Enterprise Engineering:
U.S. Air Force Combat Support Integration

Eric Z. Maass
Lockheed Martin Mission Systems

Enterprise engineering is quickly becoming a hot term used to describe the future movement of software engineering. This move-
ment, for both management and development organizations, can be daunting. Application developers will find though that this
model is useful in building a common enterprise from disparate organizations. This article covers fundamental considerations
for developing to an enterprise engineering vision and discusses basic techniques of enterprise application development as lessons
learned on the U.S. Air Force’s Global Combat Support System enterprise.

he term enterprise engineering

describes a large gamut of engineering
practices and processes that enable an
organization to design, develop, stand up,
and maintain an enterprise-computing
environment. Facets of enterprise engi-
neering might range anywhere from mod-
els such as time-based competition, con-
tinuous improvement, and business
process reengineering to the real meat and
potatoes of enterprise application design,
deployment, and integration (enterprise
application integration) [1]. However,
from a technical engineering perspective,
how does a large organization tackle the
daunting task of integrating numerous
enterprise-class applications while main-
taining a single engineering vision?
Furthermore, how do multiple sub-organi-
zational structures work to develop first-
class enterprise applications for a single,
common infrastructure, enterprise envi-
ronment?

The first realization that must be
addressed is that enterprise engineering is

the future of the software engineering
world. Software, whether it is designed for
a home computer, large computing envi-
ronment, or mobile computing device, is
becoming increasingly powerful due to its
ability to interact, or integrate, with other
systems and their respective software. For
instance, after placing an order to pur-
chase an item on an Internet-based store,
typically the buyer would receive an e-mail
with the status of the order. To make this
happen, it could mean integration of sev-
eral systems and their software: a credit
card processing system to verify the credit
card used, a warehouse system to see if
the item is in stock, a third-party delivery
system to prepare delivery of the item, etc.

In the past, these systems were either
not integrated or were integrated in some
proprietary manner, which made them
very costly and not very flexible. Today,
the idea of enterprise engineering is
sweeping the software engineering world
with technologies such as Java 2
Enterprise Edition (J2EE), Web services,

Figure 1: Enterprise Engineering Vision

Clntegration) Gerformancg

Securit Muiti-
y Threading

—/

Application\‘ \
Growth
C

omponent
Error
Handling

Based
Design
Reusability

Management

Allocation

Enterprise
Resource

Utilization

Network
Utilization

Enterprise Engineering Vision

16 CrossTALk The Journal of Defense Software Engineering

and enterprise application integration
tools. Hence, we have the introduction of
enterprise engineering — the vision of
engineering software and systems that
integrate across various systems, use open
standards, and bridge the gaps between
legacy, stovepipe system mentalities (see
Figure 1).

In the case of the Air Force, building
an integrated combat support enterprise is
key to providing real-time, accurate, inte-
grated information to the warfighter.
Allowing stand-alone combat support sys-
tems to integrate in an efficient, robust,
secure manner vastly improves the value
of information available to those making
combat decisions. For example, being able
to integrate combat support systems could
provide a single user with the capability of
seeing not only what planes are available
for a mission, but also their mission readi-
ness, available personnel, financial data
relating to making that mission happen,
and so forth. Previously, this data might
only be available through many separate
systems that might have conflicting infor-
mation due to the fact that they were not
integrated and shared the same real-time
information.

Now that the end goal is clear, the
question becomes how to get there. A key
to success in such an enterprise engineer-
ing environment is to become a heavily
integrated organization built upon com-
mon services and open standards, and
employing rigorous application develop-
ment standards in the software engineer-
ing processes of the applications joining
the enterprise. Of course, there are multi-
tudes of accompanying business models
that will wrapper and compliment these
engineering practices.

