@ Defect Management

Lisa Anderson
Consultant

The Bug Life Cycle

Brenda Francis
PowerQuest Corp.

Bugs are everywhere! How do you keep track of them all and still make sure the bugs that need fixing get fixed, the fixed
bugs really are fixed, and the little bugs that do not make a difference do not crowd the schedule? Read on to discover how
the bug life cycle works and how a database, along with a little organization, will make all the difference in the world.

here are a lot of theories presented at

testing seminars. There are a lot of why
test classes, and a lot of classes on specific
techniques, but nothing on a couple of
practices that can improve the testing
process in a company. We are talking specif-
ically about setting up a defect tracking sys-
tem and enforcing policies and procedures
to resolve those defects. Setting up these
two things, more than anything else, can put
a company on the road to organizing its
testing and quality assurance effort. To fill
that gap, we have come up with the Bug Life
Cycle, as shown in Figure 1.

While we cannot claim it as our own, it
is what we have learned over the years as
testers. Many of you will find it familiar.
Anyone who can figure out that the soft-
ware is not working properly can report a
bug. The more people who critique a prod-
uct, the better it will be. However, here is a
short list of people who are expected to
report bugs:

Testers/Quality Assurance Personnel.
Developers.

Technical Support.

Beta Sites.

End Users.

Sales and Marketing Staff (especially
when interacting with customers).
When do you report a bug? When you
find it! Waiting means that you might forget
to write it down altogether, or important
details about the bug can be forgotten.
Writing it now also gives you a scratch pad to
make notes on as you do more investigation
and work on the bug.

Writing the bug when you find it makes
that information instantly available to every-
one. You do not have to run around the
building telling everyone about the bug; it is
in the database. Additionally, the informa-
tion about the bug does not change or get
forgotten with every telling of the story.

The easiest way to keep track of defect
reports is in a database. Keeping track on
paper works, but paper can get lost or
destroyed; a database is more reliable and
can be backed up on a regular basis.

You can purchase many commercially
available defect-tracking databases, or you

September 2003

can build your own. It is up to you. We have
always built our own with something small
like Microsoft Access or SQL Server. It was
cheaper to build and maintain it on site than
to purchase it. You will have to run the
numbers for your situation when you make
that decision.

The rule of thumb is one (and only one)
defect per report (or record) when writing a
bug report. If more than one defect is put
into a report, the tendency is to deal with
the first problem and forget the rest.
Remember that defects are not always fixed
at the same time. With one defect per
report, as the defects get fixed, they will be
tested individually instead of in a group
where the chance that a defect is overlooked
or forgotten is greater.

A good bug report includes the follow-
ing items:

o Put the reporter's name on the bug. If
there are questions, you need to know
who originated the report.

 Specify the build or version number of the
code being worked on. Is this the ship-
ping version or a build done in-house

for testing and development? Some
bugs may only occur in the shipping ver-
sion; if this is the case, the version num-
ber is a crucial piece of information.
Specify the feature or specification or part of
the code. This facilitates getting the bug to
the right developer.

Include a brief description of what the
problem is. For example, fatal error when
printing landscape is a good description; it
is short and to the point.

List details, including how to duplicate
the bug and any other relevant data or
clues about the bug. Start with how the
computer and software are set up. List
each and every step (do not leave any-
thing out). Sometimes a minor detail can
make all the difference in duplicating or
not duplicating a bug. For example,
using the keyboard versus using the
mouse may produce very different
results when duplicating a bug.

If the status is not new by default,
change it to new. This is a flag to the bug
verifier that a new bug has been created
and needs to be verified and assigned.

Figure 1: The Bug Life Cycle

Tester may set
status to
CAN'T
DUPLICATE

Insufficient information
exists to evaluate,
NEED MORE INFORMATION

Reporter
Start creates bug Developer
report
(NEW)

Bug evaluated
researches bug|

and assigned
(VERIFIED)

Developer
assigns bug a
(SOLVING) status

Committee

NEED MORE
[INFORMATION \

~ VERIFIED

—* FIXED —

Tester assigns PENDING
a status
|—» RESOLVED |—] l

N TESTED

| —» DUPLICATE [—

—
N WORKING AS
DESIGNED

¢

CANT
DUPLICATE \

Bug record)
Tester

agrees

Tester
evaluates
status

N—» DEFER

N—» ENHANCE

)

Sent to Bug
Committee
(DISCUSS)

