
April 2004 www.stsc.hill.af.mil 9

Why We Need Empirical Information on Best Practices

Best practices are widely recommended as a way to improve organizational performance, especially in software-related endeavors. This
article takes a skeptical view of the current way best practices are identified and prescribed. It identifies relevant information that
is often missing from best practice discussions and recommends an alternative approach to gathering, evaluating, and applying that
information.

In the history of software development
and acquisition, one of the most often

prescribed curatives for their continuing
infirmities, aches, and agues is the identifi-
cation and implementation of best practices.
Of course, the notion of what defines a
best practice is not clear. Some best prac-
tices, for example configuration or risk
management, are actually disciplines seen
as crucial to success. Other best practices
are broad approaches or philosophies
such as architecture-first development or
Integrated Product and Process Develop-
ment. A third type of best practices, peer
reviews for example, are actually practices
proven to be beneficial in a specific way.
In reality, the term has been so broadly
applied as to be nearly meaningless.

In spite of being definitionally challenged,
best practices continue to arise – some-
times as ephemeral answers du jour and
other times as lasting wisdom. They pop-
ulate the lists and fill the books that we
turn to for guidance. Unfortunately, we all
too often find that the benefit is more in
the eyes of the beholder than in any mea-
surable result of implementing the
enshrined practices. We ultimately do not
know, beyond anecdotes and sales pitches,
whether a practice will work for us. So, to
move from faith toward science, we need
to approach best practices in a skeptical
but constructive manner. I believe that the
best way to do this is through focused
empirical studies and careful analysis that
result in a validated assessment of the
practice’s cost and real benefit.

Some History
My earlier research into the adoption of
best practices in defense acquisitions
uncovered considerable recognition of
the most widely referenced best practices,
but very little real implementation [1].
There were good reasons for the unsuc-
cessful implementation of even the highly
recommended practices, and most had to
do with lack of information.

I found that practices – best or other-
wise – generally do not fall into the one-
size-fits-all category, and it is not easy to

evaluate how appropriate a practice is for
a particular organization or program.
Most practices also have hidden assump-
tions and conditions for use, and there is
little available support for evaluation and
selection. When a practice is chosen, there
is often little information on how to
implement it in the real world.
Consequently, managers often find them-
selves acting on a faith-and-gut feel in
deciding what practices to implement.

There are also the instances of best
practices that are not. A case in point is
the venerated heuristic that the larger a

software module, the more likely it is to
have defects. Surprisingly, empirical study
at NASA’s Software Engineering
Laboratory showed that smaller modules
actually increased the defect rate for a
period, and that there existed a sweet spot
where the module size corresponded to
the fewest defects. The exact placement of
the sweet spot depends on a number of
characteristics about the software being
developed, but Figure 1 illustrates the
general finding, which is in direct conflict
with the previously held best practice.

Applying Empiricism:
Questions Needing Answers
Empiricism, in this context, can be
thought of as a methodical approach to
the gathering and analysis of data about a
specific practice. It is applying, to the best
of our ability, scientific principals to the

evaluation and validation of practices
with the goal of producing usable infor-
mation. This is more than collecting anec-
dotes or drawing general conclusions
from a few unstructured experiences.

Empiricism should not be confused
with quantitative analysis, since there are
ways to methodically collect and mean-
ingfully analyze qualitative data.
Quantitative data is certainly a worthy
goal, but in some cases it is very difficult
to obtain. For that reason, we include sev-
eral qualitative approaches, including
workshops and expert opinion, under our
empirical umbrella.

The primary purpose of methodical
analysis of practices is to gather and
maintain data to answer specific ques-
tions. Using this data, including knowl-
edge gained from lessons learned in actu-
ally implementing practices, we can build
tools to help select practices that are
appropriate for a particular project. Let us
look briefly at some questions to which
empiricism can provide validated answers.

