
February 2000 CROSSTALK The Journal of Defense Software Engineering 15

Software risk management, if practiced properly, is a set of
continuous activities for identifying, analyzing, planning, track-
ing and controlling risks, which is conducted in the context of
daily project management. A project planner’s first reaction may
be to avoid risks all together, but relying strictly on avoidance as
a risk mitigation technique is usually inadequate.

Project success primarily depends on the ability to manage
the delicate balance of opportunities and risks. Unfortunately,
when all risk goes away, so does opportunity. Since risks ulti-
mately manifest themselves incrementally as unexpected cost
elements, risk management can also be viewed as a way to
dynamically handle the cost/benefit analysis of a project. While
techniques for risk identification are usually handled separately
from software cost estimation, cost aspects of risks can be used
as a communication vehicle during risk prioritization. It has also
been determined that parametric cost estimation models are
well-suited for risk evaluation [1].

The term parametric refers to the fact that the cost is deter-
mined via the use of algorithms operating on the parameters of
mathematical equations. This structure makes parametric mod-
els the prime candidates for carrying out rapid, what-if sensitivi-
ty analysis of the cost drivers. Due to their inherent characteris-
tics, nonparametric or nonalgorithmic models, such as expert
judgment or estimation by analogy, are not well fitted for sensi-
tivity analysis. This leads to our main proposal, i.e., making the
connection between an established risk assessment tool (SRE)
and an industry-wide accepted parametric software cost model
and estimation tool (COCOMO II).

Risk Management
Based on Barry Boehm’s work [2], the risk management

steps are outlined in Figure 1.

This paper focuses on the connection between software risk
identification and cost-model based risk analysis, using risk
exposure as a prioritization tool. (The taxonomy based ques-
tionnaire, which will be discussed in detail later, is basically a
checklist.). Please note that this approach permits the determi-
nation of cost ramifications of risks only in the software devel-
opment domain. Other very quantifiable business risks, such as
loss of market opportunity, and loss of sales, can be determined
from software development data, but cannot be automatically
computed. Similarly, tools can provide quantification of risks,
but the overall prioritization and resolution has to be done in
the full context of project management.

Risk Taxonomies
Generally defined, software risk taxonomy1 provides a basis

for systematically organizing and analyzing risks in a software
project. Risk Taxonomies, is intentionally plural, because in addi-
tion to describing the importance of a specialized risk taxono-
my, we also want to note a level of what we consider undesired
proliferation of software risk taxonomies.

Overview of Risk Taxonomy Related Articles
Without assuming completeness, a brief description of cur-

rent articles follows, where overt or covert development2 of risk
taxonomies plays a role:
• The SEI report lays the foundation of the development of

the SEI taxonomy, and discusses the basic concepts of risk
taxonomies [3].

• In P.R. Garvey’s presentation, the risk elements are described
in risk templates, and the taxonomy is implemented via web-
based links [4].

• T. Moynihan chose to elicit constructs from experienced
managers to determine how they assess risk, after deciding that
the taxonomies published in the literature were inadequate [5].

• H. Barki et al. conducted a wide review of the literature and
determined 35 variables that were used as taxonomy for risk
assessment [6].

• R.J. Madachy developed an extensive rule-based system
(identifying 600 risk conditions), where rules were structured
around COCOMO cost factors, reflecting an intensive analysis
of the potential internal relationships between cost drivers [7].

• K. Känsälä built his tool around 15 risk items he identified
as critical, after filtering the data received from 14 selected
companies [8].

• E.H. Conrow and P.S. Shishido documented experiences on
large projects at TRW, and defined taxonomy consisting of 17
software risk issues [9].

• At Xerox, the SEI-developed taxonomy and the SRE method
[10] was evaluated and used in five major projects. While the
taxonomy does not provide a complete coverage for all

A Practical Approach to Quantifying Risk Evaluation Results
There is a vast literature documenting approaches and tools that address risk assessment and mitigation. In this
paper, “hard” and “soft” classifications are introduced, that are based on either the mathematical rigor describ-
ing the development of the model or the mathematical rigor expected from the user during the use of the tool.
The goal is to present a simple, practical approach to risk analysis, combining the identified benefits, without
suffering from the known liabilities. The solution presented here is a combination of the Software Engineering
Institute/Software Risk Evaluation (SEI/SRE) method, and Constructive Cost Model (COCOMO).

