
Software Engineering Technology

Today, many companies are examining
their internal processes in an effort to

integrate more effective systems and soft-
ware engineering. Many of the challenges
faced in integrating systems and software
engineering exhibit similarities to chal-
lenges observed on large distributed
efforts.

In this article, engineering organiza-
tional variations are first explored, not to
judge but to recognize the existence of
variation and to note a common charac-
teristic observed in all successful organi-
zations regardless of size or structure.
The article then discusses how the identi-
fied characteristic is achieved in different
organizations.

This preliminary investigation sets the
stage for a closer examination of what
systems and software integration means
in practice. An alternative view of a suc-
cessful large project is presented that may
challenge current published literature.
The information presented in this article
is the result of research initially conduct-
ed on large distributed projects [1].

Organizational Variation
If you were to ask a manager or senior
engineer working today in a large
advanced technology software-intensive
organization to examine the chart in
Figure 1, it is likely he (or she) would nod
his (or her) head up and down, reflecting
familiarity with the functional organiza-
tional structure and terminology
employed on the chart.

Each rectangle on Figure 1 under-
neath the engineering manager is imple-
mented through a department each with
its own manager and pool of skilled engi-
neers. At this level, similarity across
diverse organizations is evident.
Nevertheless, while many organizations
have a similar top level structure, we have
seen that inside these organizations
implementation can vary greatly.

For example, in some organizations

the Systems Engineering department is
totally responsible for producing the soft-
ware requirements specification (SRS). In
other organizations, the Systems and
Software Engineering departments col-
laborate on the production of the SRS
with each producing specific piece-parts of
the final SRS. We have also witnessed a
third organizational variation where the
Software Engineering department pro-
duces the complete SRS, while the sys-
tems group provides a review and
approval role.

Note that in all three cases described,
the organizational chart referenced in
Figure 1 could be used to describe the
organizational structure. At the same
time, it is important to note that what we
are asking engineers to do in departments

by the same name, but in different organ-
izations, can differ greatly.

Common Successful Key
Characteristics
It is not the intent here to judge the mer-
its of particular organizational approach-
es, but rather to acknowledge their exis-
tence and to point out a key characteristic
we have observed common to all success-
ful organizations. In each case, when an
organization functions successfully to
produce an end product, individuals with-
in that organization understand and accept
their specific role. That is, they understand
the organization’s expectations of them.

This mutual understanding of roles,
responsibilities, and expectations leads to
operational efficiency with minimal dupli-
cation of effort. The successful organiza-
tion appears from the outside to function
as a single unit. Its piece-parts may vary
on the inside, but in each case they come
together without major surprises into a
final integrated product.

It is worth noting here that in our
experience we have found in many suc-
cessful organizations that the definition of
and responsibility for each piece-part is
oftentimes not written down or described
formally. It has been our experience
working with large software intensive
organizations with long histories of
development and evolution that this
knowledge may have been written down
at some point in time but due to organi-
zational evolution, its current state is
most often passed on through less formal
means.

Integrating Systems and Software Engineering:What Can
Large Organizations Learn From Small Start-Ups? 

Paul E. McMahon
PEM Systems

In an effort to integrate more effective systems and software engineering, many companies today are examining their internal
processes. Recent research conducted on distributed development efforts may provide insight that could aid today’s systems and
software integration initiatives. Drawing material from his book, “Virtual Project Management: Software Solutions for
Today and the Future [1],” the author explores variations in large and small engineering organizations and presents an alter-
native view of large projects that may aid companies in their quest for more effective systems and software integration. 

22 CROSSTALK The Journal of Defense Software Engineering October 2002

Figure 1: Traditional Functional Engineering Organization

“... it is important
to note that what

we are asking
engineers to do in

departments by the
same name, but

in different
organizations, can

differ greatly.”



October 2002 www.stsc.hill.af.mil 23

Integrating Systems and Software Engineering: What Can Large Organizations Learn From Small Start-Ups?

Communicating Expectations
in Large Organizations
In large organizations we tend to see
expectations communicated through
structure and what we refer to as a
process focus. While many large firms
have over the past few years undergone
organizational streamlining, our experi-
ence indicates that sizable written com-
mand media with phase-related exit and
entry criteria continues to be relied upon.

The process employed inside many of
these large organizations can be referred
to as predictive, or repeatable. While
written command media aids repeatabili-
ty and communication, we have found
that new engineers in many large organi-
zations cannot rely totally on this written
word to fully comprehend organizational
expectations. Frequently, local cultures
are also relied upon to aid communica-
tion of expectations.

Communicating Expectations
in Small Organizations
Unlike many large organizations, small
organizations most often see little struc-
ture, little process, and little established
culture. The focus of most small organi-
zations is on surviving. We find many
small organizations to be heavily reliant
on specific individuals. Given this situa-
tion, on the surface it would appear there
is little a large organization could learn
from a small one. However, let us take a
closer look at the small organization.