The US. Air Force is currently creating
such an enterprise by building an integrat-
ed environment — one enterprise — that is
the platform of integration for the Air
Force’s vast combat computing systems.
The enterprise, known as Global Combat
Support System-Air Force (GCSS-AF),
draws upon currently operational mission

August 2003

applications in the combat support arena
to modernize applications in accordance
with a new integrated enterprise engineer-
ing vision. In doing so, from a pure engi-
neering perspective, there are many obsta-
cles to contend with — especially when
coordinating the efforts of multiple soft-
ware development organizations to inte-
grate under one enterprise.

One of the first technical obstacles is
enabling developers to understand the
vision! Within that vision are the technical
details regarding the enterprise architec-
ture, its shared and common services,
components and methods of integration,
compliance standards, and much more.
This article looks more closely at a subset
of these aforementioned aspects of an
enterprise, some commonly trusted best
practices when developing to such an
enterprise, and how these issues relate
directly to the Air Force’s GCSS-AF initia-
tive. The enterprise engineering vision,
being the super-set of the technical
aspects that will be discussed within this
article, can be viewed in Figure 1.

Building an Enterprise
Engineering Vision

Building an enterprise engineering vision
is one of the most important milestones
of successfully constructing an integrated
enterprise environment on such a grand
scale as the U.S. Air Force combat support
computing structure. The enterprise engi-
neering vision is fundamental to ensuring
that disparate software development
organizations understand their role in the
enterprise.

The GCSS-AF program delivers the
technical components of its enterprise
engineering vision through a platform —
an infrastructure for development -
known as the Integration Framework (IF).
The IF, a conglomerate of commercial
off-the-shelf products in a n-tier, Web-
based, J2EE-enabled architecture, pro-
vides a set of common services and com-
ponents for applications that join the
enterprise. The framework provides a living
space for application integration that
enforces standards while providing a way
for applications to join the enterprise and
reduce the cost of software development
by avoiding reintroduction of common
services (such as security, messaging, and
data warehousing).

The diagram depicted in Figure 2
demonstrates a typical set of common
services offered by the IF on GCSS-AF in
a four-tier enterprise. These tiers represent
a set of common services that are avail-
able to application developers as part of

August 2003

Enterprise Engineering: U.S. Air Force Combat Support Integration

Security Tier Services

Authentication, Authorization, Method-Level Security, LDAP,
JAAS, Container Managed Security, etc.

Security Services are shared enterprise resources.

= O
—

Presentation Services

HTML, JSP, and all presentation delivery
services are shared in the enterprise.

Application Services

Enterprise Java Beans, Java Messaging Services, MQ Series
Messaging, Container Managed Security, Application Cloning and
Scaling, XA, and other primary application services are all shared

enterprise resources.

Data Services

Databases, Database Connection Pools, XA Lightweight Java
Database Drivers, Data Warehousing, Data Fail-Over and
Recovery Services, and other related Data services are all shared

enterprise resources.

Figure 2: The Integration Framework on GCSS-AF

their design for joining the enterprise.

The GCSS-AF environment, designed
to host a wide variety of disparate applica-
tions in a manner that is conducive to
forming a single, heavily integrated enter-
prise, is also faced with an interesting engi-
neering case: How does an organization
collectively ensure that such a conglomer-
ated environment operates efficiently and
successfully?

Modern Problems: A Return

to Basics

The idea of enterprise engineering may be
new to many development organizations,
but the fundamentals of making it work
are largely based on a model of software
engineering practices that far outdate the
modern concepts of enterprise engineer-
ing and most of the technologies that may
be present in that environment.

Each application is part of a phased
approach at reaching a vision of an inte-
grated enterprise. This means that enforc-
ing the use of the technologies present in
the enterprise will be key to following the
enterprise engineering vision; on that
same note, flexibility in the technology set
present in the enterprise is also important.
However, perhaps even more important is
ensuring that these services and technolo-
gies are being implemented correctly. This
brings us back to the basics!

Java may be a relatively new program-
ming language, but it shares much in com-
mon with its ancestors. This is relatively
true for most modern technologies — they
display tendencies and traits from their

ancestors that are important to note
because they may largely aid in successful-
ly implementing them in similar or new
ways than was done previously.

