Software Cost Estimating Methods for Large Projects®

Capers Jones
Software Productivity Research, LLC

For large projects, antomated estimates are more successful than manual estimates in terms of accuracy and usefulness. In

descending order, the costs of large projects include defect removal, production of paper documents, coding, project manage-
ment, and dealing with new requirements that appear during the development cycle. In addition, successful estimates for large
projects must be adjusted to match specific development processes, to match the experience of the development team, and to
match the results of the programming languages and tool sets that are to be utilized. Simple mannal estimates cannot encom-

pass all of the adjustments associated with large projects.

Software has achieved a bad reputation
as a troubling technology. Large soft-
ware projects have tended to have a very
high frequency of schedule and cost over-
runs, quality problems, and outright can-
cellations. While this bad reputation is
often deserved, it is important to note that
some large software projects are finished
on time, stay within their budgets, and
operate successfully when deployed.

The successful software projects differ
in many respects from the failures and dis-
asters [1]. One important difference is
how the successful projects arrived at their
schedule, cost, resource, and quality esti-
mates in the first place. From an analysis
of the results of using estimating tools
published in “Estimating Software Costs”
[2], using automated estimating tools leads
to more accurate estimates. Conversely,
casual or manual methods of arriving at
initial estimates are usually inaccurate and
often excessively optimistic.

A comparison of 50 manual estimates
with 50 automated estimates for projects
in the 5,000-function point range showed
interesting results [2]. The manual esti-
mates were created by project managers
who used calculators and spreadsheets.
The automated estimates were also creat-
ed by project managers or their staff-esti-
mating assistants using several different
commercial-estimating tools. The compar-
isons were made between the original esti-
mates submitted to clients and corporate
executives, and the final accrued results
when the applications were deployed.

Only four of the manual estimates
were within 10 percent of actual results.
Some 17 estimates were optimistic by
between 10 percent and 30 percent. A dis-
maying 29 projects were optimistic by
more than 30 percent. That is to say, man-
ual estimates yielded lower costs and
shorter schedules than actually occurred,
sometimes by significant amounts. (Of
course several revised estimates were cre-

© 2005 Capers Jones. All Rights Reserved.

8 CRrRosSTALK The Journal of Defense Software Engincering

ated along the way. But the comparison
was between the initial estimate and the
final results.)

In contrast, 22 of the estimates genet-
ated by commercial software estimating
tools were within 10 percent of actual
results. Some 24 were conservative by
between 10 percent and 25 percent. Three
were conservative by more than 25 per-
cent. Only one automated estimate was
optimistic, by about 15 percent.

““The conclusion of the
comparison was that
both manual and
automated estimates
were equivalent for
actual programming,
but the automated
estimates were better
for predicting
non-coding activities.”’

One of the problems with performing
studies such as this is the fact that many
large projects with inaccurate estimates are
cancelled without completion. Thus, for
projects to be included at all, they had to
be finished. This criterion eliminated
many projects that used both manual and
automated estimation.

Interestingly, the manual estimates and
the automated estimates were faitly close
in terms of predicting coding or program-
ming effort. But the manual estimates
were very optimistic when predicting
requirements growth, design effort, docu-
mentation effort, management effort, test-
ing effort, and repair and rework effort.

The conclusion of the comparison was
that both manual and automated estimates
were equivalent for actual programming,
but the automated estimates were better
for predicting non-coding activities.

This is an important issue for estimat-
ing large software applications. For soft-
ware projects below about 1,000 function
points in size (equivalent to 125,000 C
statements), programming is the major
cost driver, so estimating accuracy for
coding is a key element. But for projects
above 10,000 function points in size
(equivalent to 1,250,000 C statements)
both defect removal and production of
paper documents are more expensive than
the code itself. Thus, accuracy in estimat-
ing these topics is a key factor.

Software cost and schedule estimates
should be accurate, of course. But if they
do differ from actual results, it is safer to
be slightly conservative than it is to be
optimistic. One of the major complaints
about software projects is their distressing
tendency to overrun costs and planned
schedules. Unfortunately, both clients and
top executives tend to exert considerable
pressures on managers and estimating per-
sonnel in the direction of optimistic esti-
mates. Therefore, a hidden corollary of
successful estimation is that the estimates
must be defensible. The best defense is a
good collection of historical data from
similar projects.

