
October 2001 www.stsc.hill.af.mil 15

In 1994, the Defense Information
Systems Agency (DISA) began develop-

ment of the Global Command and
Control System (GCCS). The goal of
GCCS was to link the commander-in-
chief (CINC) sites into a single planning
and logistics network. It utilized an archi-
tecture that was developed in the Navy
Joint Maritime Command Information
System (JMCIS) program for integrating
software modules developed by multiple
contractors. In 1995, GCCS was opera-
tional and DISA had begun work on the
Defense Information Infrastructure (DII).
In 1998, GCCS version 2.0 was the first
Department of Defense (DoD) system to
utilize the DII Common Operating
Environment (COE) as the basis for its
implementation, being deployed on top of
the DII COE Version 3.1.

Since then, the DII COE has been or
is being used as the framework for more
than 100 DoD computing systems (see
Figure 1). The term “COE” has moved
into common parlance for corporate Chief
Information Officers, and foreign govern-
ments are looking to construct common
operating environments for their comput-
ing enterprises. Although the DII COE
has been in existence for more than three
years and has enjoyed remarkable success,
it is not widely understood. This article
offers insight into the DII COE architec-
ture and the rational for its design.

An Enterprise Focus
The DII COE is a framework for the
development of enterprise computing sys-
tems. In order to understand the decisions
made regarding its design, it is important
to first understand what an enterprise
computing system is, and what it means to
be a framework.

An enterprise is a venture – the act of
an organization working toward a com-
mon goal. Enterprise computing is the
establishment and use of a computing sys-
tem that supports this venture by imple-
menting the business processes of an orga-

nization. The DoD is a grand-scale organi-
zation with approximately 11 million mil-
itary and civilian participants. Its purpose
is equally grand: the defense of the United
States of America. This is, of course, too
large an organization and too complex a
venture to be understood as a single enter-
prise. Thus the DoD is partitioned into
many smaller organizations, each execut-
ing their own enterprise. However, these
are collaborative enterprises – the organi-
zations work together to support common
goals. The DoD enterprise computing sys-
tem is a system of systems in which infor-
mation and services are shared across
enterprise boundaries.

A framework is a software package that
supports the creation of architecture by
guiding developers toward a particular set
of design patterns. If the developers con-
form to the framework and utilize its ser-
vices, then the resulting system will reflect
the desired architecture. It is important to
note that a framework is not itself a sys-
tem. The DII COE is a framework for the
construction of modular, scalable, dis-
tributed Command, Control, Computer,
Communications, Intelligence, Surveill-
ance and Reconnaissance (C4ISR) com-
puter systems. It is a collection of tools for
the creation of these systems; it is a set of

software modules that can be (re-)used to
construct these systems. Or, to quote the
DII COE Integration and Runtime Spec-
ification [1]:

“The DII COE emphasizes both
software reuse and data reuse, and
interoperability for both data and
software. But its principles are
more far-reaching and innovative.
The COE concept encompasses:
• An architecture and approach

for building interoperable sys-
tems.

• A minimal but extensible se-
curity architecture and a set of
security services.

• An environment for sharing
data between applications and
systems.

• An infrastructure for support-
ing mission-area applications.

• A rigorous definition of the
runtime execution environ-
ment.

• A reference implementation on
which systems can be built.

• A collection of reusable soft-
ware components and data.

• A rigorous set of requirements
for achieving DII compliance.

The DII COE: An Enterprise Framework
Dr. Gregory Frazier

SAIC

The Defense Information Infrastructure (DII) Common Operating Environment (COE) is a framework for the cre-
ation of a set of cooperating computing enterprises. Its goals include the elimination of “stove-pipe” systems and cost
reduction via software reuse, reduced need for system administration, and simplified system integration. This arti-
cle describes in brief the salient features of the DII COE. It describes some of the challenges related to migrating sys-
tems to a DII-compliant environment, and concludes by arguing that the key to the successful use of the DII COE
is for all participants to be aware of and work toward building and maintaining an extensible, general-purpose
environment.

