
16 CROSSTALK The Journal of Defense Software Engineering June 2000

The Test Program Set and Industrial Automation Branches
of the Oklahoma City Air Logistics Center, Directorate of
Aircraft Management, Software Division achieved Level 4 of the
SEI CMM®)on November 7, 1996. At that time, and continu-
ing today, this software group applies several measures in the
control of its process and product output. The measures relate
to financial health, project management, workload and labor,
and process improvement (rework and productivity).
Rudimentary SPC has been applied to the measures for some
time in the form of run charts [1 and 3] (i.e., charts that graph-
ically portray measured results in chronological sequence). 

Run charts are fine, they provide trend information. But in
the traditional quality application, what is expected are control
charts [1 and 3]. From classes [2 and 4], conference presentations
[5], and books [1 and 3], it is implied that you are not really apply-
ing SPC unless you are using control charts. Here is where six sigma
originates. The predominant thought is you cannot have six sigma
(translation: really good) quality unless you know the process is in
control. Understanding whether or not the process is in control
comes from the use of control charts, thus, the impetus to apply
this SPC technique to software quality control. It is our under-
standing that the software organizations attempting to apply SPC
are using data taken from product reviews, predominantly direct-
ed to the coding portion of the process. They are using defects
identified in relation to effort expended, or lines of code or func-
tion points as data for the control charts.

The application of SPC Control Charts in this article does
not focus on analysis of software defects. The following discus-
sion will illustrate how SPC can be coupled to Earned Value
indicators to provide information about the quality of project
performance. The use of SPC Control Charts then becomes a
tool in the control of software project cost and schedule.

Earned Value
The indicators from Earned Value (EV) Management,

which directly relate to efficiency of project execution, are the
Cost Performance Index (CPI) and the Schedule Performance
Index (SPI). Their definitions are:

CPI = BCWP/ACWP (where BCWP is the budgeted cost of
work performed, and ACWP is the actual cost of work performed).
SPI = BCWP / BCWS
(where BCWS is the budgeted cost of work scheduled).

For additional information and explanation concerning
these formulas and terms, please refer to [6]. 

These two indicators, taken together, can be used to man-
age project performance [7]. They can provide very insightful

information for managers regarding the status of their project.
As described in the referenced article [7], when the inverse val-
ues of CPI and SPI (CPI-1 and SPI-1) are compared to their
respective cost and schedule ratios and the results are paired,
one of nine recommended management actions is determined
(see Table 1). As discussed in the article [7], the management
actions are related to four possible strategies:
• Adjusting overtime or number of employees.
• Realigning employees to increase efficiency.
• Reducing performance requirements.
• Negotiating additional funding or schedule.

With this background, the Earned Value indicators, CPI-1

and SPI-1, were chosen for SPC application. One very good fea-
ture of these EV indicators is they are normalized. Regardless of
software project conditions (e.g., size of project, experience of
staff, software engineering environment, programming language,
etc), their ideal value is 1.0. Because they are normalized, many
of the issues with applying SPC to software, such as variability
and homogeneity of the data, are avoided.

Statistical Process Control
Software project managers normally assess their project sta-

tus on some periodic basis. In our organization, we perform
project reviews monthly. The project data for CPI and SPI is
aggregated from the individual developers, then computed,
charted and analyzed monthly along with several other indica-
tors. Because the set of project data for analysis of each indica-
tor (CPI-1 and SPI-1) has only one data point per month, the
type of SPC Control Chart selected is XmR, or individuals and
moving range [1 and 3].

Statistical Process Control Meets Earned Value
by Walt Lipke and Jeff Vaughn

Oklahoma City Air Logistics Center

Levels 4 and 5 of the Software Engineering Institute Software Capability Maturity Model (SEI CMM®) imply the applica-
tion of Statistical Process Control (SPC) to software management. SEI staff members have published a book [1], and are
teaching a course [2] on the subject. Several software organizations are trying to apply SPC to quality control. This article
expands the area of application. It presents an approach for software production management (i.e., cost and schedule control.)

Table 1. Management Actions

CR vs. SR vs.
CPI - 1 SPI- 1 Management Actions

Green Green Reward Employees

Green Yellow Increase OT

Green Red Increase OT or People

Yellow Green Decrease OT

Yellow Yellow Review & Adjust Assignments

Yellow Red Adjust Assignments; Consider Negotiation (Schedule)

Red Green Decrease OT or People

Red Yellow Adjust Assignments; Consider Negotiation (Funding)

Red Red Negotiation (Funding/Schedule/Rqmts); Fire Manager

Software Engineering Technology



June 2000 www.stsc.hill.af.mil 17

For this control charting method, the individual values of
monthly project performance are plotted in their sequential
order. The average of all the values is calculated and, likewise,
shown. upper and lower natural process limits (UNPL and
LNPL) are also shown as distinctive lines on the chart. These
lines are computed to be the six sigma limits of the process
under review. Statistical theory provides methods to calculate
the UNPL and LNPL based upon the dispersion of the moving
range (mR) [1 and 3]. For the application of SPC presented
here, the differences between the successive monthly values for
CPI-1 and SPI-1 become the data for the mR analysis.