Because software estimation is a com-
plex activity there is a growing industry of
companies that market commercial soft-
ware estimation tools. As of 2005, some
of these estimating tools include COCO-
MO 1I, CoStar, CostModeler, CostXpert,
KnowledgePlan, PRICE S, SEER, SLIM,
and SoftCost. Some older automated cost-
estimating tools are no longer being
actively marketed but ate still in use such
as CheckPoint, COCOMO, ESTIMACS,
REVIC, and SPQR/20. Since these tools
are not supported by vendors, usage is in
decline.

While these estimating tools were devel-

April 2005

oped by different companies and are not

identical, they do tend to provide a nucleus

of common functions. The major features
of commercial software-estimation tools
circa 2005 include these attributes:

* Sizing logic for specifications, source
code, and test cases.

* Phase-level, activity-level, and task-
level estimation.

* Adjustments for specific work periods,
holidays, vacations, and overtime.

* Adjustments for local salaries and bur-
den rates.

* Adjustments for various software proj-
ects such as military, systems, commer-
cial, etc.

e Support for function point metrics,
lines of code (LOC) metrics, or both.

* Support for backfiring or conversion
between LOC and function points.

* Support for both new projects and
maintenance and enhancement projects.

Some estimating tools also include more

advanced functions such as the following:

* Quality and reliability estimation.

* Risk and value analysis.

* Return on investment.

* Sharing of data with project manage-
ment tools.

* Measurement models for collecting
historical data.

* Cost and time-to-complete estimates
mixing historical data with projected
data.

* Support for software process assess-
ments.

* Statistical analysis of multiple projects
and portfolio analysis.

* Currency conversion for dealing with
overseas projects.

Estimates for large software projects
need to include many more activities than
just coding or programming Table 1
shows typical activity patterns for six dif-
ferent kinds of projects: Web-based appli-
cations, management information systems
(MIS), outsourced software, commercial
software, systems software, and military
software projects. In this context, Web
projects are applications designed to sup-
port corporate Web sites. Outsource soft-
ware is similar to MIS, but performed by
an outside contractor. Systems software is
that which controls physical devices such
as computers or telecommunication sys-
tems. Military software constitutes all
projects that are constrained to follow var-
ious military standards. Commercial soft-
ware refers to ordinary packaged software
such as word processors, spreadsheets,
and the like.

Table 1 is merely illustrative, and the
actual numbers of activities performed
and the percentages of effort for each

April 2005

Software Cost Estimating Methods for Large Projects

Activities Performed Web MIS Outsource |Commercial| System Military
01 Requirements 5.00% 7.50% 9.00% 4.00% 4.00% 7.00%
02 Prototyping 10.00% | 2.00% 2.50% 1.00% 2.00% 2.00%
03 Architecture 0.50% 1.00% 2.00% 1.50% 1.00%
04 Project plans 1.00% 1.50% 1.00% 2.00% 1.00%
05 Initial design 8.00% 7.00% 6.00% 7.00% 6.00%
06 Detail design 7.00% 8.00% 5.00% 6.00% 7.00%
07 Design reviews 0.50% 1.50% 2.50% 1.00%
08 Coding 30.00% | 20.00% 16.00% 23.00% 20.00% 16.00%
09 Reuse acquisition 5.00% 2.00% 2.00% 2.00% 2.00%
10 Package purchase 1.00% 1.00% 1.00% 1.00%
11 Code inspections 1.50% 1.50% 1.00%
12 Independent verification 1.00%
and validation
13 Configuration 3.00% 3.00% 1.00% 1.00% 1.50%
management

14 Formal integration 2.00% 2.00% 1.50% 2.00% 1.50%
15 User documentation 10.00% 7.00% 9.00% 12.00% 10.00% 10.00%
16 Unit testing 30.00% | 4.00% 3.50% 2.50% 5.00% 3.00%
17 Function testing 6.00% 5.00% 6.00% 5.00% 5.00%
18 Integration testing 5.00% 5.00% 4.00% 5.00% 5.00%
19 System testing 7.00% 5.00% 7.00% 5.00% 6.00%
20 Field testing 6.00% 1.50% 3.00%
21 Acceptance testing 5.00% 3.00% 1.00% 3.00%
22 Independent testing 1.00%
23 Quality assurance 1.00% 2.00% 2.00% 1.00%
24 Installation/training 2.00% 3.00% 1.00% 1.00%
25 Project management 10.00% | 12.00% 12.00% 11.00% 12.00% 13.00%
Total 100.00% | 100.00% | 100.00% 100.00% 100.00% 100.00%
Activities 7 18 21 20 23 25