RISK ASSESSMENT
 RRiisskk IIddeenntt iiff iiccaatt iioonn
 Checklists
 Decomposition
 Decision Driver Analysis
 Assumption Analysis
 RRiisskk AAnnaallyyssiiss
 Performance Models
 Cost Models
 Network Analysis
 Decision Analysis
 Quality Factor Analysis
 RRiisskk PPrriioorriitt iizzaatt iioonn
 Risk Exposure
 Risk Leverage
 Compound Risk Reduction

RISK CONTROL
 RRiisskk MMaannaaggeemmeenntt PPllaannnniinngg
 Buying Information
 Risk Avoidance
 Risk Transfer
 Risk Reduction
 Risk Element Planning
 Risk Plan Integration
 RRiisskk RReessoolluutt iioonn
 Prototypes, Simulations
 Benchmarks
 Staffing
 Analysis
 RRiisskk MMoonniittoorriinngg
 Milestone Tracking
 Top-10 Tracking
 Risk Reassessment
 Corrective Action

Figure 1. Risk Management Steps

Risk Class and Element from Issues and Concerns Risk Magnitude Rating
Taxonomy Based Questionnaire Recorded during the SRE sessions A B C Team
Program Constraints/Resources Currrent Plan is schedule driven 6 9 9 8.0
Program Constraints/Resources Bottom-up plans do not support the schedule 6 9 9 8.0
Development Environment/Management Process Management is not ready to reconcile the differences 9 6 9 8.0

between the engineering plan and the business plan
Program Constraints/Resources Top-level plan is unrealistic, and it is not based on 6 6 9 7.0

past track-record and experience
Development Environment/Management Process Inability in estimating effort due to the lack of 4 6 9 6.3

experience with the new technology

Program Constraints/Resources Lack of confidence in the current plans 4 6 6 4.6

16 CROSSTALK The Journal of Defense Software Engineering February 2000

situations, combining it with a customized SEI Taxonomy-
based Questionnaire (TBQ) makes it the preferred tool for
assessing risks in the majority of software projects [11].

We found that all authors decided that the introduction of
new risk categories, or the creation of a whole new taxonomy,
was needed. In our opinion, this is not always justified. During
the pilot of the SRE method at Xerox, the SEI taxonomy was
criticized in two areas. In large software projects, respondents
complained that TBQ terms and language did not always map
to local terminology (for example, the classification of contrac-
tor relationships). Second, respondents from firmware develop-
ment projects stated that in their work the distinction between
hardware and software was somewhat blurred, and consequently
their risk issues were not always adequately covered.

Conclusion Drawn from the Literature Review
It seems that the application of any risk taxonomy always

requires a certain level of customization before use, and the quest
for the perfect taxonomy, consequently the perfect risk manage-
ment tool, is fruitless. Also, in the case of actual, computer-based
tools, eventually the taxonomy ends up hard-coded into the tool.
Instead of further specialization, the approach should be exactly
the opposite; we should step back and find a framework that is
applicable for a large class of projects, with the understanding
that a certain level of customization will take place. As stated
earlier, the SEI taxonomy satisfied this requirement.

Cost Estimation with COCOMO II
Xerox is interested in the application of COCOMO for

software cost estimation, and participates in the University of
Southern California/Center for Software Engineering
(USC/CSE) Industrial Affiliates Program. At this time 27
industrial affiliates provided data or input to enhance and fine-
tune the COCOMO II model (as seen in Figure 4).

Here we provide a conceptual introduction to COCOMO.
For up-to-date details, see the appropriate materials on the web
site, http://sunset.usc.edu, or in hard copy format [12] for an
introduction. (Please note that since publication of that article,
the model was renamed to COCOMO II from COCOMO 2.0.)

The COCOMO II model uses 161 data points from
affiliates’ databases, and is the enhanced version of the earlier
COCOMO 81, which was developed using only 64 data points
from TRW. Besides refining the model, the university also pro-
vides MS/Windows, Sun, and Java versions of the tool, based

SEI Software Risk Evaluation Method
The scope of the SRE method is identification, analysis,

and preliminary action planning for mitigation. The software
risk taxonomy (See Appendix) provides a consistent framework
for risk management. It is organized on the basis of three
major software risk classes: product engineering, development
environment, and program constraints.

