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Controlling cost, schedule, and quality
in a software development project

remains a challenging task. This type of
control is difficult largely because of our
inability to accurately measure attributes
of the software development process, espe-
cially quality [1]. Measuring the quality of
development processes and artifacts then
relating them to final software product
quality is not a process that is well under-
stood. Under constant pressure to reduce
cost and schedule, software engineers
often use reduction techniques without
fully understanding their impact on
processes and final product quality. 

Nowhere is this truer than in the soft-
ware testing process. Software testing can
improve software quality, but at a signifi-
cant cost. It is not unusual for 40 percent
to 80 percent of product development cost
to be spent finding and fixing software
errors [2]. Balancing testing cost and
schedule with quality is difficult. Ad hoc
reductions in the testing effort may bring
short-term savings in cost and schedule.
Unfortunately, these savings may be erased
by quality problems discovered later in the
product life cycle where fixes are expensive
and a product’s reputation may be badly
damaged.

In this article, we present an approach
that reduces black-box testing effort while
maintaining the quality of the testing
process. By quality, we refer to fault-detec-
tion capability of the test suite, or simply,
how many faults a test suite uncovers. The
type of software faults are those related to
the correctness of program output; other
types of software faults associated with
other quality attributes such as perform-
ance, fault tolerance, usability, etc. are
addressed in other testing process areas.
Our goal is to create a reduced test suite
that is smaller in size than the original test
suite. The reduced test suite, however, is to
maintain the fault detection capability of

the larger, original test suite. This ensures
that any savings in testing cost and sched-
ule gained by executing the reduced test
suite are not lost to expensive field repairs.
To accomplish this, we perform additional
analysis of the program under test. By
using information gathered from the pro-
gram specification and implementation,
we can reduce the size of the original test
suite in a controlled fashion that ensures
that the original suite’s fault detection
capability is maintained.

While we believe our approach is
applicable in a wide array of testing situa-
tions, in this article we focus on our initial
efforts of applying our approach to black-
box testing and the problem of combina-
torial testing in data-driven programs. The
following sections define the problem and
current approaches; our approach, called
Input-Output (IO) Analysis;  details of
implementing IO analysis; the results of
experimental studies using our approach;
and the conclusion.

Combinatorial Testing
Techniques
In this article, we focus on black-box test-
ing of data-driven programs. Black-box
testing ensures that a program meets its
specification from a behavioral or func-
tional perspective and is typically per-
formed without knowledge of software
internals. Black-box testing can be applied
to both control-driven and data-driven
programs. In control-driven applications,
outputs are determined by sequences of
events or processing states. In data-driven
applications, manipulation of data inputs
and the relationships between data items
determine outputs. Data driven applica-
tions, which typically have multiple inputs
and outputs, include transaction-based
systems, order-processing systems, appli-
cation program interfaces, and many of
the form-based applications common on

the Web today. 
Black-box testing techniques used for

data-driven programs include equivalence-
class partitioning and boundary value
analysis [3]. Using these techniques,
testers select test data values for each of the
program’s input variables. The tester must
then consider how to test combinations of
the selected test data values. It is important
to test different input combinations, oth-
erwise the result could be an unacceptable
number of undetected software faults. 

The most comprehensive approach to
testing program-input combinations is
referred to as combinatorial testing. In
combinatorial testing, all possible combi-
nations of the test data values selected for
the program inputs are tested.
(Combinatorial testing should not be con-
fused with exhaustive input testing, which
is testing every possible data value, valid
and invalid, in every possible combina-
tion. This generates astronomically large
test suites in all but trivial applications.)
From a software quality perspective, com-
binatorial testing is desirable because it
covers a large portion of the program’s
input space, resulting in fewer faults
passed to the end-users of the product.

The challenge in combinatorial testing
is managing the size of the test suite. In
reality, combinatorial test suites grow very
rapidly in size, frequently making the
approach impractical. To fit within avail-
able resources and schedule, several
approaches could be considered to reduce
the size of the combinatorial test suite.
Orthogonal arrays [4] and experimental
design techniques [5, 6] have been sug-
gested as ways of reducing the number of
combinatorial tests. These techniques gen-
erate tests by combining test data for sub-
sets of the input variables, e.g., tests may
be generated for all pair-wise combina-
tions of program inputs. These techniques
do reduce the number of combinatorial
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tests dramatically, but their impact on the
fault-detection capability of the test suite,
especially when compared to combinator-
ial testing, is unknown. Random sampling
[7] may also be used to reduce the test
suite, but it leads to a reduction in fault-
detection capability. In the next section,
we present an automated approach that
reduces the combinatorial testing effort
while maintaining the fault-detection
capability of the combinatorial test suite.