The Small Organization
Super Programmer Model
The communication of expectations in
many small organizations is simple to
describe. We refer to it as the super pro-
grammer model that implies a do-it-all
expectation. The problem with this
model is that, while expectations are
clear, those expectations often lead to
over-reliance on, and burnout of, individ-
uals. We frequently find organizations
that live by the super programmer model
also live by the code-and-fix methodology.

During the past few years, we have
known colleagues who have given up the
relative security of the large, established
organization in favor of the increased
opportunity afforded by small start-ups.
Unfortunately, many have also found
that the demands of the small start-up
require great personal sacrifice. While
some have returned to the more pre-
dictable large corporate environment, oth-
ers have found increased job satisfaction
through an alternative small-company
model that is rapidly gaining in populari-

ty: the small team model.

The Small Team Model
Today, many small organizations are mov-
ing away from the super programmer
model of operation in favor of a small team
development approach. This change also
often reflects a move away from a code-
and-fix methodology, or no process, to
what is referred to as an adaptive or light-
weight process or method [2]. When we
use the term adaptive method in this article
we mean a method that supports rapid
change initiated through small teams.

Lightweight processes can be thought
of as just enough process, or process with-
out a process-focus. Examples include
eXtreme Programming (XP), which have
been described by Kent Beck [3] and Jim
Highsmith [4].

Characteristics of many lightweight
processes include the following:
• Code and test focus.
• Continual iterative design.
• Pair programming.
• Continual planning and integration.

Upon first learning about the charac-
teristics of XP, our reaction was, “This is
fluff camouflaging a traditional code-and -
fix methodology.” However, after observ-
ing and interacting with a number of small
teams embracing this approach, we have
reached a different conclusion.

XP Fundamentals in Practice
While it is true that XP focuses on today,
we have found that organizations that take
this methodology seriously do not do so at
the expense of planning. In fact, teams
that follow this process often find them-
selves planning continuously. Planning in
an XP environment is different from tra-
ditional planning conducted on many
large projects. Plans are short in length,
contain specific attainable goals, and often
focus on periods of only a few weeks in
duration.

This notion might not even sound like
planning to those familiar with the process
as currently implemented in many large
organizations. It also might sound short-
sighted and non-optimizing (not looking
to the future for improvement), but the
immediate feedback provided through
short repeated cycles of planning and exe-
cution is proving to be effective from the
perspective of the engineer in the trench.

This is the first fundamental differ-
ence we noticed when dealing with a small
company employing an adaptive method-
ology. The second came when talking to
software engineers working on an XP
team: We found a surprising level of
awareness and ownership of schedule and

budget. The software engineers were
aware of the schedule and budget and felt
ownership of it because they had partici-
pated in its development. On the other
hand, in many large organizations, we
have found that it is not uncommon for
engineers to have little insight into the
project schedule and budget.

Upon first learning about XP, we
found its code-focus to be difficult to
accept. However, after observing an XP
team in action, it left us with a different
impression.

The notion that programmers using
XP do not design is a misunderstanding.
One member of a small XP team
explained it to us this way: “Just because
we focus on the code doesn’t mean we
don’t give each task considerable fore-
thought. We just don’t write down the
result formally, and we don’t use a formal
design tool.” Then after he hesitated, he
added, “But we might draw a sequence
diagram or two, if we think it might help.”
Another member of the same team said,
“We keep our designs as simple as possi-
ble, and we try not to spend any unneces-
sary time in design.”

We had an opportunity to witness the
design process in action with a small team,
and it reminded us of an informal brain-
storming session you might see in any
organization. The meeting had not been
scheduled ahead of time. It just happened
because one member of the team wanted
some help. Within a few minutes, three
team members had gathered around a
white board, and 25 minutes later there
was a design solution sketched out on the
board. We suggested that someone cap-
ture the diagram more formally.

Another interesting aspect of XP is
pair programming. When we first heard
about pair programming, we expressed
agreement with the concept to a young
client. Our thinking was that this tech-
nique would provide a backup in case one
team member was pulled off the project
or got sick. But the client was quick to
explain that pair programming had noth-
ing to do with having a backup.

We have since learned that some pair
programming team members are adamant
about having both team members present
side by side during 100 percent of the
programming activity. That is right! Not
only does it take two people to complete
one program, but also if one of the two is
missing, in some cases, the other does not
want to move on. Doesn’t that sound
incredibly inefficient? 

But then the client went on to explain:
“It’s the dialogue that I don’t want to miss.
By having my teammate right next to me,



Software Engineering Technology

it forces me to verbalize my thought
process at the moment I type the code in.
Often through this process, errors are
detected at the same moment when they
are about to be created.”

As I listened to this process being
described, a light bulb was flicking on in
my head – this process is what peer
reviews and early error detection was
always meant to be! 

