
October 2002 www.stsc.hill.af.mil 15

Agile Methodologies and Process Discipline

Mark C. Paulk
Software Engineering Institute

Agile methodologies have been touted as the programming methodologies of choice for the high-speed, volatile world of Internet
and Web software development. They have also been criticized as just another disguise for undisciplined hacking. The reality
depends on the fidelity to the agile philosophy with which these methodologies are implemented, and the appropriateness of the
implementation for the application environment. This article addresses these issues and summarizes and critiques the com-
patibility of agile methodologies with plan-driven methodologies as described by the Capability Maturity Model® for Software.

Agile methodologies, such as eXtreme
Programming (XP), have been touted

as the programming methodologies of
choice for the high-speed, volatile world of
Internet and Web software development.
They have also been criticized as just
another disguise for undisciplined hacking.
Although creators of agile methodologies
usually espouse them as disciplined
processes, some have used them to argue
against rigorous software process
improvement models such as the
Capability Maturity Model® (CMM®) for
Software (SW-CMM®) [1].

Many organizations moving into e-
commerce (and e-government) have exist-
ing CMM-based initiatives (and possibly
customers demanding mature processes)
and desire an understanding of whether
agile methodologies can address CMM
practices adequately. Usually, the reality
depends on 1) the fidelity to the agile phi-
losophy with which these methodologies
are implemented, and 2) the appropriate-
ness of the implementation for the appli-
cation environment.

This article recaps the Agile Software
Development Manifesto and its underlying
principles. The compatibility of agile
methodologies with plan-driven method-
ologies as described by the CMM is sum-
marized and critiqued. Although agile
methodologies can be characterized as
lightweight methodologies that do not empha-
size process definition or measurement to
the degree that models such as the CMM
do, a broad range of processes can be con-
sidered valid under the CMM. The conclu-
sion is that agile methodologies advocate
many good engineering practices, although
some practices may have an extreme
implementation that is controversial and
counterproductive outside a narrow
domain.

For those interested in process
improvement, the ideas in the agile move-
ment should be thoughtfully considered.
When rationally implemented in an appro-
priate environment, agile methodologies
address many CMM Level 2 and 3 prac-

tices. The ideas in the agile movement
should be carefully considered for adop-
tion where appropriate in an organization's
business environment; likewise, organiza-
tions considering agile methodologies
should carefully consider the management
and infrastructure issues of the CMM.

Agile Methodologies
Many names have been used for the agile
methods, including Internet-speed, light-
weight, and lean methodologies. Similarly,
plan-driven methodologies have been

described as rigorous, disciplined, bureau-
cratic, heavyweight, and industrial-
strength. Some of these descriptors can be
considered derogatory, e.g., lightweight or
bureaucratic. Agile is the term preferred by
the AgileAlliance, a group of software
professionals dedicated to promoting the
concepts of agile software development.
Plan-driven was coined by Barry Boehm [2]
to characterize the opposite end of the
planning spectrum from agile methodolo-
gies.

Any discussion of agile methodologies
should begin with the fundamentals of

agile as expressed by its proponents. The
Manifesto of the AgileAlliance found at
<www.agilemanifesto.org> states:

We are uncovering better ways of
developing software by doing it,
and helping others do it. Through
this work we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over compre-

hensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value on

the items on the right, we value the
items on the left more.

The principles behind the agile mani-
festo are as follows:
1. Our highest priority is to satisfy the

customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

3. Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the short-
er timescale.

4. Business people and developers must
work together daily throughout the
project.

5. Build projects around motivated indi-
viduals. Give them the environment
and support they need, and trust them
to get the job done.

6. The most efficient and effective
method of conveying information to
and within a development team is face-
to-face conversation.

7. Working software is the primary meas-
ure of progress.

8. Agile processes promote sustainable
development. The sponsors, develop-
ers, and users should be able to main-
tain a constant pace indefinitely.

“The conclusion is
that agile methodologies

advocate many good
engineering practices,

although some practices
may have an extreme
implementation that
is controversial and
counterproductive
outside a narrow

domain.”

Agile Software Development

16 CROSSTALK The Journal of Defense Software Engineering October 2002

9. Continuous attention to technical
excellence and good design enhances
agility.

10. Simplicity – the art of maximizing the
amount of work not done – is essen-
tial.

11. The best architectures, requirements,
and designs emerge from self-organiz-
ing teams.

12. At regular intervals, the team reflects
on how to become more effective, then
tunes and adjusts its behavior accord-
ingly.
Agile methodologies are usually target-

ed toward small- to medium-sized teams
building software in the face of vague
and/or rapidly changing requirements.
Agile teams are expected to be co-located,
typically with less than 10 members.

