall into the wrong hands and be used for
evaluation purposes. Not all teams have
chosen to use TSP to respond to the man-
agement-by-data mandate.

On the other hand, software projects
using the TSP have experienced a number
of successes. The three TSP projects
exhibit good project control and tend to
need only minor corrections because
problems are detected early. TSP meeting
scripts and the guidance of the TSP
launch coach have been an excellent way
to support new development project lead-
ers. The format of TSP team meetings
and use of its roles has increased the
teams’ sense of ownership of the work
and process. We look forward to improved
quality and performance as metrics are
collected from all members of the devel-
opment team and used to improve team
and personal processes. As mentioned eat-
lier, the rigorous timekeeping of these
TSP projects provides excellent project
visibility. Since this data comes directly
from those doing the work, status reports
derived from this information are faitly
objective and can provide good insight
into the progtess of a project. ¢

About the Authors

Ray Trechter, Certified
Software Development
Professional, is a soft-
ware development man-
ager at Sandia National
In addi-
tion to managing software develop-
ment projects, Trechter has worked in

Laboratories.

the areas of software architectute, soft-
wate process improvement, and as a
developer of distributed systems.

Sandia National Laboratories
MS 0661

Albuquerque, NM 87185
E-mail: ratrech@sandia.gov

1 6 CrossTALK The Journal of Defense Software Engineering

Iraj Hirmanpour is
principal of AMS, a
software process im-
provement firm and a
Software Engineering
Institute Personal Soft-
ware Process™ (PSP™) and Team
Software Process™ (TSP™) transition
pattner. Hirmanpour is a PSP/TSP
consultant and trainer on the transition

of technology to organizations.

AMS, Inc.

421 Seventh ST NE

Atlanta, GA 30308

Phone: (404) 394-2028

E-mail: ihirman@earthlink.net

March 2005