How Much Will It Really
Cost?
It is usually risky to order from a menu
without prices, so the first thing we need
to know is the size of the bill. Let us con-
sider some of the major costs we need to
define and capture. How many hours of
training are needed? Are there tools or
other infrastructure required? Of course,
these upfront costs might just be the tip
of the iceberg. What are the costs of the
effort and resources needed to actually
apply the practice? Are there license fees
or equipment maintenance associated
with the infrastructure? Unexpected costs

Dr. Richard Turner
The George Washington University

Size/Complexity

F
au

lt
 R

at
e

Actual

Hypothesized

Believed

Size/Complexity

Actual

Believed

Note: Based on NASA SEL Experience

Figure 1: Notional Findings on Module Size
versus Fault Rate

“... empirical study at
NASA’s Software

Engineering Laboratory
showed that smaller

modules actually
increased the defect rate

for a period ...”

Acquisition

10 CROSSTALK The Journal of Defense Software Engineering April 2004

can doom any benefit that might be
achieved. Maintaining information on
how much a practice costs to implement
is a key empirical characteristic.

What Is the Actual Benefit?
OK, we have an idea of the cost but real-
ly, how good is that best practice entree?
What exactly do we expect from imple-
menting the practice? Will it shorten the
schedule, raise quality, or lower cost? If
so, by how much? What specific risks

could it mitigate? How are benefits mea-
sured? Sometimes there are hidden
benefits or ones that surface late in the life
cycle. On the other hand, even obvious
benefits might need actions outside of the
project’s control to be fully realized.

For example, peer programming can
provide higher quality and shorter devel-
opment times, but successful implementa-
tion might require changes to corporate
policy regarding reward structure, office
space, or equipment allocations. Validat-

ing the benefit ensures that recommended
practices have a fighting chance of help-
ing programs that implement them.
Benefits may not be explicitly captured in
dollars, but the type, nature, and magni-
tude can be collected and analyzed.

What Is the Pedigree?
It is always good to know where the prac-
tice came from and who actually estab-
lished it as a best practice. Is it technolog-
ically mature? Are there studies that sug-
gest it works? Who has successfully imple-
mented it? This is especially true when
proprietary components such as tools or
processes are part of the practice. Caveat
emptor is a pretty good mantra for our
empirical activities. Data on the number
of implementations, breadth of applica-
tion, and the level of consensus on the
practice’s value by experts are means to
address pedigree empirically.

Is the Environment a Critical
Success Factor?
Every practice does not apply to every
type of project. Does the practice assume
a particular type of development or acqui-
sition environment? Does it only work for
small projects? Was the best practice iden-
tified in an environment of stable require-
ments or is its primary benefit only real-
ized in a situation of constant change?
When in the product life cycle is it best
applied? It might not be helpful to imple-
ment a requirements practice when the
program is knee-deep in integration test-
ing. What is the size or criticality threshold
at which the practice begins to pay off ?
What is reasonable for the F-35 or a
Missile Defense Agency component
might not be appropriate for a commer-
cial off-the-shelf-based, Web-enabled
training application. Maintaining the char-
acteristics of the environments where a
practice has been implemented and the
associated results is one way to capture
this data.

How Long Before It Works?
Knowing the time it takes for a benefit to
be realized is one of the subtlest questions
to answer. Does the practice provide
immediate benefit, or do its effects have
to trickle down through the development
or acquisition process for months (or
years) before actually helping? Compare
the benefit latency of peer reviews with
that of a process improvement program.
The first pays dividends immediately
while the second takes months to show
measurable value. Knowing the benefit
latency also has an unfortunate down side

The Department of Defense Best Practices
Clearinghouse — First Steps Toward Empiricism

The Office of the Under Secretary of Defense (Acquisition, Technology and
Logistics) Defense Systems has initiated an activity to define an empirically-
informed clearinghouse for software acquisition and development best practices.
The Data Acquisition Center for Software (DACS), the Fraunhofer Center at the
University of Maryland, and the Center for Software Engineering at The
University of Southern California are specifying the infrastructure and processes
required for a centralized, empirically-based resource for acquisition and devel-
opment projects as shown in the Conceptual Best Practices Clearinghouse Data
figure, below.

The clearinghouse is envisioned to maintain validated practice information,
support user-driven selection of practices, provide step-wise implementation guid-
ance, and track implementation results. Easy-to-use, informative tools will sug-
gest appropriate practices based on goals, risks, life-cycle phase, and program
environment. Support for evolving from basic to advanced practices could also be
included. Web-based access tailored to user needs is planned, as well as an
active infrastructure to link expertise and information providers to users via com-
munities of practice, courses, workshops, publications, and shared pilot projects.