Combinatorial Testing Using 

Input-Output Analysis

Our approach performs additional analysis
of the program under test. Information
gained from this analysis is used to create
a reduced test suite that is smaller than the
combinatorial test suite (a subset of the
combinatorial test suite). The reduced test
suite maintains the fault detection capabil-
ity of the larger, combinatorial test suite.
We refer to this analysis as Input-Output
(IO) analysis because it identifies the rela-
tionships between a program’s inputs and
outputs. Combinatorial testing can then
focus on those input combinations that
affect a program output, rather than con-
sidering all possible input combinations.

For example, consider program P1 in
Figure 1. Program P1 has three inputs 
(A, B, and C) and two outputs (Y and Z).
To test this program using combinatorial
testing, we would first select test data val-
ues for each of the program inputs using
black-box test design techniques. Assume

we select test data values for each of the
three input variables, as in Table 1. 

Now consider how to test combina-
tions of the input variables. For simplicity,
assume there are no constraints among the
input variables, and that we will execute
combinatorial testing of the selected test
data values. The combinatorial test suite
generated from the test data values select-
ed for the program inputs is listed in Table
2. 

Our goal is to reduce the effort of
combinatorial testing without reducing
fault-detection capability. Our approach
takes advantage of the observation that in
data-driven programs not all inputs influ-
ence every program output. We find this
to be a common occurrence in our study
of this class of programs. We use IO analy-
sis to identify relationships between pro-
gram inputs and outputs, referred to as IO
relationships. Based on the IO relation-
ships combinatorial testing is reduced to
testing only those input combinations that
affect a program output.

For example, suppose we identify the
IO relationships for program P1 as in

Figure 2. We find that output Y is a func-
tion of inputs A and C, and that output Z

is a function of input B, only. Since Y is a
function of inputs A and C only, these two
inputs will be used to generate combinato-
rial tests for output Y. Since there are four
unique combinations of the test data val-
ues selected for inputs A and B, this would
result in four tests. Similarly, output vari-
able Z is a function of input B only, so
tests for output Z will be generated from
the test data values selected for input B,
only. Since there are four test data values
selected for input B, this results in four

additional tests for a total of eight tests.
However, notice that the test sets created
from the perspective of outputs Y and Z
can be merged into a test suite of size four, 
as in Table 3. The advantage of our
approach is apparent; the size of the com-
binatorial test suite has been reduced from
16 to four tests. 

By only generating tests for the input
combinations that influence a program
output, a reduced test suite is created.
However, has the fault detection capabili-
ty of the combinatorial test suite been
maintained? For data-driven programs, it
is easy to show that the fault detection
capability is maintained if the IO relation-
ships are correct. For example, if the IO
relationships for output Y are correct, any
software fault that causes an incorrect
value at output Y is detected by entering
some combination of the A and C test
data values. There are only four unique
combinations of the test data values select-
ed for inputs A and C.  In the 16-test com-
binatorial test suite, these four unique
combinations of A and C are unnecessari-
ly repeated four times: once for each test
data value selected for input B. Clearly,
from the perspective of output Y, there are
repetitive tests in the combinatorial test
suite. Repeating a test does not increase
the fault detection capability of the test
suite; it only increases its size. Similarly,
removing repetitive tests from the test
suite does not reduce its fault detection
capability; it only reduces the size of the
test suite. A similar analysis can be done
for output Z.
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Table 2: Combinational Test Suite Program P1

Figure 1: Program P1 -Multiple Inputs, Outputs Figure 2: Program P1-Input/Output Relations

Table 1: Selected Test Data Values for Program P1

Input Var. Test Data Values
A 1, 2
B North, South, East, West
C TDC, BDM

Test ID Input A Input B Input C
C1 1 North TDC
C2 1 North BDM
C3 1 South TDC
C4 1 South BDM
C5 1 East TDC
C6 1 East BDM
C7 1 West TDC
C8 1 West BDM
C9 2 North TDC
C10 2 North BDM
C11 2 South TDC
C12 2 South BDM
C13 2 East TDC
C14 2 East BDM
C15 2 West TDC
C16 2 West BDM
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Table 3: Reduced Test Suite for Program P1

Test ID Input A Input B Input C
C1 1 North TDC
C4 1 South BDM
C13 2 East TDC
C16 2 West BDM



Implementation of 

Input-Output Analysis
IO analysis is used to determine the rela-
tionship between a program’s inputs and
outputs. The IO relationships are used to
reduce a combinatorial test suite by
removing tests that are repetitive from the
perspective of the program outputs. The
fault detection capability of the test suite is
maintained because repeating tests will not
expose any additional software faults.

To use IO relationships to reduce the
number of tests, we must ensure that the
IO relationships are correct. If we reduce
the number of combinatorial tests using
IO relationships that are incorrect, we run
the risk of removing tests that could
expose a software fault. This would result
in the reduced test suite having a lower
fault detection capability than the combi-
natorial test suite. Therefore, it is impor-
tant that we validate the IO relationships
before using them to reduce the number of
tests. 