Table 1: ‘Dypical Software Development Activities for Sixc Application Types (Data indicates the per-
centage of work effort by activity.)

activity can vary. For estimating actual
projects, the estimating tool would present
the most likely set of activities to be per-
formed. Then the project manager or esti-
mating specialist would adjust the set of
activities to match the reality of the proj-
ect. Some estimating tools allow users to
add additional activities that are not part
of the default set.

Cost Drivers for Large
Software Systems: Paperwork

and Defect Removal

In aggregate, large software projects
devote more effort to producing paper
documents and to removing bugs or
defects than to producing source code.
(Some military software projects have
been observed to produce about 400
English words for every Ada statement.)
Thus, accurate estimation for large soft-
ware projects must include the effort for
producing paper documents, and the
effort for finding and fixing bugs or
defects, among other things.

The invention of function point met-
rics [3] has made full sizing logic for paper
documents a standard feature of many
estimating tools. One of the reasons for
the development of function point met-

rics was to provide a sizing method for
paper deliverables. (For additional infor-
mation on function points, see the Web
site of the non-profit International
Function Point Users Group <www.ifpug;
org>.)

Table 2 (see page 10) illustrates select-
ed documentation size examples drawn
from systems, Web projects, MIS, out-
source, commercial, systems, and military
software domains.

At least one commercial software-esti-
mating tool can even predict the number
of English words in the document set, and
also the numbers of diagrams that are like-
ly to be present. The document estimate
can also change based on paper size such
as Buropean A4 paper. Indeed, it is now
possible to estimate the sizes of text-based
documents in several national languages
(i.e. English, French, German, Japanese,
etc.) and even to estimate translation costs
from one language to another for projects
that are deployed internationally.

Software Defect Potentials and

Defect Removal Efficiency Levels
A key aspect of software cost estimating is
predicting the time and effort that will be
needed for design reviews, code inspec-
tions, and all forms of testing. To estimate

www.stsc.hillaf.mil 9

Cost Estimation

Outsource

Commercial

Military Average

0.55

Requirements

0.30 0.85 0.48

Function
Specifications

0.55

0.60 1.75 0.73

Logic
Specifications

0.50

0.55 1.65 0.81

Test Plans 0.15

0.25 0.55 0.23

User Guides 0.20

0.85 0.50 0.34

Reference 0.25

0.90 0.85 0.51

Reports 0.60

0.40 2.00 0.72

Total 2.80

3.85 8.15 3.60

Table 2: Document Pages per Function Point for Sixc Application Types (Data expressed in terms of

pages per function point.)

defect removal costs and schedules, it is
necessary to know about how many
defects are likely to be encountered.

The typical sequence is to estimate
defect volumes for a project and then to
estimate the series of reviews, inspections,
and tests that the project utilizes. The
defect removal efficiency of each step will
be estimated also. The effort and costs for
preparation, execution, and defect repairs
associated with each removal activity also
will be estimated.

Table 3 illustrates the overall distribu-
tion of software errors among the same
six project types shown in Table 1. In
Table 3, bugs or defects are shown from
five sources: requirements errors, design
errors, coding errors, user documentation
errors, and bad fixes. A bad fix is a second-
ary defect accidentally injected in a bug
repair. In other words, a bad fix is a failed
attempt to repair a prior bug that acciden-
tally contains a new bug On average,
about 7 percent of defect repairs will
themselves accidentally inject a new
defect, although the range is from less
than 1 percent to more than 20 percent
bad fix injections.

The data in Table 3, and in the other
tables in this report, are based on a total of
about 12,000 software projects examined
by the author and his colleagues circa
1984-2004. Additional information on the
soutces of data can be found in [2, 4, 5, 6].