J

Tester disagrees
Bug moved to
next project

Note: Owner: Lisa Anderson/Brenda Francis

www.stsc.hill.af.mil 5

Defect Management

Rating

Blue
Screen/Hang

Loss Without a
Workaround

Loss With a
Workaround

Inconvenient

Enhancement

Table 1: Bug Severity

Rating

Always

Usually

Sometimes

Rarely

Never

Table 2: Bug Likelihood

Things to Remember

Keep the text of the bug impersonal. Bug
reports will be read by a variety of people,
including those outside the department and
possibly the company. Please do not insult
people’s ancestors, their employer, the state
where they live, or make any other impulsive
or insensitive comment. Be careful with
humorous remarks; one person’s humor is
another person’s insult. Keep the writing
professional.

Be as specific as possible in describing
the current state of the bug along with the
steps to get into that state. Do not make
assumptions that the reader of the bug will
be in the same frame of mind as you are.
Please do not make people guess where you
are or how you got into that situation. Not
everyone is thinking along the same lines as
you are.

Prioritizing Bugs

While it is important to know how many
bugs are in a product, it is even more useful
to know how many are severe, ship-stop-
ping bugs compared to the number of

6 CrossTALK The Journal of Defense Software Engineering

inconvenient bugs. To aid in assessing the
state of the product and to rank bug fixes,
bugs are prioritized. The easiest way to pri-
oritize bugs is to assign each bug a severity
rating and a likelihood rating. The bug
reporter does this assignment when the bug
is created. Each severity and likelihood cat-
egory has an associated value. The bug’s pri-
ority is calculated by multiplying the value of
the severity and likelihood ratings.

The severity tells the reader how bad the
problem is. Or in other words, it tells what
the results of the bug are. Table 1 shows a
common list for judging the severity of
bugs. Sometimes there is disagreement
about how bad a bug is.

To determine how likely it is for a bug to
occur, put yourself in the average user’s place.
While the tester may encounter this bug
every day with every build, if the user is not
likely to see it, how bad can the bug be?
Table 2 shows a rating of bug likelihood.

Severity x Likelihood = Priority
To compute the priority of a bug, multiply
the numeric value given to the severity and
the likelihood. Do the math by hand or let
your defect tracker do it for you. The trick is
to remember that the lower the number, the
more severe the bug is. The highest rating is
a 25 (5x5), the lowest is 1 (1 x 1). The bug
with a 1 rating should be fixed first, while
the bug with a 25 rating may never get fixed.

This system is just the beginning. A
more sophisticated or advanced way of pri-
oritizing bugs would be to weigh the fea-
tures and add a development risk value.
Each feature adds a different value to the
product. Some features are more important
than others are. In order to weigh the fea-
tures, consider each feature’s contribution
to the product, and weigh it accordingly on
a scale of one to five.

Development risk encompasses a num-
ber of things. How risky is it to fix a specif-
ic piece of code? How will this fix affect the
rest of the code base? If it is a minor fix but
affects most of the files in the code base by
forcing a recompile, then it is a serious fix.
This kind of fix could force regression test-
ing that could add significant time to the
schedule. Many features may depend on this
base feature; this would increase the devel-
opment risk. If the fix is to a help file that
does not affect any other files, then it is a
minor one and may be of acceptable risk.
This seems like a lot of questions, but the
answers can help you assign the proper
development risk to each feature.

Using these algorithms may cause bug
priorities to cluster around certain values. 1f
you notice this is occurring, you can adjust
the algorithm accordingly using a fudge factor
but that is beyond the scope of this article.

A listing of these bugs ordered by rating
means the most important ones will be at
the top of the list and should be dealt with
first. Sorting bugs this way lets management
know whether the product is ready to ship
or not. Use whatever criteria you select such
as, all bugs with a priority of 10 or less must be
fixed. If the number of these bugs is zero,
the product can ship. If there are any severe
bugs, then bug fixing must continue.

Other Useful Information

* Who is the bug assigned to? Who is going
to be responsible for fixing the bug?

e What platform was the bug found on (B,
Windows, Linux, etc.)? Is the bug spe-
cific to one platform or does it occur on
all platforms?

* What product was the bug found in? This
is important if your company is doing
multiple products.

e What company would be concerned
about this bug? If your company is
working with multiple companies, this is
a good way to track that information.

* Whatever else you want or need to keep
track of. Some of these fields can also
have value to marketing and sales. It is a
useful way to track information about
companies and clients.