Process Discipline in
the Agile Methods
Why would we challenge the principles of
agile methodologies? Do not most profes-
sionals share the objectives espoused in
the agile movement? In one sense, the val-
ues expressed in the agile manifesto should
be captured in any modern software proj-
ect, even if the implementation may differ
radically in other environments. Customer
satisfaction, communication, working soft-
ware, simplicity, and self-reflection may be
stated in other terms, but without them,
non-trivial projects face almost insur-
mountable odds against success.

In effective CMM-based improvement,
when defining processes, organizations
should capture the minimum essential
information needed, use good software
design principles (such as information hid-
ing and abstraction) in structuring the def-
initions, and emphasize usefulness and
usability [3]. One of the consequences of
the Level 1 to Level 2 culture shift is
demonstrating the courage of convictions
by becoming realistic in estimates, plans,
and commitments.

Much of the formalism that character-
izes most CMM-based process improve-
ment is an artifact of large projects and/or
severe reliability requirements, especially
for life-critical systems. The hierarchical
structure of the SW-CMM, however, is
intended to support a broad range of
implementations within the context of the
18 key process areas and 52 goals that
compose the requirements for a fully
mature software process. It is true, howev-
er, that the CMM emphasizes explicitly
capturing knowledge via documentation
and measurement – a process emphasis.
The challenge for many in adopting agile
methodologies lies in the (perceived) prob-

lems in de-emphasizing processes, docu-
mentation, contracts, and planning.

Individuals Over Process
Agile methodologies assume the pro-
grammers are generalists rather than spe-
cialists. Competent generalists are hard to
come by, but this is an endemic problem
in any technically demanding discipline.
Specialist knowledge in a domain can be
needed, however, which may lessen the
effectiveness of practices such as pair
programming.

The foundation of software engineer-
ing in the SW-CMM at Level 1 is compe-
tent people, sometimes doing heroics, all
too frequently working to overcome the
system to do professional work. In spite of
heroics, the foundation that is assumed in
the CMM is competent professionals.

Without competent professionals, the
best software process is ineffective –
because the work we do in software proj-
ects is human-centric and design-inten-
sive, and the process is what we do.

Software professionals want to take
pride in their work, but how can they
when managers say, “I’d rather have it
wrong than have it late. We can always fix
it later.” When program managers
acknowledge that making the schedule is
the primary consideration in raises and
promotions, what is the impact on moti-
vation, quality, and professionalism?
These are fundamental management
issues, which is why the focus at Level 2
of the SW-CMM is on project manage-
ment, which empowers competent pro-
fessionals to do quality work.

It is interesting to note that, although
agile methodologies emphasize individu-
als over process, the set of practices in an
agile methodology addresses the same
kind of planning and commitment issues
as the focus on basic project management
at CMM Level 2. An agile methodology that
ignored customer collaboration and incre-
mental development would almost cer-

tainly fail. Agile practices are synergistic,
and the success of agile methodologies
depends on the emergent properties of
the set of practices as a whole.

Working Software
Over Documentation
The agile emphasis on tacit rather than
explicit knowledge, as externally captured
in documentation, can be a high-risk
choice in many environments such as
government contracting, but it can be an
effective choice if rationally made. When
agile advocates denigrate the value of
documentation, they lessen their credibil-
ity in the eyes of many experienced pro-
fessionals. The tone in arguing against
non-essential documentation differs from
arguing that documentation is an ineffi-
cient waste.

eXtreme Programming expert Bob
Martin said at the 2001 XP Universe con-
ference that he ran into someone who
said his organization was using XP.
Martin asked him how pair programming
was viewed, and the reply was, “We don’t
do that.” Martin asked how refactoring
was working out, and the reply was, “We
don’t do that.” Martin asked how well the
planning game was working, and the reply
was, “We don’t do that.” “Well,” Martin
asked, “then what are you doing?” “We
don’t document anything!” was the
answer.

Success carries the seeds of failure,
and the agile methodologists are con-
cerned that some adopting these new
ideas do not really understand what an
agile methodology is – and it is not ad
hoc, chaotic programming.

When considering process documen-
tation, the element that is missing from
agile methodologies, which is crucial for
the SW-CMM, is the concept of institu-
tionalization, i.e., establishing the culture
that “this is the way we do things around
here.”

Although implicit in some agile prac-
tices such as the peer pressure formed by
pair programming, infrastructure is
important for institutionalizing good
engineering and management practices.
The key process areas in the CMM are
structured by common features that deal
with implementing and institutionalizing
processes. The institutionalization prac-
tices for each key process area map to all
the goals within the area, so a naïve agile
implementation that ignored these cultur-
al issues would fail to satisfy any CMM
key process area.