Let us quickly review some of the
basics of good software engineering prac-
tices and see how these might be applied
to modern-day enterprise engineering in
an environment such as GCSS-AF.

Component-Based Design

Every modern developer has heard the
term component-based design. The real
question is how many modern developers
fully extend its theory into their practices?
Furthermore, how many modern enter-
prise developers and architects consider
component-based design theories an inte-
gral part of their work? The answer is
always quite simple — not enough! [3]

When we speak in terms of Java enter-
prise development, component-based
design should be one of our first thoughts.
Java, being a multiplatform-compatible
programming language, employs tech-
nologies that tend to slow code execution
(in comparison to older, single-platform
languages) which, at the same time, makes
the language flexible. Unlike languages in
the past, Java therefore requires additional
attention to component-based design so
that the applications created in these envi-
ronments can perform on par with older,
quicker languages.

For example, take the following pseu-
do code design of procedures in a Pascal-
like application (see Figure 3, page 18) that
might be designed as follows:

www.stsc.hill af.mil 17

Network-Centric Architecture

Function calcTotal (var userTotal : integer);
Begin

writeln "Your total is: ' + grandTotal;
end; {calcTotal}

Function on MailingList (var mail : boolean);
Begin

{... access private account data ...}
end; {onMailingList}

Procedure initProgram;

Begin
writeln 'XYZ Company System’;
if user.onmailinglist = true then
initShoppingChart;

end;

Figure 3: Pseudo Design Example: Pascal-
Like Application

This pseudo code snippet demon-
strates a function and procedure
call in a Pascal-like application. The
function, CalcTotal, is used to calcu-
late a user’s shopping total by
adding the necessary sales tax and
perhaps other related calculations.
It then displays the grand total.

The second, a function called
onMailingL.ist, is used to determine
whether a customer is on the com-
pany’s mailing list. The procedure
does some set of operations (most
likely accessing some kind of data-
base) and would return a true or
false Boolean value reflecting the
customer’s mailing list status. Next,
we see that the function accesses
some private account data related
to the customer previously looked
up for membership on the mailing
list.

Finally, we have a procedure that
initializes the application. It most
likely would perform multiple
operations to initialize the applica-
tion such as displaying the compa-
ny name. In addition, this proce-
dure also determines whether or
not to initialize the user’s shopping
cart.

Agreeably enough, the above example
is not a great example of component-
based design, but in the case of a stand-
alone, single-user Pascal-like application,
the above would probably not be a terrible
setback for application performance. In an
enterprise engineering environment like
GCSS-AF, however, this example would
be a major contributing factor to deterio-
ration of system resources, application
performance, and overall enterprise engi-
neering vision for high-performance first-
class integration because the key funda-
mentals of sound, component-based
design have been overlooked.

18 CrossTaLk The Journal of Defense Software Engineering

In an enterprise with a vision of full
application integration, certain items are
of key concern [4]. These are explained in
the following sections.

Performance

Component-based design is necessary for
obtaining higher levels of enterprise appli-
cation performance. Separating out code
that is unnecessary for execution will help
mitigate the problems seen in slower lan-
guages such as Java.

As seen in the example, had the pro-
grammer separated out the arbitrarily
placed initialization of the user’s shopping
cart and moved this functionality to a
more appropriate part of the code, the
application would initialize quicker. For
instance, the programmer might have
decided to determine whether to initialize

““Today, the idea of
enterprise engineering is
sweeping the software
engineering world with
technologies such as
Java 2 Enterprise Edition
(J2EE),Web services, and
enterprise application
integration tools. Hence,
we have the introduction
of enterprise engineering.”’

the shopping cart only after the user elect-
ed to go shopping rather than just assuming
the user was ready to shop.

Reusability

Component-based design is also necessary
for obtaining code reusability. Although
this may not be particularly necessary in all
initial instances, having code in a reusable
format allows for quick transitioning to
higher levels of integration such as allow-
ing an application to offer parts of its
functionality as a Web service.