Now We Have a Bug

At this point, it may be helpful to have
access to the bug life-cycle chart and refer
to it during the following discussion. Some
paths that a bug may take can be confusing;
the chart helps simplify the process.

The first step after the bug is created is
verification. A bug verifier searches the data-
base for all bugs with a New status. He
duplicates the bug by following the steps
listed in the details section of the bug. If the
bug is reproduced and has all the proper
information, the Assigned To field is changed
to the developer who will be fixing the bug,
and the status is changed to Verified. If the
bug is not written clearly, is missing steps, or
cannot be reproduced, it will be sent back
to the bug reporter for additional work.

The Assigned To field contains the
name of the person responsible for that
area of the code. It is important to note that
from this point forward, the developer’s
name stays on the bug. Why? There are usu-
ally more developers than there are testers.
Developers look at bugs from a standpoint
of what is assigned to me?. Testers have multi-
ple features to test, which means that testers
look at bugs from a standpoint of what needs
to be tested? Because of the different way
testers and developers work, developers
sort bugs by the Assigned To field and
testers sort bugs by the Status field. Leaving
the developer’s name on the bug also makes

September 2003

it easier to send the bug back to the devel-
oper for more work. The tester simply
changes the Status field to Verified, and
then automatically goes back to the devel-
oper.

The first thing the developer does is
give the bug a Solving status indicating that
he has seen the bug and is aware that it is his
responsibility to resolve it. The developer
works on the bug and, based on his conclu-
sions, assigns a status to the bug indicating
what the next step should be.

Remember, the developer does not
change the Assigned To field. His name
stays on the bug in case the bug has to go
back to him; it will make it back to his list.
This procedure ensures that bugs do not fall
between the cracks. The following para-
graphs list statuses that a developer can
assign to a bug.

The Fixed status indicates that a change
was made to the code and will be available
in the next build. Testers search the data-
base on a daily basis looking for all Fixed-
status bugs. Then the bug reporter or tester
assigned to the feature retests the bug,
duplicating the original circumstances. If
the bug passes, it gets a Tested status. If the
bug does not pass the test, it is given a
Verified status and sent back to the devel-
oper with information about the test per-
formed (for example, the build that was
used to test the fix). Notice here that since
the bug’s Assigned To field has retained the
developer’s name, it is an easy process for
the tester to send the bug back by simply
changing the status to Verified.

The Duplicate status bug is the same as a
previously reported bug. Sometimes only
the developer or someone looking at the
code can tell that the bug is a duplicate; it is
not always obvious from the surface. A note
referencing the previous bug number is
placed on the duplicate bug. A note is also
placed on the original bug indicating that a
duplicate bug exists. When the original bug
is fixed and tested, the duplicate bug will be
tested also. If the bug really is a duplicate,
when the original bug is fixed the duplicate
bug will be fixed as well. If this is the case,
both bugs get a Tested status.

If the duplicate is still a bug — while the
original bug is working properly — the dupli-
cate bug does not keep its Duplicate status.
It gets a Verified status and is sent back to
the developer. This is a fail-safe built into the
bug life cycle. It is a check and balance that
prevents legitimate bugs from being swept
under the carpet. However, here is a note of
warning: Writing lots of duplicate bugs can
give a tester a bad reputation. It pays to set
time aside daily to read all the new bugs
written the previous day to avoid re-report-
ing bugs.

September 2003

Resolved means that the problem has
been resolved but no code has changed. For
example, bugs can be resolved by getting
new device drivers or third-party software.
Resolved bugs are tested to make sure that
the problem really has been resolved with
the new situation. If the problem no longer
occurs, the bug gets a Tested status. If the
Resolved bug still occurs, it is sent back to
the developer with a Verified status.

Need More Information indicates that the
bug verifier or developer does not have
enough information to duplicate or fix the
bug; for example, the steps to duplicate the
bug may be unclear or incomplete. The
developer changes the status to Need More
Information and includes a question or
comment to the reporter of the bug. This
status is a flag to the bug reporter to supply
the necessary information or a demonstra-
tion of the problem. After updating the bug
information in the Notes field, the status is
put back to Verified so the developer can
continue working on the bug. If the bug
reporter can no longer duplicate the bug, it
is given a Can't Duplicate status along with a
note indicating the circumstances.

It is important to note that the only per-
son who can put Can't Duplicate on a bug
is the person who reported it (or the person
testing it). The developer cannot use this sta-
tus; he must put Need More Information
on it to give the bug reporter a chance to
work on the bug.