Table 3 presents approximate average
values, but the range for ecach defect cate-
gory is more than 2-to-1. For example,

software projects developed by companies
who are at Capability Maturity Model®
(CMM?®) Level 5 might have less than half
of the potential defects shown in Table 3.
Similarly, companies with several years of
experience with the Six Sigma quality
approach will also have lower defect

“One important aspect
of estimating is dealing
with the rate at which
requirements creep and,
hence, make projects
grow larger during
development.”’

potentials than those shown in Table 3.
Several commercial estimating tools make
adjustments for such factors.

A key factor for accurate estimation
involves the removal of defects via
reviews, inspections, and testing. The
measurement of defect removal is actually
fairly straightforward, and many compa-
nies now do this. The U.S. average is about
85 percent, but leading companies can
average more than 95 percent removal
efficiency levels [7].

It is much easier to estimate software
projects that use sophisticated quality con-

Table 3: Average Defect Potentials for Sixc Application Types (Data expressed in terms of defects per

Sfunction point.)

Outsource

Commercial

Military

1.10

Requirements

1.25 1.70

Design 1.20

1.30 1.75

Code 1.70

1.75 1.75

Documents 0.50

0.70 1.20

Bad Fix 0.30

0.50 0.60

Total 4.80

10 CrosSTALK The Journal of Defense Software Engineering

5.50 7.00

trol and have high levels of defect removal
in the 95 percent range. This is because
there usually are no disasters occurring
late in development when unexpected
defects are discovered. Thus, projects per-
formed by companies at the higher CMM
levels or by companies with extensive Six
Sigma experience often have much greater
precision than average.

Table 4 illustrates the variations in typ-
ical defect prevention and defect removal
methods among the six domains already
discussed. Of course, many vatiations in
these patterns can occur. Therefore it is
important to adjust the set of activities and
their efficiency levels to match the realities
of the projects being estimated. However,
since defect removal in total has been the
most expensive cost element of large soft-
ware applications for more than 50 years, it
is not possible to achieve accurate esti-
mates without being very thorough in esti-
mating defect removal patterns.

The overall efficiency values in Table 4
are calculated as follows: If the starting
number of defects is 100, and there ate
two consecutive test stages that each
remove 50 percent of the defects present,
then the first test will remove 50 defects
and the second test will remove 25 defects.
The cumulative efficiency of both tests is
75 percent, because 75 out of a possible
100 defects were eliminated.

Table 4 oversimplifies the situation,
since defect removal activities have vary-
ing efficiencies for requirements, design,
code, documentation, and bad fix defect
categories. Also, bad fixes during testing
will be injected back into the set of unde-
tected defects.

The low efficiency of most forms of
defect removal explains why a lengthy
series of defect removal activities is need-
ed. This, in turn, explains why estimating
defect removal is critical for overall accu-
racy of software cost estimation for large
systems. Below 1,000 function points, the
series of defect removal operations may
be as few as three. Above 10,000 function
points, the series may include more than a
dozen kinds of review, inspection, and test
activity defect removal operations.

Requirements Changes and

Software Estimation

One important aspect of estimating is
dealing with the rate at which require-
ments creep and, hence, make projects
grow larger during development. Fortu-
nately, function point metrics allow direct
measurement of the rate at which this

® Capability Maturity Model and CMM ate registered in the
US. Patent and Trademark Office by Carnegie Mellon
University.

April 2005

phenomenon occurs since both the origi-
nal requirements and changed require-
ments will have function point counts.

Changing requirements can occuf at
any time, but the data in Table 5 runs from
the end of the requirements phase to the
beginning of the coding phase. This time
period usually reflects about half of the
total development schedule. Table 5 shows
the approximate monthly rate of creeping
requirements for six kinds of software, and
the total anticipated volume of change.

For estimates made eatly in the life
cycle, several estimating tools can predict
the probable growth in unplanned func-
tions over the remainder of the develop-
ment cycle. This knowledge can then be
used to refine the estimate and to adjust
the final costs in response.

Of course, the best response to an esti-
mate with a significant volume of projected
requirements change is to improve the
requirements gathering and analysis meth-
ods. Projects that use prototypes, joint
application design (JAD), requirements
inspections, and other sophisticated require-
ments methods can reduce later changes to
a small fraction of the values shown in
Table 5. Indeed, the initial estimates made
for projects using JAD will predict reduced

volumes of changing requirements.

