
June 2002 www.stsc.hill.af.mil 13

This past year, electronic commerce
reportedly reached $5 billion in sales.

Considering that this was during a reces-
sion, it is a marvelous achievement. You
are probably thinking, “How was that
achieved with the technology bubble
bursting and Internet start-ups failing
right and left?” The answer is simple. The
larger businesses took the place of the
smaller businesses. They moved to the
Web with speed and enthusiasm, often
for good business reasons. For example,
General Electric reportedly saved $40 mil-
lion in a single month compared with the
same month in the previous year by mov-
ing its travel onto the Web [1].

Just as importantly, this move to the
Web is heralding in a major change in the
way we in the software community do
business. For example, the large projects
that we worked on in the past are being
replaced by many small Web develop-
ments. These small projects are being
done using different technology as well.
Table 1 characterizes these changes to give
some insight into the current trends. It
highlights the move to agile methods [2],
extreme programming methods [3], com-
ponents [4], multimedia, and visual tech-
nologies by Web shops.

These trends are motivated by the
move to quicker-paced developments.
Instead of developing software from
requirements, these Web development
projects are gluing components together
using agile instead of traditional methods.
They build prototypes and refactor [5]
them instead of focusing on design. From
Table 1, you will see that Web develop-
ments seem deficient in the areas of
process, discipline, and estimating. That is
not entirely true. As Mark Paulk recently
pointed out, process improvement and
extreme methods are not incompatible [9].
However, many of the large firms with
which my firm has recently worked seem
to have abandoned process paradigms and
the Software Engineering Institute’s

Capability Maturity Model® (CMM®),
Software Capability Maturity Model® (SW-
CMM®), and Capability Maturity Model
IntegrationSM (CMMISM) [10, 11] in their
quest to speed time-to-market as they
move to the Web.

Those of us in the estimating commu-
nity currently have not agreed upon how
to address Web-based projects. The trou-
ble is that the characteristics of the Web-
based projects listed in Table 1 make it dif-
ficult for estimators to adapt and put their
existing processes, metrics, and models to
work operationally. Web projects are dif-
ferent. To highlight the challenges
involved in the area of Web estimation, we
have constructed Table 2 (see page 14).
For comparative purposes, this table also
identifies the approaches that we current-
ly use to develop estimates for traditional
software projects.

Most estimators would like to use the
more traditional processes, metrics, mod-
els, and tools for estimating Web projects.
They are mature, and many of us in the
field have confidence in their ability to
accurately predict project costs and sched-
ules. We also have a great deal of experi-
ence using these metrics, models, and
tools and feel comfortable with them and

their outputs. However, as noted by Table
2 (page 14), these traditional approaches
do not address the challenges that we face
with Web projects. The two major chal-
lenges are accurately estimating size and
duration. New size metrics are needed to
cope with Web objects like shopping carts,
Java scripts, and building blocks like
Cookies, ActiveX controls, and
Component Object Model components.
New duration-estimating equations are
needed to address the fact that the cube
root laws used by most estimating models
just do not seem to work for the Web.

New Web Applications Sizing
Metrics Needed
Because Web cost can be treated as a func-
tion of size, a meaningful size predictor is
needed for Web projects. Those working
such projects agree that the popular size
metrics, function points (FP) and source
lines of code (SLOC), are not suitable for
Web estimation because they do not take
all of the Web objects (buttons, templates,
etc.) into account. Luckily, the research
community has not been idle. It has pro-
posed several size metrics for Web devel-
opments (object points [12], application
points [13], etc.). However, the only find-

Estimating Web Development Costs:
There Are Differences

Donald J. Reifer
Reifer Consultants, Inc.

This article discusses the need for new metrics and models to estimate the effort and duration for Web development projects. It
then describes a new size metric, Web objects, and a new cost estimation model, WEBMO, that have been developed to sat-
isfy these needs. Most importantly, this article identifies differences between traditional and Web projects that managers need
to be aware of when developing estimates prior to ending with a current status of the effort.

Characteristics Traditional Developments Web Developments
Primary objective Build quality software products at

minimum cost.
Bring quality products to market as
quickly as possible.

Typical project size Medium to large
(hundreds of team members).