• AALPS
• ACGS
• AMBISS
• AMDWS
• AMDPCS
• AMPS
• ANGSC-52
• ASAS
• ASD

• ATCS
• ATLAS

• BCTP
• BMC3
• BSM
• CINC CSA
• CNCMS
• CNPS
• CR/HMS
• CSCE
• CSSCS
• CTIS

• C4IJM
• DCARS

• AFWeather
• AMC BDM
• AMS
• AWACS
• A2IPB
• CSEL
• DCAPES

• Defense IEMATS
• FORTE
• GBS
• GCCS-AF AETC
• GCSS-AF IF
• IMDS
• IMOM
• ISC2S
• MAMS
• Rosetta
• SBMCS

• STRATCAT
• TBMCS

• AFDI
• ARTDF
• GALE
• GCCS
• GCCS-I3
• GCSS
• JCACTD

• JCALS
• JDISS
• JDP
• JMCSID
• JMPS
• JSCGS
• JTAT
• Joint Tactical Term
• Joint Targeting Tool
• JWARN
• MEPED

• MIDB
• TNP
• JMNS

• DTSS
• FATDS
• FAAD C21
• FIRESTORM
• GCCS-A
• GCSS-A
• IBDAS
• IMETS
• ISYSCON

• LW
• MCCCC

• MCS
• MFCS
• PEGEM
• RCAS
• SAS
• TAIS
• TCAIMS
• THAADBMC3I
• TPSOPS
• TSIU

• UAV
• WARSIM

• AADC
• CADRT
• COMDAC
• CCS
• CUB
• CV/TSC
• GCCS-M

• IUSS
• JMPS UPCs
• KSQ-1
• LAMPS
• MEDAL
• METOC
• MPA
• MPAS
• MSBL
• NAVSSI
• NFCS

• NSPF
• NSS
• NSSN
• PTW
• REDS
• SFMPL
• SH60 MPS

• SRMT
• SCCS
• TACLOGS
• TAU
• TEAMS
• TERPES
• TCAC
• TDSS
• TTWCS
• VTC

Army Navy Air Force Marine Corps

Figure 1: Military Systems Operational or Being Developed Using the DII COE 1

• An automated tool set for
enforcing COE principles and
measuring DII compliance.

• An automated process for
softtware integration.

• An approach and methodology
for software and data re-use.

• A set of application program
interfaces (APIs) for accessing
COE components.”

Fighting Stovepipe Systems
A key driver for the DII COE is the fact
that the DoD is composed of multiple
cooperating enterprises. While each of
these enterprises is dedicated to accom-
plishing a specific goal, the data products
of one enterprise are consumed by other
enterprises as they work together to
accomplish the overall goal of defense.
However, most computing systems built
for the DoD are [historically] stovepipe
systems; systems that operate in total isola-
tion from the rest of the computing envi-
ronment. This is in contrast to a system of
systems model, where data flows seamlessly
from one business process to another.

Stovepipe systems do not support
abstract goals such as extensibility or inter-
operability that are central to the DoD’s
ability to field cooperating enterprises. A
computing architecture that is intended to
unify the DoD must be capable of adopting
the configuration appropriate for a partic-
ular enterprise’s mission while maintaining
a commonality that will allow that enter-
prise to interoperate with other DoD com-
puting enterprises.

The DII COE is, first and foremost, a
framework intended to prevent the cre-
ation of stovepipe systems and promote
cooperative enterprises.

Other DII COE Goals
While the principal goal of the DII COE
is to eliminate stovepipe systems, there are
a number of important drivers for the
design of the DII COE architecture:
• Increased software reuse. While each

enterprise within the DoD has a
unique mission and a computing sys-
tem to support that mission, there is
inevitably some functionality that the
enterprise will have in common with
others.

• Reduced need for computer system
administrators. The DoD personnel
using computer systems should be
warfighters whose mission is supported
by the computing system, not system
administrators whose mission is to sup-
port the computing system.