A user advisory group is being established to ensure that the products and
tools to be provided will meet the needs of developers and acquirers. The clear-
inghouse team is seeking submission of best practices, implementation and
results data, and lessons learned from development and acquisition organiza-
tions. Coordination with service and agency best practice and lessons learned
repositories is underway. For more information, contact Kathleen Dangle of the
Fraunhofer Institute at <kdangle@fc-md.umd.edu>, or Tom McGibbon of the
DACS at <tom.mcgibbon@itt.com>.

Characteristic data

Experience data

Best practice Formal inspections

Source

"Report on the Loss of the Mars Climate Orbiter
Mission", [JPL D-18441, JPL Special Review
Board, Nov. 11, 1999]

The use of software inspections will ensure a high level of system quality.

Case Study # 24

Theory/Expectation

What happened

Lesson Learned
Attention must be paid that inspections are practiced correctly, with
appropriate formality, to ensure defect removal benefits.

Breakdown in the use of inspections:
- Contrary to typical practice, there was not a requirement for a
navigation (end-user) representative to be present at any of the
walkthroughs or the acceptance test.
- The Sm_forces software program was misclassified as non-mission
critical, which reduced the number of reviews done on the software
compared to mission critical software.

BP Interrelationships

Architecture-
First

Approach

Ensure
Interoperability

Develop/Maintain

A Life Cycle
Business Case

Common
Management

And
Manufacturing

Systems

Commercial
Specifications

And Standards/
Open Systems

Capture Artifacts

In Rigorous
Model- Based

Notation

Assess Reuse
Risks and

Costs

Agreement

On
Interfaces

Acquisition
Process

Improvement

Requirements

Trade - Offs
Negotiations

Plan for
Technology

Insertion

Manage

Requirements

Leverage
COTS/NDI

Integrated Product
And Process

Development
(IPPD)

Independent Expert

Reviews/SCEs

Formal

Risk Management

Enables

Provide a basis

for decisions

Documents/communicates

the architecture

Requires
architecture be

evaluated by

Assesses the

value of
adopting

Is a
required

part of

Is part of

Business goals &

requirements drive
architecture decisions

Risks are

identified
and drive

decisions

Is

necessary
for

Architecture-
First

Approach

Ensure
Interoperability

Develop/Maintain

A Life Cycle
Business Case

Common
Management

And
Manufacturing

Systems

Commercial
Specifications

And Standards/
Open Systems

Capture Artifacts

In Rigorous
Model- Based

Notation

Assess Reuse
Risks and

Costs

Agreement

On
Interfaces

Acquisition
Process

Improvement

Requirements

Trade - Offs
Negotiations

Plan for
Technology

Insertion

Manage

Requirements

Leverage
COTS/NDI

Integrated Product
And Process

Development
(IPPD)

Independent Expert

Reviews/SCEs

Formal

Risk Management

Enables

Provide a basis

for decisions

Documents/communicates

the architecture

Requires
architecture be

evaluated by

Assesses the

value of
adopting

Is a
required

part of

Is part of

Business goals &

requirements drive
architecture decisions

Risks are

identified
and drive

decisions

Is

necessary
forImplementation data/guidance

Planning

Preparation

Defect
Report
Form

Meeting

Follow -
through

Software
Artifact

Planning
Form

Defect
Correction

Form

1

2

3

4

organizer

inspector

moderator
inspectors
author

author

Corrected
Software
ArtifactSoftware

Inspection

Defect
Collection

Form

Roles

Activities

Products

Roles

Activities

Products

Roles

Activities

Products

Inspection process overview
Phase 1: Planning

Inspectors should have vested interests

in work product. Inspectors should

invest no more than 15% of their time in

inspections (don't overwork good

inspectors!).

Phase 2: Preparation

Inspectors should spend at least as

much time in preparing as is required

for the inspection meeting. Provide

adequate lead time for inspectors to

perform preparation (3 - 5 work days).

– if it will not help by the end of some-
one’s watch, it may be more difficult to
gain support for implementation. Benefit
latency can be characterized based on
lessons learned and experience reports.