Small
30 the largest).

Typical timeline 12-18 months 3-6 months
Typical cost $ millions $ thousands
Development
approach employed

Classical, requirements-based, phased
and/or incremental delivery, use cases,
documentation driven.

Agile methods, extreme programming,
building block-based, demo-driven,
prototyping, Rational Unified Process [6],
MBASE [7].

Primary engineering
technologies used

Object-oriented methods, generators,
modern programming languages
(C++), CASE tools, etc.

Component-based methods, 4th and 5th

generation languages (html, Java, etc.)
visualization (motion, animation), etc.

Processes employed CMM-based Ad hoc
Products developed Code-based systems, mostly new,

some reuse, many external interfaces,
often-complex applications.

Object-based systems, many reusable
components (shopping carts, etc.), few
external interfaces, relatively simple.

People involved Professional software engineers with
5+ years of experience.

Graphic designers, less-experienced
software engineers, Java specialists.

Estimating
technologies used

Source line of code or function point-
based models, Web-based systems
approach for small projects.

Design-to-fit based on available
resources, Web-based systems for
small projects.

Note: Table is an a daptation of the author's previously published work [8].

(3-5 team members the norm,

Table 1: Characteristics of Traditional vs. Web Development Projects

® Software Capability Maturity Model and SW-CMM are
registered in the U.S. Patent and Trademark Office.

SM CMM Integration and CMMI are service marks of
Carnegie Mellon University.

Software Estimation

14 CROSSTALK The Journal of Defense Software Engineering June 2002

ing that researchers in the field currently
agree upon is that they cannot reach
agreement on which of these is best.
Based upon our experimentation, we
believe that we have developed a size met-
ric that can resolve the current debate.
The metric, Web objects, predicts size by
taking each of the many elements that
make up the Web application into account
as size is estimated.

You are probably asking, “What are
Web objects?” Like function points, Web
objects are defined to be a metric that
provides users with an indication of the
relative size of an application [14]. In our
case, the applications run on the Web.
Web objects predict size by permitting its
users to bound the functionality of their
applications in terms of the following five
groups of predictors:
• Function points.
• Links.
• Multimedia files.
• Scripts.
• Web building blocks.

As indicated, Web objects extend func-
tion points to encompass groups of func-

tions present in Web applications. For
example, Web objects allow estimators to
take Web building blocks like shopping
carts and the number of XML language
lines needed to link the application to a
Web accessible database into account as
they develop their estimate. Such exten-
sion is needed because traditional function
points predict size using more traditional
application characteristics like number of
inputs and outputs.

Using the size predictor groupings list-
ed in Table 3 to compute the number of
Web objects, we have been able to repeat-
edly predict the size of a Web application
with what we believe to be reasonable
accuracy. These predictors allow us to take
into account all of the different elements
of applications that contribute to size,
including those specific to the Web. We
devised this list initially based upon the
opinions of experts. For one year, we have
applied the metric to develop estimates,
collect project data, and refine our count-
ing conventions based upon experience.
Based upon analysis of 64 completed Web
projects in five application domains, we

have shown that these predictors can be
used along with FPs to develop accurate
estimates.

Like function points, the key to devel-
oping repeatable and consistent sizing
predictor counts is a well-defined set of
counting conventions. To help on our
pilot projects, we have developed a white
paper to explain our initial counting con-
ventions [15]. We plan to update this and
develop a more detailed counting manual
for Web objects later this year. That man-
ual, a version of which will posted on our
Web site at <www.reifer.com>, will pro-
vide those interested in using Web objects
with a consistent set of experience-based
conventions for dealing with most situa-
tions they will likely encounter when siz-
ing their Web applications.

We have also developed the worksheet
in Table 4 to show you how to use the
information gathered on predictors along
with function points to size a typical Web
application. Using an actual Java program
being developed for a Web portal as an
example, the size estimate developed in
Table 4 provides you with an indication of
how big the program would be once fully
developed. It uses the five groupings of
predictors that we have discussed to devel-
op weighted counts that allow us to size a
Web application based upon its unique
characteristics.