• Improved technology insertion. The

enterprises that comprise the DoD are
long-lived enterprises. Their life span
dwarfs the technology cycle, and thus
there must be an avenue for technolo-
gy insertion in DII COE’s computing
architecture.

• Simplified system integration. Given
the distributed development environ-
ment in which multiple contractors
contribute modules to one or more
integrators, and each integrator deliv-
ers the resulting system to multiple
organizations to field, it becomes
important to push as much integration
responsibility as possible to the devel-
opers and the deployers.
The following section will describe the

DII COE and discuss how it achieves these
goals.

The DII COE Framework
The first DII concept dealt with by a sys-
tem integrator, an administrator, a devel-
oper, or even as a user is the segment. A
segment is a unit of software or data that
has been packaged such that it can be
installed on a DII-compliant computer
using the software installation tool of the
DII COE. All software that is to be
installed on a DII computer must first be
put into segment format.

What is typically done for government
off-the-shelf software (GOTS) is that soft-
ware developers segment it before delivery
to a program engineering office. For com-
mercial off-the-shelf (COTS) software, the
program office typically purchases the
product and then hires contractors to seg-
ment it. However, the model envisioned
for the DII COE was for commercial ven-
dors to put their software into segment
format.

Either way, an engineering office
receives software in segment format,
accompanied by a set of documents that
include installation procedures, a users
manual, test plans and test results, version
description, and specification of the seg-
ment’s compliance level. The compliance
level is the degree with which the segment-
ed software is in compliance with the DII
Integration and Runtime Specification
(I&RTS – discussed in the next section).
The engineering office tests the segment,
and then makes that segment part of its
build list. It is now available to be delivered
to the field, either as part of a standard
build or as an optional segment.

Segmentation is controversial for sev-
eral reasons. First, it is an additional cost.
Program offices dislike having to spend the
money to have software segmented on top
of the cost of developing or purchasing

said software. This is particularly resented
with COTS software, which generally
arrives in an installation package. Second,
there are not extensive tutorials on seg-
mentation, and the software used to sup-
port segmentation can be a bit cranky. The
learning curve can be very steep for new-
comers to segmentation. There are, howev-
er, a number of reasons to utilize a single
software-packaging standard for the DII:
• Segments facilitate configuration man-

agement. All software in segment for-
mat shares a standard versioning sys-
tem, a standard naming system, and
has a standard set of documents associ-
ated with it. With a single program
(the COEInstaller) you can see which
segments are installed on a given
machine, what resources a segment
requires, and what other segments a
given segment depends upon.

• The same installation software is used
to install every segment on every com-
puter. System administrators are not
forced to deal with the vagaries of how
different developers decide to have
their software installed.

• Segments facilitate software reuse.
Segmentation forces the developer to
prepare the software for integration.
Once in segment format, a software
package can easily be transferred
between program offices and used in a
variety of contexts.
When developing a segment, the most

important fact to keep in mind is that a
segment should be of general utility. It is
possible to segment software in such a way
that it is useful only for a very specific pur-
pose. This defeats the reuse goal of seg-
mentation and ensures that the same soft-
ware will have to be re-segmented. A bet-
ter approach is to segment software in as
general a manner as possible, and then
provide a separate configuration segment
that modifies the installation for a specific
need. This is the approach taken for infras-
tructure services in the COE such as the
iPlanet Enterprise Server and the Oracle
Database Management System (DBMS).

The Common Operating
Environment
The common operating environment is
just that; an operating environment that is
common across computing systems and
problem domains. There is a common
misconception that all DII segments are
part of the COE, or that by segmenting an
application one is making it part of the
COE. This is not the case. Segmenting
software makes it available to the DII, but
not all software is common. The I&RTS
refers to segments that are not part of the

Open and Common Software Systems

16 CROSSTALK The Journal of Defense Software Engineering October 2001

October 2001 www.stsc.hill.af.mil 17

COE as mission applications.
Mission applications are software

packages that are intended to provide
functionality that corresponds to a specific
problem. While it is important for mission
applications to comply with the I&RTS
and conform to the conventions of the DII
COE, these applications will not be wide-
ly used and thus not part of the COE.