In the earlier example, the program-
mer should have broken out the function
CalcTotal into two separate functions: one
for calculating the total, and another for
displaying the results. This micro-managed
modular approach would (on a grander

scale) help the programmer quickly share
functionality and reusability of that func-
tionality in the future.

In the world of enterprise engineering,
this becomes especially important and is
an intricate part of the J2EE model. The
earlier example would therefore translate
to having all Hyper-Text Markup
Language generated in Java Server Page
code for displaying the total while the cal-
culation itself would take place, perhaps,
in a servlet or Enterprise Java Bean.

Security

Security is often overlooked and becomes
an afterthought in application design.
Component-based design is also necessary
for ensuring that the proper security is in
place for an enterprise application.

In the previous example, we see no
indications of security measurements.
However, we might assume that in an
enterprise application (especially one
residing in the GCSS-AF environment),
sensitive data will need to be filtered,
restricted, and monitored. Therefore,
implementing method-level security is,
typically, necessary in all applications.

In the function onMailingList, private
customer data is accessed after the user
has been looked up on the mailing list. If
this functionality is not necessary for
determining whether a user is on the mail-
ing list or not, it should be broken out into
a separate, secured procedure. Even if the
private customer data is not made avail-
able to the application user in the proce-
dure onMailingList, an application error,
for example, could cause unexpected
exposure of the data or privileged func-
tionality.

Learning to Live Inside the Box
Generally speaking, we would like applica-
tion developers to think outside the box while
still realistically considering that their
application must live inside the box.
Enterprise engineering is ultimately the
balance between the two.

When applications decide to join the
GCSS-AF enterprise, multiple considera-
tions need to be made in order to
account for the application’s capacity
resources, performance requirements,
compatibility with other GCSS-AF appli-
cations, and a multitude of other facets
that may impact the application’s ability
to reside onboard the program. While a
good number of these considerations
may be business-process related, another
good number is purely engineering issues
that must be addressed during an appli-
cation’s design phase.

Again, we are taking some steps back

August 2003

to the basics, but emphasis on these tech-
niques and viewpoints may, in the end,
determine an application’s success on
GCSS-AF or any other enterprise envi-
ronment [4].

Memory Allocation
Allocating too little or too much memory
is often not detrimental to a smaller stand-
alone application; however, when in a
J2EE environment, memory handling
becomes increasingly important as both
the application and enterprise weigh in [4].
Common memory allocation prob-
lems are as simple as using efficiency
when dealing with data types in an appli-
cation. For instance, allocating a 30-char-
acter array for a 10-digit code may waste
40 bytes of memory per user executing
that code snippet. With potentially thou-
sands of users executing that same code
simultaneously, one simple programming
error due to negligence could lead to a
significant amount of memory waste. An
application containing many of these
same mistakes in conjunction with other
forms of memory allocation errors could
easily bring down the application and
other applications in the enterprise that
are either dependent upon shared
resources or services provided by this
application.

Multi-Threading

Multi-threading is an application architec-
ture design point intended primarily to
allow an application to perform multiple
tasks at once in a safe, highly efficient
manner.

Multi-threading an enterprise applica-
tion is considerably important. Most J2EE
operations performed in a Web-based
application environment should be
designed as asynchronous, multi-threaded
calls. Depending on synchronous opera-
tions can drastically impede an enterprise’s
performance [2].

Data Access

Remember that your common services are
generally shared resources that are
accessed by various other applications.
This includes your data resources. It is
important to keep in mind that database
connections should be pooled, take
advantage of extensible architecture (XA)-
compliant database drivers, and be used as
efficiently as possible.

A few examples of this may include
the following: accessing a database con-
nection, Transmission Control Protocol/
Internet Protocol connection, File
Transfer Protocol connection, or other
connection type to an external resource

August 2003

Enterprise Engineering: U.S. Air Force Combat Support Integration

only when necessary [2]. As well, when
connected to the data resource, make sure
data are created, read, updated, and delet-
ed in the most efficient natures. For
instance, search a table based upon an
index — avoid scanning the entire table.
Other considerations may include termi-
nating connections when not in use, sim-
plifying data storage schemes (size and
complexity of records), transferring only
necessary parts of a record, and using the
smallest, most efficient data types in
records (i.e., the abbreviation AL instead
of Alabama).