As implementation models that focus
on the development process, these issues

“Software professionals
want to take pride in

their work, but how can
they when managers say,
‘I’d rather have it wrong
than have it late.We can

always fix it later.’ ”

Agile Methodologies and Process Discipline

October 2002 www.stsc.hill.af.mil 17

are largely outside the focus of the agile
methodologies, but they are arguably cru-
cial for their successful adoption.

Over-documentation is a pernicious
problem in the software industry, espe-
cially in Department of Defense (DoD)
projects. Software maintainers have long
known that the only documentation you
can really trust is the code (and those of
us with experience debugging compiler
and run-time defects doubt even that).
Having said that, an architectural descrip-
tion of the system that provides a tour of
the top-level design can be invaluable to
maintainers.

From a technical perspective, as proj-
ects become larger, emphasizing a good
architectural philosophy becomes increas-
ingly critical to project success. Major
investment in the design of the product’s
architecture is one of the practices that
characterizes successful Internet compa-
nies [4]. Architecture-based design, desig-
ning for change, refactoring, and similar
design philosophies emphasize the need
for dealing with change in a systematic
fashion.

One of the compromises that agile
methodologists are likely to be required to
make as they move into larger projects
and applications that are life- or mission-
critical is a stronger emphasis on docu-
menting the architecture and the design
of the system. In turn, plan-driven
methodologists must acknowledge that
keeping documentation to a minimum,
useful set is also necessary. What benefit
do we really get from detailed designs
where the programming design language
is nearly as large as the code?

Much of the controversy with respect
to the technical issues centers on what
happens as projects scale up. Practices
that rely on tacit knowledge and highly
competent professionals may break down
in larger teams with their rapidly expand-
ing communication channels and coordi-
nation challenges. However, replacing
those practices with ones appropriate for
large teams may result in losing the emer-
gent properties of the agile methodology.

Customer Collaboration
Over Contracts
The degree of trust implicit in relying on
customer collaboration rather than a con-
tract is not justified in many customer-
supplier relationships. Even when the rela-
tionship begins with the best of intentions
and the highest of expectations on both
sides, one of the main difficulties in learn-
ing from experience is “the use of unaid-
ed memory for coding, storing, and

retrieving outcome information” [5], with
the consequence that “change can make
liars of us, liars to ourselves” [6]. As time
goes by, as things change, our unaided
memories become unreliable.

The reliance of agile methodologies
on tacit knowledge is therefore vulnerable
to perception shifts over time, yet tacit
knowledge may be much more effective
than external, explicit knowledge in set-
ting expectations and driving behavior. In
a government-contracting context, federal
acquisition regulations establish a context
for ensuring fair play – even if it is not
necessarily an effective and efficient envi-
ronment. This can be considered a prob-
lem in expectations management. The
agile methodologies manage customer
expectations by insisting on an ongoing
customer interaction and rapid iteration.

Ignoring possible regulatory issues, the
stories in XP, in conjunction with an evolu-
tionary life cycle and ongoing customer-
supplier communication [7], document
requirements and commitments in a man-
ner that could satisfy the goals of require-
ments management and software project
planning in the SW-CMM. Will such a set
of stories satisfy a DoD customer that the
requirements are adequately stated and
that commitments as driven by the customer
are being met? Or will the natural desire
for a more comprehensive requirements
statement drive the customer towards a
requirements specification that lacks the
dynamic capability desired for an agile
methodology?

Perhaps an honest answer to this type
of question reveals more about the com-
fort levels of both customer and supplier
in an agile relationship. One of the most sig-
nificant barriers to implementing an agile
methodology is likely to be an inability to
establish and maintain close and effective
customer collaboration – and this barrier
is likely to be erected on the customer’s
side of the relationship.

Responding to Change
Over Planning
Dwight Eisenhower is quoted as saying that
planning is more important than the plan.
And one of the great military axioms is that
no battle plan survives contact with the
enemy. That said, planning – and prepara-
tion – are prerequisites to success. Planning
for change is quite different from not plan-
ning at all.

Agile methodologies, with their rapid
iterations, require continual planning.
Customer collaboration and responsiveness
to change are tightly linked, if perhaps
inconsistent with typical government-con-
tractor relationships. One of the shifts in
acquisition strategy in recent years has been
toward prototyping, evolutionary develop-
ment, and risk-driven life cycles. With their
emphasis on addressing requirements
volatility, agile methodologies could be a
powerful synthesis of practices that DoD
contractors could leverage to make planning
more responsive to change.

Stepping Up to the Plate
The greatest challenge in taking advantage
of the virtues of agile methodologies may
lie in convincing acquisition agencies to step
up to the plate and use agile methods where
appropriate. Hardly lesser is the challenge in
convincing agile advocates to consider mod-
ifying the agile methodologies to suit new
arenas. We have to decide where to place the
balance point in documentation and planning
to alleviate the concerns of the stakeholders
(and regulatory requirements) while achiev-
ing the flexibility and benefits promised in
the agile philosophy.