Just as for X, the moving range is graphed. Data points are
plotted in proper monthly sequence, with the computed average
value of mR. As with UNPL and LNPL lines shown on the
Individuals chart, the UCL and LCL are displayed as lines on the
mR chart. As for UNPL and LNPL, statistical theory provides
computational means for determining UCL and LCL values.

The formulas for calculating the process, or control, limits
(the six sigma values) of the XmR charts are available in the cited
text references. In our application, because the adjacent X data
points are paired to form the mR data, the subgroup size (n) is
said to be two. Knowing n=2, the values of the constants
required by the formulas are determined from the control chart
tables [1 and 3]: d2 = 1.128, D3 = 0, D4 = 3.268.

An example of the XmR chart is illustrated by Figure 1.
Note, on the Individuals chart there is another line in addition
to those for the average value of X, UNPL and LNPL. This line
is labeled USL (i.e., the Upper Specification Limit). The USL is
not derivable from the data; it is a performance value, or con-
straint, that the process is not to exceed. A considerable amount
of subsequent discussion concerns USL and its value in relation
to “X-bar,” or the average value of X, and the UNPL.

Analysis/Interpretation
The successful project manager must continually ask, “Can

the project be completed if it continues performing as it has?”
SPC application to CPI-1 and SPI-1 can help answer the ques-
tion. Comparing the X-bar values of these EV indicators to the
planned performance (i.e., to the value of 1.0) provides infor-
mation about current and future performance for the project. If
the value is 1.0 or less, then the project is performing well and
can be expected to complete within its planned cost and sched-
ule. If it is greater than 1.0, then there may be trouble requiring
management attention.

Now we are ready to discuss the upper specification limit,
or the process constraint, mentioned earlier. The USL for cost is
the cost ratio (CR), while for schedule it is the schedule ratio
(SR). The cost ratio is defined as the total funding available for
the project divided by the planned value (in EV terminology,
budget at completion, or BAC). The schedule ratio definition is
the negotiated period of performance divided by the planned
period of performance. The value of both ratios may exceed 1.0;
the portion of the ratio in excess of 1.0 establishes the amount
of management reserve available for handling project risks [7].

Comparing the appropriate X-bar value to its respective USL
(i.e., CPI-1 to CR, and SPI-1 to SR) provides information to the
project manager as to whether or not the project is executable if

present performance continues (see Figure 2). This comparison is
akin to the SPC analysis of process capability. In the manufactur-
ing application, if UNPL and LNPL are within the USL and
LSL, the process is said to be capable. If the USL, or LSL, are
within the UNPL, or LNPL, calculations can be made to deter-
mine the probability of producing defective products. Corrections
to the process are sought to minimize the output of defectives.

The interpretation of the SPC application of process capa-
bility to software project management, and the EV indicators
CPI-1 and SPI-1, is somewhat different from the description
given for manufacturing (see Figure 3). The project can have
defective monthly performance results and still be in good shape.
The process can be expected to achieve satisfactory results if the
average value of CPI-1, or SPI-1, is less than the USL (cost or
schedule ratio). Besides determining process capability, there is

Statistical Process Control Meets Earned Value

months

months

CPI-1

or 
SPI-1

Moving
Range

Individuals (monthly data) UNPL (value)

   (value)

LNPL (value)

UCL (value)

mR (value)

Adjacent values |xi - xi-1| (monthly data)

i=1
i=k

i=k

i=2

USL (value)

x

Figure 1. XmR Example

– Can the Process
Do the Job?

– What’s the
probability of
failure?

– What’s the
expected monthly
performance
extreme?

x LNPLUNPLUSL

(CPI -1 & SPI -1 )

3σ 3σ

Normal Distribution

m
on

th
s

1.0
(Cost & Schedule Ratio)

Figure 2. Process Capability

SAFE SAFE, But …
Greater dispersion
means must have
more reserve
to be safe.

RISK

Is Risk
Acceptable?

3σ
3σ

3σUSL (Ratio) = UNPL = UNPL

= UNPL

x
x

x

Risk

Figure 3. SPC Analysis/Interpretation



18 CROSSTALK The Journal of Defense Software Engineering June 2000

PSP/TSP

other interesting and useful information from the SPC analysis;
the probability of project failure can be determined, along with
the expected monthly performance extreme. The UNPL value is
the expected performance extreme. The portion of the normal
distribution that exceeds the USL quantifies the risk of failure.