The software that comprises the DII
COE is placed into three categories: the
kernel, the common support applications,
and the infrastructure services. The kernel
is that portion of the DII COE that is
installed upon every computer. It is the
bootstrap portion of the COE, containing
such functionality as the segment installer,
the file permission and disk partition con-
figurations, etc. The common support
applications are desktop applications that
are deemed to be of general use: a word
processor, an email client, a Web client,
and others. The infrastructure services are
services that are deemed to be of general
use: various DBMS products, a Web serv-
er, a directory server, and others.

Every computer that is to be a DII
computer must have the kernel installed
upon it. The rest of the COE – the seg-
ments that comprise the common support
applications and the infrastructure services
– is available for installation, but is not
required to be present on every machine.
What is required is that they be available to
any system. In other words, a segment
developer or system designer can make the
assumption that the segments that are in
the COE are available for use and can
incorporate those segments into his/her
design without knowing anything else
about the deployment environment.

The Integration and
Runtime Specification
The COE and segmentation are specified
in the I&RTS; it describes how a comput-
er is configured such that it is DII compli-
ant, and how to build software segments
that are DII compliant. It describes the
various types of segments, including soft-
ware segments, COTS segments, data seg-
ments, database segments, Web segments
and others. In its own words:

“This document is an engineering
specification that describes how
modules must interact in the tar-
get system. System architects and
software developers retain free-
dom in building the system, but
runtime environmental conflicts
and data conflicts are identified
and resolved through automated

tools that enforce COE principles
[1].”

It is required reading for anybody who
aspires to build, test, or integrate segments,
or anybody who wishes simply to under-
stand the DII COE. It is available at
<http://dod-ead.mont.disa.mil/cm/geneal.
html>.

Compliance Levels
The commonality of the COE rests on the
fact that mission applications use the COE
to provide common functionality. If seg-
ments provide their own implementations
of the COE functionality, then the benefits
described above are not observed: no cost
savings through reuse, no cost savings due
to reduced system maintenance, no facili-
tation of technology insertion, and no
interoperability enabled via shared infras-
tructure services. Instead, we would see a
retreat to stovepipe systems delivered as
segments.

The purpose of compliance levels is to
provide a metric of how well a segment
makes use of the COE. This provides a
quantitative measure both of how well a
segment is integrated with the COE and
the progress that a segment makes over
successive deliveries. The I&RTS specifies
eight levels of compliance. At lower levels,
we are dealing with the basic structure of
segmented software:

Level 3
Platform Compliance: The application is
well behaved in the platform context. It
runs on a version of the standard operating
system that is supported by the DII. It
does not utilize hard-coded port assign-
ments. It does not bypass the standard
GUI APIs for the platform. It can safely
execute alongside DII-compliant applica-
tions, etc.

Level 4
Bootstrap Compliance: The application is
packaged in segment format (i.e. it can be
installed and deinstalled using the
COEInstaller).

Level 5
Minimal DII Compliance: The segment
conforms to the I&RTS to the extent that
it does not represent a security risk and
does not negatively impact system config-
uration when installed.

In levels 6-8, the compliance levels
measure how well the segment makes use
of the COE. Appendix B of the I&RTS
provides questionnaires that allow devel-
opers to evaluate the compliance level of

their segments.

DII Adoption Challenges
In this section, barriers to DII adoption are
discussed. These barriers are organized in
three categories: cost, platform availability
and knowledge.

Cost
One of the major obstacles to adoption of
the DII is the expense of migrating a given
system to use of the DII COE and/or
achieving a given compliance level. There
are two types of systems that experience
significant cost penalties when pursuing
DII integration: legacy and leading edge.