We have also empirically developed
backfiring ratios to convert from Web
objects to SLOC. If the example shown in
Table 4 were done in Java, the 356 Web
objects would be the equivalent of 11,392
source lines of Java code, assuming a con-
version ratio of 32 Java lines per Web
object. Backfiring is important to us
because we plan to use a modified version
of the COCOMO II early design model
to estimate effort and duration.

The COCOMO II model uses SLOC
as its underlying size metric. However,
after much experimentation, we calibrated
our new cost estimation model WEB
model (WEBMO) using Web objects
instead of SLOC. The reason for this was
that such calibration improved our esti-
mating accuracy by as much as 12 percent
in two of our five application domains.
However, to remain compatible with
COCOMO II until we can calibrate all five
domains, we plan to continue to use
SLOC in our formulas. This may change
in the future once we gather more data
and can more precisely calibrate our esti-
mating model.

A New Estimation Model
Having a realistic size metric is just the first
step in developing a model for accurately

Traditional Approach Web-Based Challenges
Estimating
process

Most use analogy supplemented by
lessons learned from past experience.

Job costing, if done, performed ad hoc using
inputs from the developers (too optimistic).

Size
estimation

Because systems are built to
requirements, SLOC or function points are
used. Separate models are used for COTS
and reused software (equivalent new
lines).

Applications are built using templates using a
variety of Web-based objects (html, applets,
components, etc.). No agreement on size
measure reached yet within the community.

Effort
estimation

Effort is estimated via regression formulas
modified by cost drivers (plot project data
to develop relationships between
variables).

Effort is estimated via analogy using job
costing practices and experience as the
guide. Little history is available.

Schedule
estimation

Schedule is estimated using a cube root
relationship with effort.

Schedules estimated using cube root
relations are an order of magnitude high.

Model
calibration

Measurements from past projects are used
to calibrate models to improve accuracy.

Measurements from past projects are used to
identify estimating knowledge base.

What if
analysis

Estimating models are used to perform
quantitative what if and risk analysis.
They are also used to compute ROI and
cost/benefits.

Most what if and risk analysis is mostly
qualitative because models don't exist. ROI
and cost/benefit analysis for electronic
commerce remains an open challenge.

Note: Table is an adaptation of the author's previously published work [8].
SLOC = source lines of code, COTS = commercial off-the-shelf, ROI = return on investment

Table 2: Web-Based Estimation Challenges

Web Object Predictors Description
Number of function
points

Traditional metrics used to predict the size of non-Web
applications using number of inputs, outputs, files,
inquiries, and interfaces as the basis of estimate.

Number of XML, HTML,
and query language
links

Takes into account the effort to link applications,
integrate them together dynamically, and bind them to
the database and other applications in a persistent
manner.

Number of multimedia
files

Takes into account the effort required to insert audio,
video, and images into applications.

Number of scripts Takes into account the effort required to link HTML/XML
data with applications and files and generate reports.

Number of Web
building blocks

Takes into account the effort required to develop Web-
enabled fine-grained building block libraries and related
wrapper code needed to instantiate them.

Table 3: Web Object Predictors

Estimating Web Development Costs: There Are Differences

June 2002 www.stsc.hill.af.mil 15

estimating Web application effort and
duration. The mathematical issues associ-
ated with making such predictions need to
be reconciled before such models are tran-
sitioned into use.

The major issue revolves around the
schedule law used by the model. Analysis
of data we have collected to date confirms
that the equations can be expressed as
regressions. However, the traditional cube-
root relationship that exists between effort
and duration in most estimation models
does not accurately predict Web develop-
ment schedules [16].

Dr. Barry Boehm of the University of
Southern California has proposed a
square-root relationship for small projects
[17]. Larry Putnam has published several
papers arguing that such relationships are
accurately represented by a fourth power
tradeoff law [18, 19]. Our initial data analy-
sis reveals that a square-root relationship
exists for Web projects. However, this
mathematical relationship tends to break-
down when the number of Web objects
exceeds 300. Therefore, the schedule law
used in our model needs to be scaled
accordingly.

To estimate Web project costs, we have
developed the WEBMO cost model; its
mathematical formulation is shown in
Figure 1. As stated, this model is an exten-
sion of the COCOMO II early design
model [20]. The WEBMO model was
developed using a mix of expert judgment
and actual data from 64 projects using lin-
ear regression techniques. It allows users to
take the characteristics of Web projects
identified in Table 1 into account via adjust-
ments that they make to its cost drivers.