Risk elements of these classes are identified at the next
level, which are further decomposed into risk attributes. SEI
also developed a taxonomy-based questionnaire to carry out
structured interviews by an independent assessment team. A
sample, customized segment of the TBQ is shown in Figure 2.
(The numbering of the questions refers to the original num-
bering in the full, complete SEI documentation).

Risks are identified and recorded in interviews. After inter-
views, based on perceived severity and probability of occur-
rence, the assessment team determines risk magnitude ratings.
(Figure 3.)

Note that the relevance of the shaded rows is explained
later, when this risk report sample is used to demonstrate the
new process. First the assessment team will filter, consolidate
and interpret the results. Every risk item is rated separately by
the assessment team members (A, B and C in the example),
using the risk magnitude matrix (Figure 6.) Severity and proba-
bility are separately rated on a scale from one to three, and risk
magnitude is computed as severity times probability. This
results in a one to nine numerical rating, where one represents
improbable and marginal risks, and nine represents risks consid-
ered very likely and catastrophic.

Figure 3. Sample Record of Risk Issues during an SRE

RRiisskk MMaannaaggeemmeenntt

Figure 2. Taxonomy Based Questionnaire Sample

Development Environment/Development Process Feedback from implementers to architects takes 4 9 6 6.3
too long, and there is no closure on certain issues

Development Environment/Development System Capacity limitaions of the development system (network 6 6 6 6.0
bandwidth and the speed of compilation) impact schedule

Development Environment/Development System Lack of availibility of adequate number of software licenses 3 4 4 3.6

CCllaassss:: A. Product Engineering
EElleemmeenntt:: 2. Design & Implementation
AAttttrr iibbuuttee:: d. Performance
__

SSttaarrtteerr qquueessttiioonn:: [22] Are there any problems with performance?

CCuueess:: Throughput
 Scheduling asynchronous events
 Real-time responses
 Impact of hardware/software partitioning

SSttaarrtteerr qquueessttiioonn:: [23] Has a performance analysis/simulation been done?

FFoollllooww--uupp qquueessttiioonnss:: (YES) (23.a) What is your level of confidence in the results?
 (YES) (23.b) Do you have a model to track performance?

February 2000 CROSSTALK The Journal of Defense Software Engineering 17

on the current version of the model. Due to the model’s popu-
larity, a number of industrial tool vendors incorporated the
COCOMO II model into their software cost estimation tool
offerings.

Size is the main driver of cost, so the first step of cost esti-
mation is to provide proper size estimation for the project.
COCOMO II accepts source line of code (SLOC) and function
point input. During the estimation process, the estimator deter-
mines the value of scaling constants and cost drivers, using the
supplied rating tables, and enters the value in the appropriate
screen of the tool. An example based on the COCOMO Model
Definition Manual for the cost driver rating guideline is shown
in Figure 5.

SCED (required development schedule) belongs to the group
of cost drivers that characterize the project to be estimated, and it
measures the schedule constraint imposed on the project team.
The ratings are defined in terms of percentage of schedule stretch
or compression with respect to a nominal schedule for a project
requiring a given amount of effort. Compressed or accelerated
schedules tend to produce more effort in later phases of develop-
ment because more issues are left to be determined and resolved.

“Hard” and “Soft” Approaches
As indicated previously, we classify the different risk analy-

sis approaches based on the mathematical rigor required. The
first example of a hard approach is offered by Madachy, where
he creates the risk taxonomy outright, around the COCOMO
cost drivers. This impressive system uses knowledge-engineering
methods to refine the risk quantification scheme [7].

In the second example, Känsälä uses Madachy’s basic
approach, but instead of working around a particular cost esti-
mation tool, he derives his own risk database using risk ques-
tionnaires and historical project data. Experimental integration
of this risk front-end, RiskMethod, was carried out with three
different cost estimation tools [8].

The underlying principle in both cases is the use of regres-
sion analysis to determine the model’s internal coefficients. The
approaches require extensive calibration to achieve acceptable
results. Finally, the authors’ initial objective was not only to
assess and prioritize, but also to quantify software risks.