This is another example of a fail-safe
built into the database. It is vital at this stage
that the bug be given a second chance. The
developer should never give a bug a Can't
Duplicate status. The bug reporter needs an
opportunity to clarify or add information to
the bug or to retire it.

The developer may want to protest the
bug: Should it be included in this version of
the product, or perhaps not be fixed at all?
The status Discuss is used to send the bug to
the Bug Committee (test manager, develop-
ment lead, and/or development manager)
for further discussion. The developer
should be sure to include comments about
why the bug is being protested or needs fur-
ther discussion.

If the developer has examined the bug,
the product requirements, and the design
documents, and determined that the bug is
not a bug, it is Working as Designed. In other
words, what the product or code is doing is
intentional as per the design. Or as some-
one more aptly pointed out it is working as
codled!

This bug can go several directions after
being assigned this status. If the tester
agrees, the status remains and the bug is fin-
ished. The bug may be sent to documenta-
tion for inclusion in the help files and man-

The Bug Life Cycle

ual. If the tester disagrees, the bug can be
appealed by putting a Discuss status on it to
send the bug to the Bug Committee. The
tester should include in the notes a reason
why, although the developer has given it a
Terminal status, it should be changed now.
The bug may also be sent back to the design
committee so that the design can be
improved.

Working as Designed is a dangerous sta-
tus. It is an easy way to hide annoying bugs.
Itis up to the bug reporter to make sure the
bug does not get forgotten. Product man-
agers may also review lists of bugs recently
assigned Working as Designed.

The Enhance status means that while the
suggested change is a great idea, because of
technical reasons, time constraints, or other
factors, it will not be considered until the
next version of the product. This status can
be appealed by changing the status to
Discuss and adding a note specifying why it
should be fixed now.

Defer is almost the same status as
Enhancement. This status implies that the
cost of fixing the bug is too great given the
benefits it could produce. If the fix is a one-
liner to one file that does not influence
other files, it might be okay to fix the bug.
On the other hand, if the fix will cause the
rebuild of many files that would force prod-
uct retesting and there is no time to test the
fix before shipping the product, then the fix
would be unacceptable and the bug would
get a Defer status. To appeal the status, send
it back through the process again by putting
a Discuss status on it with a note stating
why it should be fixed now.

You may see the Not to be Fixed status
although we do not recommend making
this status available for use. There may be
extenuating circumstances where a bug will
not be fixed because of technology, time
constraints, a risk of destabilizing the code,
or other factors. A better status to use is
Enhance. To appeal the status, send it back
through the process again by putting a
Discuss status on it with a note saying why
it should be fixed now.

This is similar to the Working as
Designed status in that its use can be dan-
gerous. Be on the watch for this one.
Sometimes developers call this status the
you can’t make me status.

The Tested status is used only by testers
on Fixed, Resolved, and Duplicate bugs.
This status is an end-of-the-road status indicat-
ing that the bug has been verified as Fixed;
the bug has now reached the end of its life
cycle.

The Pending status is used only by testers
on Fixed bugs when a bug cannot be tested
immediately. The tester may be waiting on
hardware, device drivers, a build, or addi-

www.stsc.hill.af.mil 7

Defect Management

tional information necessary to test the bug.
When the necessary items have been
obtained, the bug status is changed back to
Fixed and is tested. It is critical that the bug
is tested just as thoroughly as any other bug
fix; make sure testing is not skipped.

The Can't Duplicate status is used only
by the bug reporter; developers and man-
agers cannot use this status. If a bug is not
reproducible by the assigned developer or
bug verifier, the bug reporter needs a chance
to clarify or add to the bug. There may be a
hardware setup or situation, or a particular
way of producing a bug that is peculiar to a
specific computer or bug reporter and he
needs a chance to explain what the circum-
stances are. Limiting the use of this status to
bug reporters prevents bugs from slipping
between the cracks and not getting fixed.

It is important to note that before ship-
ping a product, all active bugs must be
addressed; that is, all bugs with a Fixed,
Need More Information, Resolved, or
Pending status must be taken care of. You
should also set a criteria based on bug prior-
ity; for example, the number of active bugs
rated five or less must be zero. These crite-
ria are excellent benchmarks for judging the
readiness of a product.

What Happens After Shipping?
All bugs with a Tested or Can't Duplicate
status are archived. This means that the
records are either removed and placed in an
archive database, or are flagged to be hidden
from the current database view. Never
delete any bug records; it may be necessary
to do some historical research in the bug file
(What did we ship when? or Why did we ship with
this bug?).