Error Handling

A single application’s stability can poten-
tially impact the stability of the enterprise.
For example, if an application’s faulty
code continually tries to poll an enterprise

“Building an enterprise
engineering vision is one
of the most important
milestones of successfully
constructing an integrated
enterprise environment
on such a grand scale as
the U.S. Air Force
combat support
computing structure.”

resource every second with a large query
due to a failure in the application, the
result would be troublesome for the enter-
prise resource and every other application
depending upon the availability of that
resource [4]. Many such problems can be
avoided with the use of rigorous error
handling and capturing [3]. Employing
tight regulations for error handling when
performing operations that may impact
the enterprise is extremely important and
must be designed into the application’s
functionality.

Clean Up

Garbage collection is Java’s native way of
conserving resources [2]. However, per-
forming such maintenance as garbage col-
lection is the obligation of design.
Unused objects should be discarded to
conserve memory resources; database
records that are no longer necessary

should be deleted; databases that are fre-
quently changed should be reorganized for
performance. Keeping an application’s
workspace and footprint small, tight, effi-
cient, and clean will help the entire enter-
prise be successful!

Help Keep the Roads Clear
Network congestion is one of the top
causes of poor Quality of Service (Qo0S).
In an enterprise, QoS is a shared respon-
sibility that starts with the QoS initiatives
of each application residing in the envi-
ronment.

A first-class enterprise application is
just as concerned with QoS as it is with
functionality and robustness of code.
QoS typically includes everything from
usability of user interfaces to responsive-
ness of requests to the application; how-
ever, one major aspect of QoS that will hit
every application hard will be network
congestion.

Typically, as an enterprise application
residing in a conglomerated environment,
the standards or availability of network
resources can be somewhat questionable.
Therefore, cleverly designing your applica-
tion to avoid potential QoS problems is
typically a wise decision. The following
sections are a few examples of design
aspects that would be beneficial to an
enterprise application’s QoS.

Graphics

Graphics are notorious for causing poor

QoS and are generally unnecessary for

most applications. If your application

must employ graphics, some general
guidelines should be followed:
Use black and white graphics if possi-
ble.

» If color graphics are necessary, use the
lowest bit-depth possible (8-bit, 256
colors) to reduce image size.

» Use the highest compression available
on file formats. Using JPG or GIF for-
mats above BMP formats is such an
example.

» Keep the image dimensions as small as
possible while still keeping effective its
business purpose.

e Allow users the option of viewing
graphics instead of displaying them by
default.

» Display a minimum number of graph-
ics per page.

Packet Trips

Avoid using multiple round trips to
achieve what could be done in a more effi-
cient, perhaps larger, transmission. This
also includes reducing the amount of data
that is retransmitted or checked for

wwwi.stsc.hill.af.mil 19

Network-Centric Architecture

'CROSSTALK®

Get Your Free Subscription
Fill out and send us this form.

OO-ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820
Fax: (801) 777-8069 DSN: 777-8069
Phone: (801) 775-5555 DSN: 775-5555

Or request online at wwuw.stsc.hill.af.mil

NAME:

RANK/ GRADE:

PosITIoN/TITLE:

ORGANIZATION:

ADDRESS:

Base/ZCiTy:

STATE: ZIP:

PHoNE:()

Fax:()

E-mAIL:

CHeck Box(Es) To REQUEST BAck IssUES:
JAN2002 [] Top 5 PROJECTS
MAR2002 [] SoFTWARE BY NUMBERS
MAY2002 [] FoRrGING THE FUTURE OF DEF.
Auc2002 [] SOFTWARE ACQUISITION
SEP2002 [| TEAM SOFTWARE PROCESS
Nov2002 [] PUBLISHER’S CHOICE
DeEc2002 [] YEAROF ENG. AND Scl.
JAN2003 [] Back 10 Basics
FEB2003 [] PROGRAMMING LANGUAGES
MAR2003 [] QUALITY IN SOFTWARE
APR2003 [] THE PEOPLE VARIABLE
MAY2003 [] STRATEGIES AND TECH.
JUNE2003 [] ComM. & MIL. Apps. MEET
JuLy2003 [] Tor 5 PRrROJECTS

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@
hill.af.mil>.