We validate IO relationships in much
the same way that we validate any other
software function. We identify an expected
set of IO relationships from the program
specification, and we compare it to the
actual IO relationships as implemented in
the software. This process is analogous to
comparing a test’s expected result with the
actual result obtained from a program. 

The first step in validating the IO rela-
tionships is to analyze the software’s speci-
fication to identify the expected IO rela-
tionships. If one is using formal specifica-
tions, or rigorous component specifica-
tions, the IO relationships may be explic-
itly stated, or may be easily derived in an
automated fashion. For other specification
techniques, some additional analysis may
be required to develop the expected IO
relationships. 

The overhead associated with identify-
ing the expected IO relationships should
be small, because the relationships are
already being identified at several points in
the software development process. For
instance, software developers must identi-
fy IO relationships in the process of imple-
menting the program. One cannot write
code to produce a program output with-
out knowing which program inputs are
used to create that output. Similarly, soft-
ware testers create expected results for each
of their tests. Again, one cannot determine

the expected result of a test without know-
ing which program inputs are used to cre-
ate an output. The software development
process could be modified to record the
expected IO relationships as they are
encountered. 

The next step in validating the IO
relationships is to identify the actual IO
relationships implemented in the software.
To identify these relationships, static
analysis or execution-oriented analysis can
be used. Both of these techniques can be
automated.

Static analysis is analysis of a program’s
source code. This analysis, accomplished
using a source code specific tool, can pro-
duce information on a variety of the pro-
gram’s characteristics. One static tech-
nique used to determine relationships
between inputs and outputs is referred to
as Input-Output Relation Analysis [8].
This analysis uses a program dependence
graph to determine which program inputs
potentially influence a program output.
Other program dependence analysis tech-
niques used in code optimization, static
slicing, and white-box testing, e.g. [9, 10,
11], may also be used to determine input-
output relationships.

Execution-oriented analysis, as shown
in Figure 3, is another technique that may
be automated to identify actual IO rela-
tionships. This technique is based on pro-
gram execution [12, 13] and does not
require access to the program’s source
code. This technique does require, howev-
er, some type of test execution system, or
test harness, to automated data entry and
output capture. To determine relation-
ships between inputs and outputs, the test

harness executes the program under test
many times altering only one input value.
By observing changes in program outputs,
it is possible to determine which outputs
are affected by this input. This process can
be repeated for all input variables in turn
across a relatively large number of test data
values. There is no guarantee that all IO
relationships in a program will be detected
using execution-oriented analysis.
However, execution-oriented analysis can
be used to identify all IO relationships
exercised by a test suite such as the combi-
natorial test suite. 

An advantage of execution-oriented
analysis over static analysis is that execu-
tion-oriented analysis does not require the
source code for the application. This
makes execution-oriented analysis applica-
ble in many testing situations, including
testing of commercial off-the-shelf com-
ponents. Execution-oriented analysis also
has low startup costs, especially if test
automation is already part of the test
process. Another advantage to execution-
oriented analysis is that the knowledge
base and skill sets required to execute it
closely match those of many software
testers. Using static analysis to determine
IO relationships, on the other hand,
requires knowledge of the implementa-
tion’s programming language and software
internals.

The final step in validating the IO
relationships is to compare the expected
IO relationships identified in the program
specifications to the actual IO relation-
ships implemented in the software. This
step is necessary if we are to maintain the
fault detection capability of the reduced
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Figure 3: Execution-Oriented IO Analysis
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test suite. This is because the actual IO
relationships could differ from the expect-
ed IO relationships. This difference could
be due to different interpretations of the
specification, to a fault in the software, or
to complexities that arise during imple-
mentation that are not accounted for in
the specification.  To maintain the fault
detection capability of the reduced test
suite, these differences must be resolved
before the IO relationships are used to
reduce the combinatorial test suite

Experimental Studies 
We have conducted several experimental
studies using our approach. The goal of
these was to understand the overhead
involved with execution-oriented IO
analysis and to determine the degree of
reduction in testing effort. 

We chose three different software
applications to conduct the studies. The
first application was the Total Return
Report produced by a Windows-base per-
sonal financial software package. In testing
a large system such as this, testing tasks are
broken down by function area and
assigned to testers. The Total Return
Report represents a reasonably sized com-
binatorial testing task that may be assigned
to an individual tester. The next applica-
tion we studied was the Digital Trunk
Configuration (DTC) software. This pro-
gram provides an easy way to rapidly con-
figure digital telephone trunks. The third
application, the Liquidity Spreadsheet,
was studied in conjunction with financial
analysts who use spreadsheet programs
extensively for financial modeling, report-
ing, and forecasting.