Känsälä also provides the first example of a soft approach.
In this TRW approach, the author defines a list of specialized
risk issues that could be viewed as a one-level risk taxonomy.
This taxonomy is used by internal risk review boards to assess
risks via intensive monthly sessions with key representatives of
functional and support areas. No particular efforts are made to
quantify the impact of identified risks.

Conrad and Shishido give a second example, in which a
more complex taxonomy is used by a combined external-inter-
nal assessment team in a single assessment. For several days the
team formally interviews a cross-section of the development
organization for several days. The interviewees are not necessari-
ly key representatives, and they represent a vertical sample of
people in the development organization. Nonattribution is a key
guiding principle during the sessions, and the names of those
raising concerns are kept confidential [9].

Calibration
Feedback

Commercial Industry (10): C-Bridge, EDS, Hughes, Lucent,
Microsoft, Motorola, Rational, Sun, Telcordia, Xerox

Aerospace (9): Boeing, GDE Sy stems, Litton, Lockheed Martin
Northrop Grumman, Ray theon/East, Ray theon/West, SAIC, TRW
Gov ernment (4): FAA, USAF Rome Lab, US Army TACOM,

FFRDC’s and Consortia (4): IDA, MCC, SEI, SPC

Effort, Schedule

Size

COCOMO IICost and Scale Drivers

US Army Research Labs,

Figure 5. COCOMO Rating Guidelines for SSCCEEDD

Actual
Rating

Entry
for the tool's
screen

Very
Low

Low Nominal High Very
High

Rating
Guidelines

Relationship
to
nominal

75% 85% 100% 130% 160%

Figure 4. COCOMO II Software Cost Estimation Model

A Practical Approach to Quantifying Risk Evaluation Results

PROBABILITY
SEVERITY

Improbable Probable Very Likely

Catastrophic 3 6 9

Critical 2 4 6

Marginal 1 2 3

Figure 6. Risk Magnitude Matrix

CCooccoommoo IIII CCoosstt aanndd SSccaalliinngg DDrriivveerrss

Cost Drivers
ACAP Analyst Capability

AEXP Applications Experience

CPLX Product Complexity

DATA Database Size

DOCU Documentation to match lifecycle needs

LTEX Language and Tool Experience

PCAP Programmer Capability

PCON Personnel continuity

PEXP Platform Experience

PVOL Platform Volatility

RELY Required Software Reliability

RUSE Required Reusability

SCED Required Development Schedule

SITE Multi-site operation

STOR Main Storage Constraint

TIME Execution T ime Constraint

TOOL Use of Software Tools

Scaling Drivers
PREC Precedentedness

FLEX Development Flexibility

RESL Architecture/Risk Resolution

TEAM Team Cohesion

PMAT Process Maturity

18 CROSSTALK The Journal of Defense Software Engineering February 2000

RRiisskk MMaannaaggeemmeenntt

The common theme in both cases is the use of interviews
and guided discussions, with no provisions for risk quantification.

Xerox used the SEI approach, and the following two, main
advantages were identified:
• The taxonomy was broad, but also proved to be detailed

enough to carry out efficient interviews.
• The nonattributional approach was useful in uncovering well-

known risks obvious to the developer community, but due to
lack of trust or broken communication, unacknowledged by
management.

It had become obvious that the ability to quantify is helpful
in prioritizing and presenting the risks to the decision authority.

These experiences led us to recognize that it would be useful
to combine the best of both worlds: keep the SEI method as a
risk front-end and use COCOMO for quantification. The bene-
fit is that we maintain flexibility and easy customization at the
front-end, while using an already calibrated COCOMO model
to quantify the results. We did not perceive the benefit of an
expert-system approach, because it introduced a complicated and,
in our opinion, unnecessary calibration and learning process.

Using COCOMO II To Quantify Software Risk

Evaluation Results
On a conceptual level, the task can be phrased as a m:n

mapping from the risk taxonomy into the COCOMO scale and
cost-driver taxonomy. This complexity resulted in indentifying
nearly 600 risk conditions in Madachy’s tool. While the precise
mapping and the identification of all possible combinations are
necessary to create a knowledge-management tool, we found
that the goal is never fully accomplished, and customization has
to take place before use anyway. The steps of the recommended
soft approach are:
1. Carry out an SRE. Do this by using the detailed guidelines

of Sisti et. al. [10] To prepare for sessions, the assessment
team has to customize the TBQ before and, to some extent,
during the interviews to concentrate on the appropriate TBQ
subset. An example for customization is shown in Figure 2.
Impact of hardware/software partitioning was added to the
standard TBQ questionnaire to accommodate special Xerox
requirements.