20 CrossTALk The Journal of Defense Software Engineering

integrity.

A simple example in a Web-based
application would be static data retrans-
mission. Employing frames in an applica-
tion can maintain static data on the user’s
screen while allowing only the necessary
frame to update with a request.

Data Transmission

Send and collect only necessary data.

Avoid sending or collecting extraneous

data that would utilize enterprise

resources without gainful purpose. Some
examples of this may include the follow-
ing:

» Large cookies containing consequen-
tial or infrequently used data.

» Dynamic Web objects that require a
high frequency of refreshing (i.e., syn-
dicated news).

* Related but unrequested data. Giving
the user options to view this data con-
serves resources rather than sending
this data by default.

Keys to Success

From a developer’s standpoint, enterprise

engineering in a conglomerated enterprise

is not an easy task. However, as we have
reviewed here, sometimes taking a step
backwards and understanding the basics is
the key to providing a strong foundation
for an enterprise application. There will
inevitably be a gamut of hurdles to jump
over regarding application-specific engi-
neering, business process models, and so
forth; but, attacking the basic engineering
from these guidelines and building these
guidelines into the application’s model will
also inevitably aid the success of the appli-
cation and the enterprise as a whole.

In review, the points to remember
include the following:

» Design to the enterprise engineering
vision. Using (correctly) the resources
available from the enterprise will avoid
unnecessary development efforts and
help an application integrate into the
rest of the environment.

» Practice healthy, component-based
design techniques. Component-based
design has extremely important bene-
fits in the enterprise, including per-
formance, code reusability, and secu-
rity.

e Pay rigorous attention to detail.
Rigorous attention to programming
details will affect the success of an
enterprise application to a much
greater degree over a stand-alone
application.

» Conserve network resources.
Enterprise applications must share
network resources. Paying attention to

these details during design time will

allow all applications in the enterprise

to increase their QoS.

Enterprise engineering is the future of
large-scale organizational computing.
Understanding how to develop well per-
forming, integrated applications for such
an environment is the beginning step for a
successful experience.[]

References

1. Enterprise Engineering: An Infor-
mation Systems Perspective. 27 Feb.
2003 <www.eil.utoronto.ca/ papers/
mikePapers/eegl6.html>.

2. Farley, Jim, William Crawford, and
David Flanagan. Java Enterprise in a
Nutshell. Sebastopol, CA: O'Reilly and
Associates, 2002.

3. Joines, Stacy, Ruth Willenborg, and
Ken Hygh. Performance Analysis for
Java Web Sites. Boston, MA: Pearson
Education, Inc., 2003.

4. Maass, Eric. “Application Performance
for GCSS-AR” GCSS-AF Guide to
Developing With the Integration
Framework. June 2002.

About the Author

Eric Z. Maass is a
software systems engi-
neer for Lockheed Mar-
tin Mission Systems in
o Owego, N.Y., a
Capability ~ Maturity
Model Level 5 organization. As a mem-
ber of the software integration and
development team on the Air Force’s
Global Combat Support System
(GCSS-AF) program, Maass' primary
responsibilities include leading and sup-
porting architecture, development, and
integration of the enterprise’s security
services, leading systems performance
optimization research for the GCSS-AF
production enterprise, and providing
engineering support for application
integration into the GCSS-AF pro-
gram. Maass was recognized in 2002 as
a GCSS-AF Top Contributor. He is a
graduate of Syracuse University.

Lockheed Martin Mission Systems
1801 State Route 17C

MD 0605

Owego, NY 13827

Phone: (607) 751-2293

Fax: (607) 751-2538

E-mail: eric.maass@Imco.com

August 2003