The procedure we used to conduct the
experiments included the following steps.
First, test data values for each of the appli-
cation’s input variables were selected using
equivalence-class partitioning and bound-
ary-value analysis. We then generated a
combinatorial test suite from the test data
values selected for each application using a
test generation tool. The combinatorial

test suite was executed automatically in a
test execution system, and the outputs
were captured. Finally, the inputs and out-
puts of each application were analyzed to
determine the IO relationships. The
reduced test suite was generated using
these IO relationships. All studies were
executed on a 250 megahertz Window-
base PC. Table 4 lists the results of the
experimental studies. Sizes are reported as
the number of tests.

Our results show a drastic reduction
in the number of tests required for these
applications. This reduction does not
come at the expense of a reduced testing
quality. The automated techniques used
keep the overhead of IO analysis low, mak-
ing it a valuable combinatorial testing
technique in many situations.

In implementing IO analysis, several
costs must be considered. The develop-
ment effort required to create the tools to
perform IO analysis (test data generator,
test harness, and IO analyzer) in our case,
was minimal; although we do not want to
underestimate the effort required to auto-
mate program execution is some situations
[14, 15]. Creating the test harness had low
overhead, but test harness execution times
could get quite long for some applications.
For programs that use a command line
interface, such as the DTC software, IO
analysis executes very quickly. For pro-
grams with a Graphical User Interface, as
used in the Total Return Report study,
data entry is complex and relatively slow.
The speed of this process could be
improved by using a faster computer, or by
distributing the work across multiple
machines.

This leads us to comment briefly, on
how IO analysis may be used in the testing
process. We assume a software production
process that includes multiple pre-release
versions of the software. Each version may
incorporate fixes and incremental
enhancements. For programs with reason-
able IO analysis execution times, it is fea-
sible to run the analysis with every pre-
release version of the software. Executing

IO analysis on every version of the soft-
ware ensures that any changes in the IO
relationships from one version to the next
would be detected. In this scenario, the
savings to the test team are largely in the
effort to calculate and check the expected
result for each test case. 

IO analysis executes a combinatorial
test suite, but does not require determina-
tion of expected results, or comparison of
expected results to actual program out-
puts.  When IO analysis is used, the deter-
mination and comparison effort is only
required of tests in the reduced test suite.
In the case of the Liquidity Spreadsheet,
the effort to determine and compare
1,058,841 expected results is reduced to
the effort required for only 625 expected
results.  This represents a considerable sav-
ing to the test team considering that re-
validation of expected results may be nec-
essary with each pre-release version of the
software.

For programs where data entry is
complex and relatively slow, or where the
combinatorial test suite is large, it will not
be possible to execute IO analysis on every
pre-release version of the software.  In
these situations, it is possible to execute IO
analysis using a small subset of the combi-
natorial test suite.  This subset can be con-
structed to validate the presence of the
expected IO relationships in the software.
The subset does not, however, ensure that
other, possibly erroneous, IO relationships
exist.  IO analysis using this subset of tests
could be executed on every pre-release ver-
sion of the software.  The reduced test
suite created from this analysis will have a
fault detection capability close to that of
the combinatorial test suite.  To ensure
that the fault detection capability of com-
binatorial testing is maintained, IO analy-
sis using a complete combinatorial test
suite must be executed at some point.
This would likely occur late in the product
cycle when the software is stable and few
additional software changes are expected.

Conclusion

We have presented an approach to combi-
natorial testing that reduces the testing
effort while maintaining the fault detec-
tion capability of the combinatorial test
suite.  This approach can be used with lit-
tle overhead for many applications espe-
cially where test automation is already in

Table 4 : Results of Experimental Studies
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use. The experiment’s results showed a
drastic reduction in the testing effort of
the data-driven programs. The low over-
head associated with IO analysis and its
ability to maintain the fault detection
capability of the test suite makes it a valu-
able alternative to combinatorial testing.

The fault-detection capability of our
approach is sensitive to correct identifica-
tion of IO relationships. Automated IO
analysis methods may not guarantee an
identification of essential relationships in
the presence of certain types of software
faults. Therefore, it is important that soft-
ware engineers validate automatically
identified IO relationships in order to
ensure their correctness. This extra effort
may pay off later in reducing the testing
effort while maintaining the quality of the
reduced test suite. ◆
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“Computers are not meant to usurp

human roles, but to aid an

individual’s work.”

Donald D. Spencer

“Most industrialized nations today

recognize that the computer is the

cornerstone of their national defense

and their national economics in the

future.”

C.W. Spangle

“Every educated person should have

some understanding of the principles

on which computers operate.”

J. N. Snyder

“You know the definition of the 

perfectly designed machine ... 

The perfectly designed machine is one

in which all its working parts wear

out simultaneously. I am that

machine.”

Frederick A. Linderman