Bugs with Enhance and Defer status are
moved to the New bug file or retained in the
current bug file. The statuses of these bugs
are then changed back to Verified.

This methodology not only shortens the
list of bugs to deal with, but it also moves
bugs that were not considered necessary for
the current product to ship into considera-
tion for the next version of the product.

Reports

The data in the bug file are not very useful
until sorted and presented in an organized
fashion; they then become information. For
example, sorting by developer, the informa-
tion becomes a to-do list sorted by rating.
Sorting by status lets the reader know how
many bugs are submitted or in progress;
sorting by feature asks, “How many open
bugs are there for a particular feature?”
“What feature needs more work?” and
“What feature is stable?” Sorting by product
is useful when more than one product is
being worked on simultaneously.

8 CrossTALK The Journal of Defense Software Engineering

Be aware that there are certain metrics
or reports that should not be used. If you
use these reports you will destroy the credi-
bility of your bug file and it will be reduced
to a laundry list for developers. One of these
reports is “How many bugs did a tester report?”
and the other is “How many bugs did a develop-
er fix?” Neither one of these has any useful
purpose except to beat up people uselessly
[1].

A defect database that has all these fields

built into it and has a good query language
is able to sort defect data and turn it into
useful information. Setting up customized
queries should not be too difficult for the
average database administrator.

Conclusion

The challenges of following a bug life cycle
are far outweighed by the benefits derived.
A well planned and closely managed defect
database not only tracks current defects
against any number of builds and/or prod-
ucts, it also provides a virtual paper trail for
the overall progress of a product as it is
coded, tested, and released. If sufficient
time is provided for building a defect track-
er that works for your company, it is more
likely you will release a less buggy product,
or at least a product where most of the big
ones have not gotten away.(J

Reference
1. Kaner, Cem, et. al. Testing Computer

Software. 2nd ed. New York: Inter-
national Thomson Computer Press,
1993.

Additional Reading

1. Beizer, Boris. Software Testing Tech-
nigues. 2nd ed. New York: International
Thomson Computer Press, 1990.

2. Hetzel, Bill. The Complete Guide to
Software Testing. 2nd ed. New York:
John Wiley & Sons, Inc., 1988.

3. Jones, Capers. Software Quality: Anal-

ysis and Guidelines for Success. New
York: International Thomson Com-

puter Press, 1997.

4, Kit, Edward. Software Testing in the
Real World. New York: Addison-
Wesley, 1995.

5. Mirrer, Barry. “Organize Your Problem
Tracking System: Cleaning Up Your
Bug Database Can Be as Easy as
Organizing Your Sock Drawer.”
Software Testing Quality Engineering
Sept./Oct. 2000: 34-39.

6. Myers, Glenford J The Art of Software
Testing. New York: John Wiley & Sons,
Inc., 1979.

7. Patton, Ron. Software Testing. Indian-
apolis: Sams, 2000.

8. Institute of Electrical and Electronics
Engineers, Inc. IEEE Standard for
Software Test Documentation 829-
1998. New York: Institute of Electrical
and Electronics Engineers, Inc., 1998.

About the Authors

| Lisa Anderson has
been a tester and quality
assurance engineer with
WordPerfect Corp.,
Novell, Inc., Corel, Inc.,

M and PowerQuest Corp.
Anderson has also been a director of
Quality Assurance (QA) for a small
startup company and was a QA manag-
er at PowerQuest Corp. She has been
in the software QA field since 1991;
has attended STAR East 1999, 2000,
and 2001; participated in Software
Testing Manager Roundtable 4 and 5;
and is the sponsor of Mountainwest
Enterprise Testing Roundtable 2003.
Anderson has bachelor’s degrees in
education and computer information
systems and is currently working on a
master’s degree in computer informa-
tion systems.

Phone: (801) 319-5840
E-mail: lisaan@lisaan.com

Brenda Francis is a
software quality engi-
neer at PowerQuest
Corp. She worked for-
|/ merly for Novell and
WordPerfect in problem
resolution teams and has been in the
software quality assurance field since
1997. She has a bachelor’s degree in
international relations and a master’s
degree in American history.

PowerQuest Corp.

PO.Box 1911

Orem, UT 84059-1911

Phone: (801) 437-8900

E-mail: brenda.francis@
powerquest.com

September 2003