2. Map risks into COCOMO. Mark
the relevant COCOMO drivers on
the worksheets. Figure 7 shows the

relevant fragment of the sample risk record, mapped to the
SCED cost driver. All the shaded rows on Figure 3 are
removed, since they do not map into SCED.

3. Determine baseline estimates. Execute COCOMO
estimation with baselined scale and cost factors. For
example, COCOMO II would give 16.8 person/month
effort estimation for a 5000 SLOC program, where for sake
of simplicity nominal values were used for all cost and scale
drivers. Please note that this baseline reflects typical, but
hypothetical, project conditions fitting the average profile
of COCOMO industrial affiliates. For more accurate
estimations, the model has to be calibrated with local
organizational data, and the drivers have to be set according
to the organization’s own, original planning conditions.

4. Determine risk-adjusted estimates and compare results.
The main objective is to execute COCOMO estimation
with risk-adjusted scale and cost factors and determine the
difference between baselined and risk-adjusted estimates. In
the simple case we present, this means determing the model’s
sensitivity to SCED cost-driver changes. Figure 8 shows
mapping of the risk magnitude into the cost-driver rating.

Note that the mapping is not automatic, and done for all drivers
separately, based on their specifics. In case of SCED, for example,
the issue from risk identification point of view is forced schedule
compression, so there is no point in analyzing effects of a high or
very high rating representing a relaxed, instead of compressed,
schedule. Applying the risk adjusted value of very low for the
SCED cost-driver, COCOMO II at this time would give 21.6
person/month effort estimation for the same 5000 SLOC pro-
gram. Again, note that all other cost and scale drivers are set to
nominal. The demonstrated what-if scenario shows, that in case
of a 5000 SLOC program, the impact of a roughly 75-85 percent
schedule compression would be a 28 percent increase in effort.

Summary
Risk management is one of the most critical and most diffi-

cult aspects of software project management. It is evident, that
SEI/SRE as a risk identification method yielded better, more
detailed, and more relevant risk items than any input processes

Figure 7. Worksheet to facilitate mapping

Risk Magnitude from SRE 1 2 3 4 5 6 7 8 9

SCED Rating for COCOMO NOMINAL LOW VERY LOW

Figure 8. Mapping Risk Magnitude into Cost Driver Rating

9

Risk Class and Element from Issues and Concerns COCOMO Team Risk
Taxonomy Based Questionnaire Recorded during the SRE sessions Driver Mapping Magnitude Rating
1 Program Constraints/Resources Current plan is schedule driven SCED 8.0
2 Program Constraints/Resources Bottom-up plans do not support the schedule SCED 8.0
3 Development Environment/ Management is not ready to reconcile the differences SCED 8.0

Management Process between the engineering plan and the business plan
4 Program Constraints/Resources Top-level plan is unrealistic, and it is not based on SCED 7.0

past track record and experience
5 Development Environment/ Inability in estimating effort due to the lack of experience SCED 6.3

Management Process with the new technology
6 Program Constraints/Resources Lack of confidence in the current plans SCED 4.6

Subtotal for SCED 41.9
Average for SCED 6.5

February 2000 CROSSTALK The Journal of Defense Software Engineering 19

A Practical Approach to Quantifying Risk Evaluation Results

customarily used with hard risk assessment tools. This is a pre-
ferred lightweight approach, because it uses established, familiar,
and well-tested tools. Customization and calibration are always
needed, even when comprehensive and sophisticated knowl-
edge-engineering-based tools are used. Therefore, we conclude
that applying customization effort to existing tools in a light-
weight setup is a more efficient approach than purchasing and
implementing new, complex tools.!

References
1. Voldese, I. S. Risk Analysis Using Parametric Cost Models,

Proceedings of the ISPA/SCEA First Joint International
Conference, Toronto, Ontario, Canada, June 16-19, 1998,
pg. 1382-1409.