WEBMO’s mathematical formulation
builds on the COCOMO II model’s
extensive data analysis of more than 161
projects to address Web issues. We com-
pute exponents for its effort and duration
equations, P1 and P2, using the following
five application domains: Web-based elec-
tronic commerce, financial/trading appli-
cations, business-to-business applications,
Web portals, and information utilities. As
shown in Figure 1, the WEBMO estimat-
ing equations for effort (in person-
months) and duration (in calendar
months) assume size is provided in Web
objects. To predict duration, the model
assumes a square root instead of a cube-
root relationship between duration and
effort for small projects.

The current version of the WEBMO
estimation model differs from the original
COCOMO II model by having nine
instead of seven cost drivers and a fixed
instead of a variable effort power law.

While our goal is to be as compatible with
COCOMO II as possible, we had to devi-
ate because of observed colinearity
between cost drivers when we performed
our regression analysis. Such colinearity
means that some of the cost drivers can
not be assumed to be independent from
others. In response, we have treated them
and COCOMO’s scale factors differently
in our mathematical formulation.

The constants in the effort and dura-
tion equations and power laws for each of
the five application domains that we have
studied are summarized in Table 5. A brief
explanation for each of the nine cost driv-
ers used by the model is provided in Table
6 (see page 16). The values for the driver
ratings used in the model are also provid-
ed in Table 6. Those interested in more
detail on the model are referred to the
WEBMO model definition manual that
will be issued late this year. At that time, a
version of this manual will also be made
available at <www.reifer.com>.

As expected, the choice of value for
the duration power law, P2, is based on the
relative size of the application. For small
applications less than 300 Web objects, the
square-root relationship between effort
and duration seems to hold (e.g., P2 =

0.5). For larger Web applications, the
cube-root relationship should be used (P2
= 0.32).

The nine cost drivers replace those in
the original COCOMO II model. Most
represent combinations of the original
factors in the early design version of the
model. However, teamwork and process
efficiency are new and different. They rep-
resent scale factors in the COCOMO II
model that have been shown to have a sta-
tistical effect on Web estimation.
However, instead of using them as power
law factors in the effort estimating equa-
tion, we include them as effort multipliers
to simplify the mathematics. Once we can
verify the WEBMO calibration statistical-
ly using scale factors, we will revert back
to the more standard version of the
COCOMO II model.

Let us continue with the Java example
we used previously for sizing a Web appli-
cation. The 356 Web object count in
Table 4 represents the size of the pro-
gram that would be required for this Web
application. If this were done entirely
using the Java language, the program
would take the equivalent of 11,392
SLOC to develop, test, and transition into
operations using the Language Expansion

Web Object Predictors Low Average High Notes
Traditional function point
predictors
• Internal logical files
• External interface files
• External inputs
• External outputs
• External inquires

2x10
2x7
4x4
3x5

1x15

6x6

From specification: 3 files
From specification: 2 interfaces
From specification: 10 inputs
From specification: 3 outputs
From specification: none

Number of XML, HTML, and
query lines

16x4 From specification: 16 HTML lines

Number of multimedia files 1x4

3x4

13x5 1x7 Operands: audio file, 13 multimedia
files, help file
Operators: open, close, save

Number of scripts
3x2

1x3 Operands: animation script
Operators: open, go (forward), close

Number of Web building
blocks

3x3

10x4 5x6 Operands: 15 building blocks from
library including 9 buttons, 1 cast, and
5 secure server icons
Operators: find, add, and insert

TOTAL 31 237 88

Table 4: Web Object Calculation Worksheet

Figure 1: WEBMO Estimation Equations

Application Domain A B P1 P2
Web-based electronic commerce 2.3 2.0 1.03 0.5 or 0.32
Financial/trading applications 2.7 2.2 1.05 0.5 or 0.32
Business-to-business applications 2.0 1.5 1.00 0.5 or 0.32
Web-based portals 2.1 1.8 1.00 0.5 or 0.32
Web-based information utilities 2.1 2.0 1.00 0.5 or 0.32