Legacy systems experience high costs
due to the need to reengineer portions of
the system to achieve a given level of DII
compliance. This cost can be prohibitive,
particularly if it means replacing a con-
stituent product (e.g., replacing the
database). When dealing with legacy sys-
tems, it is important to understand when
to enforce the DII compliance directives
and when to relax them. These directives
do not make sense for many legacy sys-
tems, particularly those that are at the
middle or toward the end of their life
cycles and will never observe the mainte-
nance cost reductions potentially available
from the COE.

Leading-edge systems experience high
integration costs due to the lack of support
provided by the COE. The DII realizes
cost savings via the reuse that segmenta-
tion promotes. A system that is utilizing a
leading-edge technology may be ahead of
the COE and will bear the brunt of the
design and segmentation costs without
receiving the benefits of reuse. For a small
program that anticipated obtaining the
majority of its functionality from a COTS
product, the relative cost of segmenting
that product can be prohibitive.

Worse, a leading-edge system that
makes use of a not-yet-adopted technology
runs the risk that the DII COE will at
some point incorporate the technology but
in a way that is incompatible with how the
system used it. This risk can be alleviated
by active participation in the DII COE
Technical Working Group (TWG) pro-
cess2 – but the program must then dedicate
manpower to track or participate in the
TWG and [possibly] experience schedule
delays awaiting clear direction from the
TWG and/or Architecture Oversight
Group (AOG). Also, program manage-
ment offices that are new to DII may be
unaware of the TWGs’ existence or not
know how to contact their service or agen-
cy AOG representative3. Leading-edge pro-

The DII COE: An Enterprise Framework

grams should be blazing the trail, showing
DISA how (or how not) to integrate new
technologies. Their participation in the DII
COE TWGs must be encouraged and sup-
ported, in order to reduce costs both for
those programs and for the DII COE.

Platform Availability
The DII COE (Version 4.x) currently sup-
ports three platforms: Microsoft Windows,
Sun Solaris running on Sun workstations,
and Hewlett-Packard HP-UX. All other
platforms are unavailable if one is required
to be DII compliant. There is a Kernel
Platform Compliance (KPC) Program4, but
only two computing systems have success-
fully gone through the KPC, and both did
so on version 3.3 P1 of the DII COE ker-
nel5. Since the version 4.0 kernel had an
almost entirely different kernel code base-
line from the 3.x version, neither platform
has been recertified for the current version
of the kernel.

Even among the three core COE plat-
forms, the kernel is not the same. The
paucity of platforms supporting the DII
COE and the variance among the DII
COE platforms are the result of the kernel
being specified by its source code. To quote
the Defense Information Infrastructure
(DII) Common Operating Environment
(COE) Kernel Platform Compliance
(KPC) Program Document for DII COE
Kernel Version 4.200 [2], the KPC
Program certifies that a platform “executes
the Government Supplied Kernel Source
code with the same behavior as the current
‘Reference Platforms’.” In other words, a
KPC-certified computer is one that runs
the kernel source code that it receives from
the DII COE Engineering Office. This has
three ramifications.

First, for platforms that cannot share
the code base (e.g. Windows NT and
Unix/Motif), the kernels differ in unspeci-
fied ways. Second, for platforms that desire
to support DII, their only recourse is to
port each version of the kernel to their plat-
form, which is logistically untenable. Third,
there is no mechanism for non-traditional
platforms (non-uniform multi-computers,
for example) to achieve DII certification via
the KPC Program. While the KPC
Program does include a test suite to evalu-
ate the kernel port, this test suite does not
comprise a specification of the kernel. It is
the reference implementation source code
that acts as the specification6, so any plat-
form that cannot compile that source code
cannot be in the DII.