A few other observations concerning Figure 3 can be made.
If UNPL equals USL, the project performance could be termed
safe (i.e., the risk of failure is nil). If 3 sigma is large with respect
to X-bar, then there is a large amount of dispersion (mR) in the
monthly performance. To be safe with large dispersion requires a
greater amount of management reserve. To be competitive, it is
very advantageous to minimize the UNPL and move it towards
perfection (i.e., the value 1.0). The risk, or probability, of non-
performance should be minimized. By decreasing risk and, thus,
management reserve, a company can decrease its bid price, and
increase its chance of contract award. Also, risk can be planned
for a project. The project can be managed to that amount of
risk. Often that is what is done to win the bid. But, without
using SPC, the bidder does not know his chance of failing. If
the bidder plans no Management Reserve, his probability of achiev-
ing the project plan is only 50 percent. This point is easily seen
from Figure 3 by lowering USL until it equals the planned per-
formance of CPI-1 or SPI-1 (i.e. 1.0). Even if the developer has a
very good process and the process variability is minimal, with-
out planned reserve, his chance of achieving cost and schedule is
only 50 percent. Fifty percent is not very good odds if the com-
pany wants to stay in business and make money.

Project Manager Use
Earlier, we alluded to the application of SPI and CPI in

building a project plan. Past statistical performance can be used
to build a risk strategy leading to the requirement for manage-
ment reserve. The following discussion, however, will focus on
project performance instead. Project performance evaluation is
simple and is very similar to the description given in reference
[7]. The evaluation for the SPC application to the inverse of
CPI and SPI is a comparison of the average values to the
planned value (1.0) and the USL (cost and schedule ratios). The
evaluation criteria are shown in Table 2. If the X-bar value is less
than or equal to 1.0, the project can be expected to complete as
planned. If the value is greater than 1.0, but less than or equal
to the USL, then the project can be expected to complete with-
in its allocated cost and schedule. Of course, in this range of
performance some of the management reserve is being con-
sumed by execution inefficiency. Finally, if the X-bar value is
greater than the USL, project failure can be expected. For ease
of recognition, the status can be color coded green, yellow, or

red. Green indicates the project can complete within the plan,
while yellow means the project can be completed within the cost
and schedule allocations (i.e., within the plan plus management
reserve), and red says failure is to be expected.

Once the color status has been determined for cost and
schedule performance, Table 1 can be used to determine needed
management action. Getting to corrective action in Table 1 is a
fairly simple matter. Red performance status requires management
attention. If the project is not performing well, something must
be done; corrective action is needed. Eyebrows will raise when 
yellow occurs, but a more in-depth look should be made before
any correction is made. Evaluating the performance of CPI-1

and SPI-1 using statistical methods leads to appropriate actions.
Beyond understanding what to do to bring the project back

in line, software project managers need to know the extent of
correction necessary. Specific areas in which SPC can be used to
quantify correction are adjustments to overtime and staffing,
and funding and schedule negotiations. If the project manager
has resigned himself to negotiation for correcting the project’s
ills, the amount of overrun of funding or schedule with respect
to the customer agreement can be easily determined. Overrun is
found by simply multiplying the difference between the X-bar
value and its respective USL times the BAC for funding, or
planned period of performance for schedule. The quantity cal-
culated is the amount needed to raise the probability of meeting
these revised performance requirements to 50 percent, thus, the
minimum amount to be pursued in the negotiation. Additional
funding or schedule must be added to the minimum value if the
desire is to provide some amount of management reserve for the
remaining portion of the project. In general, these negotiations
are not easy. The developer has a tendency to understate real
needs of the project. By not coming to terms with actual per-
formance, he settles for less than the full amount needed to suc-
cessfully deliver the product, and ends up having to negotiate
again. Generally, the second negotiation is considerably more
unpleasant than the first. Unless there is no other source for the
products or services, the software organization will not likely be
awarded another contract by the customer.

The corrective action concept for adjusting overtime and
staffing is illustrated by Figure 4. If efficiency has been poor,
something must be done for the remainder of the project to raise

UNPL

RATIO RATIO RATIO

UNPL

= UNPL

3σ
3σ

3σ

1.0 1.0 xp =1.0

x

x
´

∆´

∆

∆´

∆

Possible
Overrun

NOW NEEDED OUTCOME

BCWP BAC - BCWP NO RISK = SAFE

NOTE:  (1)  Assumes dispersion is invariant to changes in x
(2)  Example assumes no Risk was planned