Tailoring XP
When reading about a new methodology,
you often envision something different
from the way organizations actually apply
it. XP, according to the book, includes 12
key practices. However, not all companies
that claim to employ XP follow all the
practices exactly as outlined by Beck [3].
For example, while many small organiza-
tions have recognized the value of pair
programming, others have also recognized
that what their engineers actually do
extends beyond programming itself.

Often we find in practice that the pair
recognizes that one of the members has
more of a systems inclination (i.e., customer
interface, requirements management),
while the other prefers the traditional pro-
grammer role. These recognitions are usu-
ally based on individual strengths and
desires. As a result, we tend to see a systems
focus and a software focus being supported
within the small team and small company
environment, but without the formal sys-
tem and software department boundaries
that are prevalent in large organizations.

Effective Systems and
Software Integration
in Practice
We have witnessed large organizations
communicating expectations through
defined organizational structures, support-
ed by heavyweight command media (policies,
practices, and procedures). We have also
seen the key role of culture in communi-
cating expectations in large organizations.

In small organizations applying light-
weight methodologies, on the other hand,
communication occurs through short-
range planning that leverages individual
teammate strengths. Given what we have
witnessed inside both large and small
organizations, we are led to a question:
“What does effective systems and software
integration mean in practice?”

We believe that the answer to this
question should be independent of the
size and structure of the organization. We
propose the following definition: Effective
systems and software integration means
that the right interactions are occurring at

the right time, the right questions are
being asked at the right time, and the right
factors are being considered and acted
upon at the right time.

Systems Engineering Inside
Large Organizations
We have, on a number of occasions, taken
the opportunity to ask an engineer in a
large organization, “What is systems engi-
neering?” Often the answer received has
equated to, “whatever the systems engi-
neering group does,” in that particular
organization.

Unfortunately, this answer can be
problematic for two reasons. First, from
an educational viewpoint, how are we to
prepare systems engineers in our universi-
ties when the expectations of a systems
engineer can vary dramatically from one
organization to another?

Second, when task expectations are
too tightly coupled to an organizational
structure or department charter, the
increased likelihood for tasks to fall
through cracks exists. This is because no
organization is perfect. We have also
found that a tight coupling of task respon-
sibilities to organizational partitioning
tends to give rise to the “it’s not my job”
syndrome in large organizations.

Systems Engineering Inside
Small Organizations
On the other hand, when we have asked,
“What is systems engineering?” to an engi-
neer who has experienced only the small
organization environment, the most com-
mon response has been a puzzled look on
his/her face. This is because in most small
organizations, engineers do not think in
terms of distinct systems and software
tasks; rather, they think in terms of getting
the job done.

One reason small organizations do not
tend to exhibit the task-related difficulties
we have observed in large organizations is
because they have not artificially parti-
tioned detailed tasking responsibility based
on organizational boundaries. Stated dif-
ferently, in small organizations that use
adaptive methods, the team works out the
task responsibilities knowing that together
the team is responsible for everything.

Applying a Lightweight
Approach to a Large Project
Published literature available today on
lightweight methodologies [3, 4] indicates
these approaches may not be scalable to
large projects. While we do not recom-
mend XP practices be applied in full on
large projects, a number of the most suc-

cessful large projects we have witnessed
tend to already embrace many of these
same practices. Although it is unwritten,
i.e., not found in any formal corporate
command media, a number of the most
successful large projects we have observed
also tend to exhibit an unspoken adaptive
subculture.

Characteristics of these projects
include incremental development, plans
that focus on today, and a code focus. A
code focus may seem unusual to a large
project especially in large disciplined
organizations, but in practice it has proven
to be particularly effective when heavy
reuse is involved. Testing candidate reuse
code early, peer reviewing proposed
changes early and often, integrating early,
and staying integrated through a series of
incremental builds have proven to be effec-
tive techniques on projects of all sizes.

A Key to Success
This article recommends managing a large
project as a collection of small adaptive
projects. This recommendation is not
meant to imply that the adoption of such
methods alone is sufficient to ensure large
project success. On the contrary, if small
teams within a large team were allowed to
continually adapt their plan independently,
then chaos would certainly result.

On one large project that we worked as
a team member, the software work was
partitioned across the country at three dis-
tinct sites. But before the work partitioning
took place, a small group of senior project
personnel established overall system archi-
tecture with very specific constraints,
including computer platforms, compilers,
tools, and interfacing requirements.

As the project evolved, there also
evolved a number of small teams each with
approximately seven to 10 engineers. Each
small team had its own unique develop-
ment issues. The project leader empowered
these lower level informal small teams to
make key decisions constrained only by the
project requirements and the defined proj-
ect architecture.