2. Boehm, Barry W. Software Risk Management.
IEEE Computer Press, 1989.

3. Taxonomy-Based Risk Identification. Technical Report
CMU/SEI-93-TR-16.

4. Garvey, P.R. A Risk Management Information System
Concept for Systems Engineering Applications. Leesburg,
Va.. 28th Annual Department of Defense Cost Analysis
Symposium, September 1994.

5. Moynihan, T. Inventory of Personal Constructs for Risk Resear-
chers. Journal of Information Technology, Vol. 6, No. 4, 1996.

6. Barki, H., Rivard, S., and Talbot, J. Toward an Assessment of
Software Development Risk.
Journal of Management
Information Systems, Vol. 10,
No. 2, 1993.

7. Madachy, R.J. Heuristic Risk
Assessment Using Cost Factors.
IEEE Software, May/June 1997.

8. Känsälä, K. Integrating Risk
Assessment with Cost
Estimation. IEEE Software,
May/June 1997.

9. Conrow, E.H., and Shisido.
P.S. Implementing Risk
Management on Software

Intensive Projects. IEEE
Software, May/June 1997.

10. Sisti, F.J., Joseph, S. Software
Risk Evaluation Method,
Version 1.0. Technical Report
CMU/SEI-94-TR-19.

11. Hantos, Peter. Experiences with
the SEI Risk Evaluation
Method. Portland, Oregon.
Pacific Northwest Software
Quality Conference, 1996.

12. Boehm, Barry W., Clark, B.,
Horowitz, E., Westland, C.,
Madachy, R., and Selby, R.
COCOMO 2.0 Software Cost
Estimation Model. American
Programmer, July 1996.

Notes
1. “Covert” taxonomy means that the risk sources and their struc-

ture are not visible, and they are embedded in the tool. In case
of “overt” taxonomy there is an explicit reference to the descrip-
tion of the risk hierarchy.

2. From Webster’s Dictionary: tax-on-o-my (tak-’sän—me)
n. 1: the study of general principles in scientific classification.

About the Author
Peter Hantos is department manager at Xerox,
in charge of Software Quality Assurance, SPI,
Product Quality Assurance, and Reliability.
Previously, he was principal scientist of the
Xerox Corporate Software Engineering Center,
where he developed the corporate software
development standard and the software tech-

nology readiness processes. He holds a master’s and a doctorate
degree in electrical engineering from the Technical University of
Budapest, Hungary. Dr. Hantos is a senior member of the Institute
of the Electrical and Electronics Engineers, and a member of ACM.

Xerox Corporation
701 South Aviation Blvd., MS: ESAE-375
El Segundo, Calif. 90245
Phone: 310-333-9038
Fax: 310-333-8409
E-mail: peter.hantos@usa.xerox.com

SEI Software Risk Taxonomy

A. PRODUCT ENGINEERING B. DEVELOPMENT ENV. C. PROGRAM CONSTRAINTS

1. Requirements 1. Development Process 1. Resources
a. Stability a. Formality a. Staff
b. Completeness b. Suitability b. Budget
c. Clarity c. Process Control c. Schedule
d. Validity d. Familiarity d. Facilities
e. Feasibility e. Product Control
f. Precendented
g. Scale

2. Design and 2. Development System 2. Contract
a. Functionality a. Capacity a. Type of contract
b. Difficulty b. Suitability b. Restrictions
c. Interfaces c. Usability c. Dependencies
d. Performance d. Familiarity
e. Testability e. Reliability
f. Hardware Constraints f. System Support
g. Non-Development Software g. Deliverability

3. Code and Unit Test 3. Management Process 3. Program Interfaces
a. Feasibility a. Planning a. Customer
b. Testing b. Project Organization b. Associate Contractors
c. Coding/Implementation c. Management Experience c. Subcontractors

 d. Program Interfaces d. Prime Contractor
e. Corporate Management
f. Vendors
g. Politics

4. Integration and Test 4. Management Methods
a. Environment a. Monitoring
b. Product b. Personnel Management
c. System c. Quality Assurance

 d. Configuration Management

5. Engineering Specialties 5. Work Environment
a. Maintainability a. Quality Attitude
b. Reliability b. Cooperation
c. Safety c. Communication
d. Security d. Morale
e. Human Factors

Appendix SEI Software Risk Taxonomy