Agile methodologies may wind up being
the preferred process in many environ-
ments, yet be inappropriate in contexts such
as life-critical systems or high-reliability sys-
tems. Modifications to the agile methodolo-
gies needed for those environments may be
great enough that the synergistic effects of
the set of practices in an agile methodology
are lost. Emergent properties in a system are
sensitive to interdependencies. Arguing that
agile methodologies are not suitable for all
environments is not the same as saying they
are suitable for none.

Contractual commitments explicitly
based on evolutionary or incremental life
cycles are desirable. Plans with miniature mile-
stones that are detailed in the short term and
conceptual in the long term are possible.
Processes that capture the minimum essen-
tial information needed to reliably and con-
sistently perform the work and documenta-
tion that captures useful information are
feasible. Just because these objectives are
desirable, possible, and feasible does not,

“One of the most
significant barriers to
implementing an agile
methodology is likely
to be an inability to

establish and maintain
close and effective

customer collaboration.”

Agile Software Development

18 CROSSTALK The Journal of Defense Software Engineering October 2002

however, mean they are easily realized.
Selecting an appropriate balance point
requires an open mind from both agile and
plan-driven methodologists on both the
supplier and customer sides of the equation.

Conclusions
Agile methodologies imply disciplined
processes, even if the implementations dif-
fer in extreme ways from traditional soft-
ware engineering and management prac-
tices; the extremism is intended to maxi-
mize the benefits of good practice [8]. The
SW-CMM tells what to do in general terms,
but does not say how to do it; agile method-
ologies provide a set of best practices that
contain fairly specific how-to information
– an implementation model – for a partic-
ular kind of environment.

Even though agile methodologies may
be compatible in principle with the disci-
pline of models such as the CMM, the
implementation of those methodologies
must be aligned with the spirit of the agile
philosophy and with the needs and inter-
ests of the customer and other stakehold-
ers. Aligning the two in a government-con-
tracting environment may be an insur-
mountable challenge.

As we learn empirically what works well
in the agile methodologies and how far
they can be extended into different envi-
ronments, we should expect software engi-
neering to adapt and adopt the useful ideas
of the visionaries in the agile movement.
This will include using data to separate the
wheat from the chaff as we identify what is

useful, and what is limited in its applica-
tion. Laurie Ann Williams, for example, has
integrated pair programming into an exten-
sion of the Personal Software ProcessSM

called the Collaborative Software Process,
and demonstrated that performance
improves [9].

Many of the practices in the agile
methodologies are good practices that
should be thoughtfully considered for any
environment. While the merits of any of
these practices can be debated in compari-
son with other ways of dealing with the
same issues, none of them should be arbi-
trarily rejected. Perhaps the biggest chal-
lenge in dealing effectively with both agile
and plan-driven methodologies is dealing
with extremists in both camps who refuse to
keep an open mind.◆

References
1. Paulk, Mark C., Charles V. Weber, Bill

Curtis, and Mary Beth Chrissis. The
Capability Maturity Model ®: Guidelines
for Improving the Software Process.
Boston: Addison-Wesley, 1995.

2. Boehm, Barry. “Get Ready for Agile
Methods, With Care.” IEEE Computer
Jan. 2002.

3. Paulk, Mark C. “Using the Software
CMM with Good Judgment.” ASQ
Software Quality Professional June
1999.

4. MacCormack, Alan. “Product Devel-
opment Practices That Work: How
Internet Companies Build Software.”
MIT Sloan Management Review Winter
2001.

5. Einhorn, Hillel J., and Robin M.
Hogarth. “Confidence in Judgment:

Persistence of the Illusion of Validity.”
Psychological Review 85.3 (1978).

6. Dawes, Robyn M. Rational Choice in an
Uncertain World. Orlando: Harcourt
Brace Jovanovich, 1988.

7. Beck, Kent. eXtreme Programming
Explained: Embrace Change. Boston:
Addison-Wesley, 1999.

8. Paulk, Mark C. “Extreme Programming
From a CMM Perspective.” IEEE
Software 34.11 (2001).

9. Williams, Laurie Ann. “The Collabora-
tive Software Process.” Diss. Univer-
sity of Utah, Aug. 2000.

About the Author
Mark C. Paulk is a
senior member of the
Technical Staff at the
Software Engineering
Institute. He has been
with the SEI since

1987. Paulk was the “book boss” for
Version 1.0 of the Capability Maturity
Model® for Software and the project
leader during the development of
Software CMM® Version 1.1. His cur-
rent interests center on high maturity
practices and statistical control for
software processes.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Phone: (412) 268-5794
Fax: (412) 268-5758
E-mail: mcp@sei.cmu.eduSM Personal Software Process is a service mark of Carnegie

Mellon University.