Are There Other Barriers?
Practices are implemented by people, so
they imply change. The project team’s atti-
tude, capabilities, and personality can raise
all sorts of problems. Will they accept and
adopt the practice or just go through the
motions? As with any change, corporate
culture also plays a part. Will management
buy in or fight it every step of the way?
How will the practice impact the organi-
zational infrastructure? Knowing what
barriers have historically manifested is a
major advantage in planning successful
implementation. Barriers can be identified
from experience, rated as to impact, and
organized into useful categories.

Can We Implement This?
Finally, we need to understand the prob-
ability of successfully bringing the prac-
tice to our particular program. Are the
existing resources and authority sufficient
to implement the practice? It is usually
possible to implement something that
affects the way a team works internally,
but implementing something like
Integrated Product and Process
Development with all of the significant
impacts on other stakeholders requires
enormous resources and power. Is there
sufficient time left in the project to
achieve any benefit? Clear instructions as
to how to implement the practice are also
priceless. Knowing about available tools
or consultants or classes can save the
effort of making it up as you go.

There has to be an honest assessment
of the implementation requirements and
the ability to meet them, or its likely
implementation will be incomplete or
shoddy, and the project possibly worse off
than before. Capturing the scope of con-
trol and other requirements for imple-
mentation is relatively straightforward and
can support implementation guideline
development.

Conclusions
You probably recognized that answering
these questions could be extremely diffi-
cult. It will take a focused, ongoing effort
to gather and maintain the data required
to validate the effectiveness and costs of
practices. This will be ongoing because
the data, as well as the practices, will
change continuously over time. We know
that every practice has associated cost and
benefit, maturity and pedigree, preferred

environment, benefit latency, organiza-
tional barriers, and required competencies
for successful implementation. We need
to seize the opportunity to capture, ana-
lyze, and package the precious informa-
tion of others’ experiences. There is so
much knowledge and experience being
gained daily by Department of Defense
programs that it is a travesty to let it sim-
ply vanish when the technology exists to
make it useful and available.

Consider the impact to projects of a
successful effort to empirically gather data
and validate best practices. How mar-
velous to be able to pick vetted, proven
practices that apply to our particular
needs and resources, reasonably confident
that the implementation will bring about
predictable benefits. The reduction of
rework and wasted effort could well dwarf
the expenses associated with the valida-
tion effort. Above all, projects would have
another means to increase their probabili-
ty of success in an environment that has
seen all too many failures.◆

Reference
1. Turner, Dr. Richard. “A Study of Best

Practice Adoption by Defense
Acquisition Programs.” CrossTalk,
May 2002: 4-8.

April 2004 www.stsc.hill.af.mil 11

Why We Need Empirical Information on Best Practices

About the Author

Richard Turner, D.Sc.,
is a research professor in
Engineering Manage-
ment and Systems Engi-
neering at The George
Washington University.

He is currently supporting the Office of
the Under Secretary of Defense for
Acquisition, Technology, and Logistics,
Defense Systems. Turner is a co-author
of “CMMI Distilled” and “Balancing
Agility and Discipline: A Guide for the
Perplexed.” Turner has a Bachelor of
Arts in mathematics from Huntingdon
College, a Master of Science in comput-
er science from the University of
Louisiana at Lafayette, and a Doctor of
Science from George Washington
University.

George Washington University
1931 Jefferson Davis HWY
STE 104
Arlington,VA 22202
Phone: (703) 602-0851 ext. 124
E-mail: rich.turner.ctr@osd.mil

April 19-22
2004 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 11-13
Technet International

Washington, DC
www.technet2004.org

May 17-21
STAREAST
Orlando, FL

www.sqe.com/stareast/

May 23-28
26th International Conference on

Software Engineering

Edinburgh, Scotland
www.jupiterevents.com

June 2-4
Sacmat 2004

Yorktown Heights, NY
www.sacmat.org

June 11-13
ACM Sigplan 2004 Conference on

Language Compilers and Tools
for Embedded Systems

Washington, DC
http://lctes04.flux.utah.edu

June 23-26
Agile Development Conference 2004

Salt Lake City, UT
www.agiledevelopment

conference.com

June 27- July 2
USENIX Annual

Technical Conference
Boston, MA

www.usenix.org/events/usenix04

COMING EVENTS