Table 5: WEBMO Parametric Values

 8
Effort = A cdi (Size)P1 Duration = B(Effort)P2

 i=1

Where: A and B = constants cdi = cost drivers
 P1 and P2 = power laws

Π

 Size = # SLOC

Software Estimation

16 CROSSTALK The Journal of Defense Software Engineering June 2002

Factors (LEF) listed in Table 7. Please
note that the values in this table differ
from those currently endorsed by the
International Function Point Users
Group (IFPUG). We developed these
numbers empirically using our Web appli-
cations database because the IFPUG
numbers did not seem to be consistent
with our current experience. This count
includes the volume of work required to
program Java scripts and beans on both
the client and server, assuming that an
appropriate Java environment were avail-
able for this distributed application.

The LEF factors are used to backfire
between FP and SLOC estimates. The
one convention that we impose on back-
firing is that only languages in the same
family can be used in conjunction with
each other. For example, you would not
mix C and C++ counts because their syn-
tax and semantics are quite different. Our
data indicate that there is a 10 percent to
40 percent error in counting when lan-
guages are mixed across language fami-
lies. As noted, HTML and System Query
Language (SQL) are considered 4GL and
can be mixed using the conventions that

we developed.
Why is backfiring to SLOC impor-

tant? The COCOMO II model uses
SLOC as the basis for all of its estimates.
Therefore, conversion to SLOC is
required to use this popular model out of
the box.

Let us run WEBMO with all of its
drivers set to nominal within the Web
portal domain as an example. The effort
estimate assuming size is 11.4 thousand
SLOC is about 24 person-months, while
the duration estimate is 5.0 calendar
months assuming the cube-root relation-
ship holds because size is greater than 300
Web objects.

For comparison purposes, let us run
the early design version of the COCO-
MO II model out of the box with all of
its cost drivers set to nominal. However,
to use the model, we need to calibrate the
scale drivers. We will assume the follow-
ing values for these parameters:
• Precedence – largely familiar.
• Development flexibility – general

goals.
• Architecture/risk resolution – often

(60 percent).
• Team cohesion – basically coopera-

tive.
• Process maturity – level 1 (upper half).

With these values, COCOMO II esti-
mates the effort at 38.8 person-months
during a period of 11.4 calendar months.
“Which estimate is right?” you are proba-
bly asking. As expected, neither answer is
right on the mark. The actual for this
project was six people for four months.
Clearly, the WEBMO formulas have bet-
ter predictive accuracy for this project.

Summary and Significant
Research Findings
Estimating the cost and duration of Web
developments has a number of challenges
associated with it. To cope with these chal-
lenges, we developed new size metrics,
Web objects, and an estimating model,
WEBMO. We have also validated and cal-
ibrated the metric and model in anticipa-
tion of building potential products based
upon them.

We prepared an initial calibration for
WEBMO by combining expert opinion
and actual data from 64 completed Web
projects. Our goal is to improve the accu-
racy of our models by collecting data on at
least another 30 projects during Phase II.

The following significant results/find-
ings were outputs of our initial research
efforts:
• We validated that Web objects have

better predictive accuracy (r2) than tra-

RatingsCost
Driver Very Low Low Nominal High Very High

Product
Reliability
and
Complexity
(CPLX)

Client only,
simple math
and I/O, no
distribution,
reliability not a
factor.

Client/server,
some math, file
management,
limited
distribution,
easy to recover.

Client/server,
full distribution,
databases,
integration,
moderate
recovery goals.

Client/server,
wide
distribution,
math intensive,
high losses due
to errors.

Client/server,
full
distribution,
collaborative,
soft real-time,
errors
dangerous.

Values 0.63 0.85 1.0 1.30 1.67
Platform
Difficulty
(PDIF)

Rare platform
changes,
speedy net, no
resource
limitations.

Few platform
changes, fast
net, few
resource
problems.

Stable
platform, net
performance
all right, must
watch resource
usage.

Platform often
changes,
slow, lack of
resources a
problem.

Platform
unstable, poor
performance,
resources
limited.

Values 0.75 0.87 1.00 1.21 1.41
Personnel
Capabilities
(PERS)

15th percentile,
major delays
due to
turnover.