Adjustment Factors for

Software Estimates

When being used for real software proj-

ects, the basic default assumptions of esti-

mating tools must be adjusted to match

the reality of the project being estimated.

These adjustment factors are a critical por-

tion of using software estimating tools.

Some of the available adjustment factors

include the following:

* Staff experience with similar projects.

* Client experience with similar projects.

* Type of software to be produced.

* Size of software project.

* Size of deliverable items (documents,
test cases, etc.).

* Requirements methods used.

* Review and inspection methods used.

* Design methods used.

* Programming languages used.

¢ Reusable materials available.

* Testing methods used.

¢ Paid overtime.

e Unpaid overtime.

Automated estimating tools provide
users with abilities to tune the estimating
parameters to match local conditions.
Indeed, without such tuning the accuracy of
automated estimation is significantly re-
duced. Knowledge of how to adjust esti-
mating tools in response to various factors is

April 2005

| Web | MIS |0utsource Commercial

Software Cost Estimating Methods for Large Projects

System Military

Prevention Activities

Prototypes 20.00% | 20.00% | 20.00% 20.00% 20.00% 20.00%
Clean rooms 20.00% 20.00%
JAD sessions 30.00%| 30.00%

QFD sessions 25.00%

Subtotal 20.00% | 44.00% | 44.00% 20.00% 52.00% 36.00%
Pretest Removal

Desk checking 15.00% [15.00% | 15.00% 15.00% 15.00% 15.00%
Requirements 30.00% 25.00% 20.00% 20.00%
review

Design review 40.00% 45.00% 45.00% 30.00%
Document review 20.00% 20.00% 20.00%
Code inspections 50.00% 60.00% 40.00%
Independent 20.00%
verification and

validation

Correctness 10.00%
proofs

Usability labs 25.00%

Subtotal 15.00% | 15.00% | 64.30% 89.48% 88.03% 83.55%
Testing Activities

Unit test 30.00% | 25.00% | 25.00% 25.00% 25.00% 25.00%
New function test 30.00%| 30.00% 30.00% 30.00% 30.00%
Regression test 20.00% 20.00% 20.00% 20.00%
Integration test 30.00%| 30.00% 30.00% 30.00% 30.00%
Performance test 15.00% 15.00% 20.00%
System test 35.00%| 35.00% 35.00% 40.00% 35.00%
Independent test 15.00%
Field test 50.00% 35.00% 30.00%
Acceptance test 25.00% 25.00% 30.00%
Subtotal 30.00%|76.11%| 80.89% 91.88% 92.69% 93.63%
Overall 52.40% | 88.63% | 96.18% 99.32% 99.58% 99.33%
Efficiency

Number of 3 7 1 14 16 18
Activities

Table 4: Patterns of Defect Prevention and Removal Activities

the true heart of software estimation. This
kind of knowledge is best determined by
accurate measurements and multiple regres-
sion of analysis of real software projects.

Summary and Conclusions

Software estimating is simple in concept,
but difficult and complex in reality. The
larger the project, the more factors there
are that must be evaluated. The difficulty
and complexity required for successful
estimates of large software projects
exceeds the capabilities of most software
project managers to produce ecffective

manual estimates. In particular, successful
estimation of large projects needs to
encompass non-coding work.

The commercial software estimating
tools are far from perfect and they can be
wrong, too. But automated estimates often
outperform human estimates in terms of
accuracy, and always in terms of speed and
cost effectiveness. However, no method of
estimation is totally error-free. The current
best practice for software cost estimation is
to use a combination of software cost esti-
mating tools coupled with software project
management tools, under the careful guid-

Table 5: Monthly Rate of Changing Requirements for Six Application Dypes (From end of require-

ments to start of coding phases)

Web MIS Outsource

Commercial

System

Military

Monthly

Rate 4.00% | 2.50% 1.50%

3.50% 2.00% 2.00%

Months 6.00 12.00 14.00

10.00 18.00 24.00 14.00

TOTAL (24.00% | 30.00% 21.00%

35.00% 36.00% | 48.00% 32.33%

www.stsc.hillaf.mil 11

Cost Estimation

COMING EVENTS

April 18-21
2004 Systems and Software
Technology Conference

Salt Lake City, UT
www.stc-online.org

May 2-6
Practical Software Quality and
Testing (PSQT) 2005
Las Vegas, NV
www.qualityconferences.com