Getting the Word Out
The final and most significant impediment
to DII COE adoption is the general lack of

knowledge regarding what the DII is, what
the COE is, and how a program can lever-
age the DII to facilitate the development of
their system. The cost and platform support
issues discussed in the previous sections can
be addressed by the thoughtful requesting
and granting of waivers to allow systems to
conform to the intent of the I&RTS with-
out being hamstrung by its rules. To do
this, however, requires that both the pro-
gram management office and the contrac-
tors executing the contract have a thorough
understanding of the DII.

While there is a great deal of data avail-
able regarding DII and the DII COE, it can
be challenging for newcomers to discover
the information that they need. The princi-
pal source of information is the I&RTS.
This is required reading for anybody who
intends to develop an application for use in
DII, integrate a DII system, manage a DII-
related project, or deploy a DII system.
However, the I&RTS is not a how-to man-
ual or a tutorial – it is a specification of the
DII runtime. The DISA and DII COE
Web sites also provide a great deal of infor-
mation. It is incumbent upon the DII par-
ticipant to find the information that they
require from these sources.

Conclusion
The ongoing success of the DII and its
COE depends upon a number of factors.
First, the DII must maintain its relevance.
This means continuing to support technol-
ogy insertion efforts. It also means that the
organizations that are deploying DII-com-
pliant computing systems must understand
not only the letter of the I&RTS, but also
its intent. They must execute their system
development such that the result fits with
the spirit of the DII. This can be captured
in words such as extensible, open, and
reusable. Wherever possible, avoid one-of-
kind solutions.

If a program requires a common service
established with a particular configuration,
deliver two segments: one that contains the
common service, and a separate segment
that configures that service. Do not view
the I&RTS segment compliance criteria as
roadblocks, but rather as guidelines. And
never think in terms of a final delivery.u

References
1. Defense Information Infrastructure

(DII) Common Operating Environ-
ment (COE) Integration and Runtime
Specification (I&RTS), Version 4.1, 3
Oct. 2000,<http://dod-ead.mont.disa.
mil/cm/general.html>.

2. Defense Information Infrastructure
(DII) Common Operating Environ-
ment (COE) Kernel Platform Comp-

liance (KPC) Program Document for
DII COE Kernel Version 4.2, p. 4, 31
May 2001, Version 1.1 (draft),<http://
diicoe.disa.mil/coe/kpc/kpc_pro -
gram_doc.doc>.

Notes
1. Information provided by the DII COE

Engineering Office.
2. See <http://diicoe.disa.mil/coe/aog_

twg /aog_twg_page.html> for a listing
of TWGs and their home pages.

3. See <http://diicoe.disa.mil/coe/aog_
twg/aog/members.htm> for a listing of
AOG members.

4. See <http://diicoe.disa.mil/coe/kpc/
KernelPlatformProgram.htm>.

5. The Compaq certificate is at
<http://diicoe.disa.mil/coe/kpc/Compa
q/19990831certNoSig.png> and the
SGI certificate is at <http://diicoe.disa.
mil/coe/kpc/sgi_cert.jpg>.

6. There is the dilemma that if any of the
kernel source code was modified in
order to get it to compile on the plat-
form, then the specification has been
modified and the platform is no longer
running the government supplied
source code.

About the Author
Gregory Frazier, Ph.D.,
has worked at Science
Applications Internatio-
nal Corporation (SAIC)
since December of
1984. He was the inte-
grator for Internet

applications (the Web, newsgroups,
Internet relay chat) for the Global
Command and Control System and
spent a year as the chief engineer as the
DII Integration Contract for SAIC. For
the last several years he has focused on
research of enterprise computing for
SAIC and is currently the software archi-
tect for the Joint Network Management
System. He received a bachelor’s degree
in computer science and engineering
from Massachusetts Institute of
Technology and a doctorate in computer
science from the University of California
at Los Angeles.

8301 Greensboro
Mail Stop E-2-5
McLean, VA 22102
Phone: (703) 676-6459
Fax: (703) 676-7123
E-mail: gregory.frazier@saic.com

Open and Common Software Systems

18 CROSSTALK The Journal of Defense Software Engineering October 2001