35th percentile,
minor delays
due to turnover.

55th percentile,
few delays
due to
turnover.

75th percentile,
rare delays
due to
turnover.

90th percentile,
no delays due
to turnover.

Values 1.55 1.35 1.00 0.75 0.58
Personnel
Experience
(PREX)

< 2 months,
limited tool,
language, and
platform
experience.

< 6 months,
some tool,
language, and
platform
experience.

< 1 year,
average tool,
language, and
platform
experience.

< 3 years,
above average
tool, language,
and platform
experience.

< 6 years,
lots of tool,
language, and
platform
experience.

Values 1.35 1.19 1.00 0.87 0.71
Facilities
(FCIL)

International,
no collaboration,
language tools.

Multisite, some
collaboration,
basic CASE,
some methods.

One complex,
teams, life-
cycle
methods,
good tools.

Same
building,
teamwork,
integrated
tools and
methods.

Co-located,
integrated
collaborative
method/tools,
etc.

Values 1.35 1.13 1.00 0.85 0.68
Schedule
Constraints
(SCED)*

Must shorten,
75% of
nominal value.

Must shorten,
85% of nominal
value.

Keep as is,
nominal value.

Can relax
some, 120%
of nominal
value.

Can extend,
140% of
nominal value.

Values 1.35 1.15 1.00 1.05 1.10
Degree of
Planned
Reuse
(RUSE)

Not
used.

Not
used.

Unplanned
reuse.

Planned reuse
of component
libraries.

Systematic
reuse based
on
architecture.

Values -- -- 1.00 1.25 1.48
Teamwork
(TEAM)

No shared
vision, no
team
cohesion.

Little shared
vision,
marginally
effective teams
and teamwork.

Some shared
vision,
functional
teams.

Considerable
shared vision,
strong team
cohesion.

Extensive
shared vision,
exceptional
team
cohesion.

Values 1.45 1.31 1.00 0.75 0.62
Process
Efficiency
(PEFF)

Ad hoc, rely
on heroes.

Project-based
process, rely on
leadership.

Streamlined
process, rely
on process.

Efficient
process, best
way to do job.

Effective
process,
people want to
use it.

Values 1.35 1.20 1.00 0.85 0.65
*Schedule differs from COCOMO II, which is bell shaped instead of flat past its nominal value.

Table 6: WEBMO Cost Drivers and Their Values

Estimating Web Development Costs: There Are Differences

June 2002 www.stsc.hill.af.mil 17

ditional function points when counted
using conventions developed for that
purpose. These counting conventions
allowed us to extend the excellent
work done by the IFPUG so that we
can better handle the sizing of Web
applications.

• We increased the statistical accuracy of
our WEBMO estimating model from
30 percent of the actual experience at
least 60 percent of the time (using a
32-project database of actuals) to 20
percent of the actual experience at
least 68 percent of the time (using our
expanded 64-project database of actu-
als).

• We validated that a square root instead
of a cube-root relationship exists
between effort and schedule for Web
application projects whose size was
less than 300 Web objects.
These results are substantial because

they indicate that the Web objects and the
WEBMO estimating model can help
address the gaps in the estimating tech-
nology that we summarized in Tables 1
and 2.

Acknowledgment
A major part of the research reported
within this paper was funded by the
National Science Foundation under Grant
DMI-0060006. Our partners also provid-
ed the data used to calibrate the model
and refine its mathematical formulation.

Currently, we are looking for beta test
sites and partners for our research.
Anyone interested in participating in this
capacity can inquire through e-mail at
<info@reifer.com>.

Information on COCOMO II
For those unfamiliar with the COCOMO
II, refer to the University of Southern
California (USC) Web site at <http://
sunset.usc.edu/research>. USC has much
literature and a public version of the
model available on this site.

References
1. Pelz, James P. “GE Takes to the Net

to Lower Company Costs.” Los
Angeles Times 9 Oct. 2000: C1-C5.

2. Highsmith, Jim, and Alistar Cock-
burn. “Agile Software Development:
The Business of Innovation.” IEEE
Computer Nov. 2001: 120-122.