Many of the characteristics we have
seen in successful small companies
employing adaptive methods are also evi-
dent within small informal teams inside
large projects. You will not necessarily find
the small teams we are referring to on a for-
mal organizational chart.

In-the-large XP practices can work, but
only if implemented within the context of
a higher level framework.

In short, we want our small teams
inside large teams to take on increased
responsibility, but the key to success on
large projects is ensuring small team adap-

24 CROSSTALK The Journal of Defense Software Engineering October 2002



October 2002 www.stsc.hill.af.mil 25

Integrating Systems and Software Engineering: What Can Large Organizations Learn From Small Start-Ups?

tations are consistent with well-defined,
well-communicated system architecture.

An Alternative View
of a Large Project
Through the use of a small architecture
group and other related techniques to
communicate architectural decisions and
responsibilities [1], large projects can
effectively be managed as a collection of
small adaptive projects (Figure 2). While
many large companies may not formally
describe their operating structure in these
terms, many successful large projects oper-
ate in this manner today.

It is also worth noting that we do not
recommend that the notions of small
teams and pair programming be overly
formalized in large organizations. This
would, in fact, undo the value we seek.
Informality is an essential ingredient to the
success of the small team in any organiza-
tion.

Pair programming can be effective in
an organization of any size, but it is also
important to realize that some people just
do not team well, and we do not believe
that forcing small teams or pair program-
ming makes sense in any organization.

Different companies have different
cultures and differing past experiences and
beliefs surrounding their workspace. Some
believe in open workspaces, while others
pride themselves in the private offices they
provide their professional personnel.
Nevertheless, we are witnessing a definite
movement within the software community
toward more group activities in support of
increased productivity.

One new engineer in a large company
told us that he sat in his cubicle for the first
three months of his new job continually
wanting to ask questions, but not wanting
to be perceived as a nuisance. Other new
engineers in the same company, we found
out later, felt the same way.

Soon thereafter, an engineering lab
environment was set up. It was not long
before all the new software engineers were
spending more and more time together in
the lab. One engineer said the lab environ-
ment made it much easier to ask questions
and to listen to answers to questions asked
by others. Progress on the project
increased at lightning speed shortly there-
after.

Conclusions 
A few months after providing assistance to
a small company utilizing XP, we asked
one of their engineers a simple question:
“Had anything changed over the past few
months?” The engineer responded: “If I
had to point to one thing, I’ve noticed that
I’m spending less time dealing with urgent
and unimportant matters, and more time
on the things that count.”

Adaptive methods not only can work
in large organizations, we have found they
are often key to large project success. We
recommend large organizations that are
not operating as effectively as desired con-
sider the selective adoption of adaptive
techniques.

What really first caught our attention
with adaptive methods was the focus on
the engineer in the trench. Too often, well-
intentioned process improvement initia-
tives never seem to reach the real workers.

In reality, the short cycles of planning
are not shortsighted, rather they are based
on the length of time into the future where
we have control over where we are going.

It is also important to note that it is not
that the process we see today in large com-
panies is not working, but it works at its
own pace. Adaptive techniques and small
informal teams inside large organizations
can complement a formal organizational
process focus, and can also be an effective
method to facilitate change in an organiza-
tion that is not evolving at the pace need-

ed to remain competitive in today’s world.
Write plans that work today, and do not

discourage your team from continually
updating their plans to reflect increased
knowledge tomorrow. Encourage small
teams to leverage your organization’s
strengths regardless of where those
strengths lie inside your organization.

Small teams and adaptive methods can
not only help your systems and software
integration efforts, but they can also pre-
pare your organization to be more effec-
tive in tomorrow’s collaborative world.◆

References
1. McMahon, Paul E. Virtual Project

Management: Software Solutions for
Today and the Future. Boca Raton: St.
Lucie Press, An Imprint of CRC Press
LLC, 2001.

2. Fowler, Martin. “Put Your Process on a
Diet.” Software Development Mag-
azine Dec. 2000: 32-36.

3. Beck, Kent. eXtreme Programming
Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

4. Highsmith, James A. Adaptive
Software Development: A Collabora-
tive Approach to Managing Complex
Systems. New York: Dorset House
Publishing, 1999.

About the Author
Paul E. McMahon is
an independent con-
tractor providing tech-
nical and management
leadership services to
large and small engi-
neering organizations.

Before initiating independent work as
PEM Systems in 1997, McMahon held
senior technical and management posi-
tions at Hughes and Lockheed Martin.
Today he employs his 28 years of
experience to help organizations
deploy high quality software processes
integrated with systems engineering
and project management. He has
taught software engineering at
Binghamton University in New York,
conducted software process and man-
agement workshops, and has pub-
lished more than 20 articles and a book
on virtual project management.

118 Matthews St.
Binghamton, NY 13905
Phone: (607) 798-7740
E-mail: pemcmahon@acm.org

Figure 2: An Alternative View of a Successful Large Project