May 14-15
ACM Symposium on Software
Visualization

St. Louis, MO
www.softvis.org/softvis05

May 15-21
27" International Conference on
Software Engineering (ICSE)
St. Louis, MO
www.icse-conferences.org/2005

May 16-17
Military Embedded Electronics and
Computing Conference
Long Beach, CA
www.meecc.com

May 16-20
STAREAST 2005 International

Conference on Software lesting Analysis
and Review
Orlando, FL
www.sge.com/stareast

May 23-26
2005 Combat Identification
Systems Conference
Portsmouth, VA
www.usasymposium.com/combatid

June 12-15
ACM Sigplan 2005 Programming
Language Design and Implementation
Chicago, IL
http://research.ihost.com/pldi2005

ance of experienced software project
managets and estimating specialists. ¢

References

1. Jones, Capers. “Software Project
Management Practices: Failure Versus
Success.”” CROSSTALK Oct. 2004
<www.stsc.hill.af.mil/crosstalk/2004/
10/0410Jones.html>.

2. Jones, Capers. Estimating Software
Costs. New York: McGraw Hill, 1998.

3. Albrecht, Allan. AD/M Productivity
Measurement and Estimate Valida-
tion. Purchase, NY: IBM Corporation,
May 1984.

4. Jones, Capers. Applied Software Mea-
surement. 2nd ed. New York: McGraw
Hill, 1996.

5. Jones, Capers. Software Assessments
Benchmarks, and Best Practices. Boston,
MA: Addison Wesley Longman, 2000.

6. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
ed. Boston, MA: Addison Wesley
Longman, 2003.

7. Jones, Capers. Software Quality —
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

About the Author

Capers Jones is founder
and chief scientist of
Software Productivity
Research (SPR) LLC. He
has almost 40 years of

experience in software
cost estimating. Jones designed IBM’s
first automated estimation tool in 1975,
and is also one of the designers of three
commercial software estimation tools:
SPQR/20, Checkpoint, and Knowl-
edgePlan. These software estimation
tools pioneered the use of function
point metrics for sizing and estimating,
They also pioneered sizing of paper doc-
uments, and the estimation of quality
and defect levels. To build these tools,
SPR has collected quantified data from
more than 600 companies.

Software Productivity
Research, LLC

Phone: (877) 570-5459
E-mail: cjones@spr.com

International Function
Point Users Group
www.ifpug.org

The International Function Point Users
Group (IFPUG) is a non-profit organiza-
tion committed to increasing the effec-
tiveness of its members’ I'T environments
through the application of function point
analysis (FPA) and other software meas-
urement techniques. IFPUG endorses
FPA as its standard methodology for soft-
ware sizing and maintains the Function
Point Counting Practices Manual, the
recognized industry standard for FPA.
IFPUG serves more than 1,200 members
in more than 30 countries.

COCOMO
htep://sunset.usc.edu/research/
COCOMOII

The Constructive Cost Model (COCO-
MO) Suite is a collection of six COCO-
MO-related estimation models in various
stages of development. These models
attempt to estimate impacts on software
system cost, development schedule, and
even return on technology investment
associated with a variety of software devel-
opment approaches and processes.

Space Systems Cost
Analysis Group
hetp://sscag.saic.com

The Space Systems Cost Analysis Group
(SSCAG) is a non-profit, international
association of aerospace organizations
representing industry and government.
SSCAG members are involved in space
systems cost analysis, including hardware
or software related to launch systems,
spacecraft, payloads, experiments, and
space-related ground systems.

International Society of
Parametric Analysts
Www.ispa-cost.org

The International Society of Parametric
Analysts (ISPA) is a non-profit educa-
tional society devoted to the promotion
of parametrics, risk analysis, economet-
rics, design to cost, technology forecast-
ing, and management. Many ISPA
members currently participate in the
Parametric Estimating Initiative, en-
abling them to rely on parametrics as the
primary basis of estimate. ISPA chapters
provide technical workshops, training,
and networking opportunities.

12 CrRosSTALK The Journal of Defense Software Engineering

April 2005