3. Beck, Kent. Extreme Programming
Explained. Addison-Wesley, 2000.

4. Heineman, George T., and William T.
Councill. Component-Based Software
Engineering. Addison-Wesley, 2001.

5. Fowler, Martin, Kent Beck, John

Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the
Design of Existing Code. Addison-
Wesley, 1999.

6. Kruchten, Philippe. The Rational
Unified Process. Addison-Wesley,
1998.

7. Boehm, Barry W. “Transitioning to
the CMMI via MBASE.” Southern
California SPIN Meeting Presen-
tation. University of Southern
California, Jan. 2000. Available at:
<http://sunset.usc.edu>.

8. Reifer, Donald J. “Web Development:
Estimating Quick-to-Market Soft-
ware.” IEEE Software Nov./Dec.
2000: 57-64.

9. Paulk, Mark C., “Extreme Program-
ming from a CMM Perspective.”
IEEE Software Nov./Dec. 2001: 19-
26.

10. Paulk, Mark C., Charles V. Weber, Bill
Curtis, and Mary Beth Chrisis. The
Capability Maturity Model: Guidelines
for Improving the Software Process.
Addison-Wesley, 1995.

11. Ahern, Dennis M., Aaron Clouse, and
Richard Turner. CMMI Distilled.
Addison-Wesley, 2001.

12. Lorenz, Mark, and Jeff Kidd. Object-
Oriented Software Metrics. Prentice
Hall, 1994.

13. Boehm, Barry W., Chris Abts, A.
Winsor Brown, et al. Software Cost
Estimation with COCOMO II.
Prentice Hall, 2000: 192-6.

14. Dreger, J. Brian. Function Point
Analysis. Prentice Hall, 1989: 5.

15. Reifer, Donald J. “Web Objects
Counting Conventions.” Reifer
Consultants, Mar. 2001. Available at:
<www.info@reifer.com>.

16. Brown, A. W. “CORADMO.” 13th
International COCOMO Forum and
Focused Workshop on COCOMO II
Extensions. Oct. 1998.

17. Boehm, Barry W. “COCOMO II
Overview.” 14th International
COCOMO Forum. Oct. 1999.

18. Putnam, L. H. “A General Empirical
Solution to the Macro Software Sizing
and Estimating Problem.” IEEE
Trans. Software Engineering. SE-4
July (1978): 345-61.

19. Putnam, L. H., and D. T. Putnam. “A
Data Verification of the Software
Fourth Power Tradeoff Law.”
International Society of Parametric
Analysts Conference. 1984.

20. Boehm, Barry W., Chris Abts, A.
Winsor Brown, et al. Software Cost
Estimation with COCOMO II.
Prentice Hall, 2000: 51-55.

Language LEF
1GL default 320

C 128
2GL default 107

COBOL (ANSI85) 91
FORTRAN 107 107
PASCAL 91

3GL default 80
C++ 53
Java for Web 32
LISP 64
ORACLE 38
Visual Basic 40
Visual C++ 34
Web default — visual languages 35

OO default 29
EIFFEL 20
PERL 22
Smalltalk 20
Web default — OO languages 25

4GL default 20
Crystal Reports 20

Program generator default 16
HTML 15
SQL for Web 10

Spreadsheet default 6
Excel 6
Screen Painter 6

5GL default 5
XML 6
MATHCAD 5

Table 7: Language Expansion Factors (LEF)

About the Author
Donald J. Reifer is one
of the leading figures in
the fields of software
engineering and man-
agement, with more
than 30 years of pro-

gressive experience in government and
industry. In that time, he has served as
chief of the Ada Joint Program Office
and the director of the Department of
Defense Software Reuse Initiative. He
is currently the president of Reifer
Consultants, Inc., which specializes in
helping clients improve the way they do
business. Reifer’s many honors include
the American Institute of Aeronautics
and Astronautics Software Engineering
Award, the Secretary of Defense’s
Medal for Outstanding Public Service,
the NASA Distinguished Service
Medal, the Frieman Award, and the
Hughes Aircraft Fellowship.

P.O. Box 4046
Torrance, CA 90505
Phone: (310) 530-4493
Fax: (310) 530-4297
E-mail: d.reifer@ieee.org