Figure 4. Project Manager Application

x < 1 GREEN   Project can be completed as planned

1 < x < USL YELLOW   Project Manager and Employees get to keep their jobs

x > USL RED   A bad situation for those involved

Table 2. Evaluation criteria for X-bar cost and X-bar schedule

GREEN

RED

Project can be completed as planned

A bad situation for those involved

Project Manager and employees 
get to keep their jobs



June 2000 www.stsc.hill.af.mil 19

the efficiency so the project completes within allocated cost and
schedule. The possible overrun is symbolized in the figure by ∆
(delta), and the amount of correction needed for the remainder of
the project is symbolized by ∆’ (delta/prime). The ∆ condition
has existed over a portion of the project (i.e., BCWP, the earned
value for the tasks completed or in work). The ∆’ condition will
need to occur over the project remainder (BAC – BCWP) to
bring the overall performance to the desired state. Figure 4 illus-
trates the theory; however, it implies that poor performance can
be corrected to the ideal performance condition. Please disregard
the implication. Corrective action is not free. It is achieved at the
expense of cost or schedule. You may be able to correct schedule,
but it will be at the increase of cost. Unless true efficiency gains
are achieved, management reserve is expended for the corrections.

The method for calculating the X-bar value needed for
achieving project cost and schedule requirements is simple, and
based upon the same concept as the To Complete indices used in
EV Management [6]. The calculation method is depicted in Table
3. The result of the correction X-bar (‘, X-bar/prime) is used in
the overtime and staffing equations shown in Table 4. The strate-
gy for recovery can be banded by recalculating X-bar/prime, using
total funding available in place of BAC. Recalculating the over-
time and staffing adjustments with the extreme X-bar/prime value
determines the minimum adjustments the project can make and
still achieve its negotiated cost and schedule. 

Project Changes
Legitimate questions regarding this application of SPC are

“What happens when the project is replanned?,” and “Can the
data from the XmR chart prior to the replan be used with the
data obtained afterwards?” Obviously, the answers come from
the changes caused by the replan to the software project’s EV
system. If (think of this as a manufacturing example) the only

change is in the quantity of products, it follows, there will be no
adjustments made to the work breakdown structure (WBS) or
the earned value of the tasks. For this type of replan, the old
data can be used with the new. If, however, the WBS or the task
values are changed by the replan, then the remainder of the
project must be treated as though it is a new start.

Application
In our organization, projects have been managed using the

cumulative values of SPI and CPI for some time. Actual project
monthly data is plentiful and readily available to create and test
the SPC application described. One project’s data is exhibited in
Figures 5 and 6, the XmR charts for CPI-1 and SPI-1, respectively.
Although not shown, the histograms prepared from the perform-
ance results for both CPI-1 and SPI-1 approximate normal distri-
butions. Although there are SPC experts who will argue that not
having a normal distribution of the data does not invalidate the
use of Control Charts, some confidence is created in this applica-
tion when it is seen that the distributions appear normal.

To begin the SPC analysis, refer first to Figure 5 for the dis-
cussion of the CPI-1 Control Charts. As can be seen, the process
can be said to be reasonably well controlled; the average value of
mR is fairly small (0.2652). Even so, the variance is large enough
to place the computed value of UNPL above the cost ratio (USL).
Recalling the earlier analysis/interpretation discussion, when
UNPL is greater than USL, there is a computable probability that

• Schedule Recovery         (Reserve Funding is possibly used)

• Cost Recovery         (Schedule Reserve is used)

• Band the Recovery Strategy
– Substitute Total Funding Available for BAC in the ∆' calculation

ESR = (1 / x'SCHED) • EP  
         where EP = planned number of employees

OTSR = (1 / x'SCHED) • (1 + OTP) -1
       where  OTP = planned overtime rate

ECR = (x'COST) • EP  

OTCR = (x'COST) • (1 + OTP) -1

Table 4. Adjusting Overtime and Staffing

• For Schedule or Cost “curve shifting”:

∆  = x - 1.0

∆´ = ∆  •  
 
     

x´ = 1.0 - ∆´  

BCWP
BAC-BCWP

shift away from plan

performance correction to
achieve plan

required performance index
for remainder of project

Table 3. Performance Correction Index

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Nov
-96

Ja
n-9

7

Mar-
97

May
-97

Ju
l-9

7

Sep
-97

Nov
-97

Ja
n-9

8

Mar-
98

May
-98

Ju
l-9

8

Sep
-98

Nov
-98

Ja
n-9

9

Mar-
99

May
-99

Ju
l-9

9

Sep
-99

CPI-1

Moving
Range

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Oct-
96

Dec
-9

6

Feb
-9

7

Apr
-9

7

Ju
n-9

7

Aug
-9

7

Oct-
97

Dec
-9

7

Feb
-9

8

Apr
-9

8

Ju
n-9

8

Aug
-9

8

Oct-
98

Dec
-9

8

Feb
-9

9

Apr
-9

9

Ju
n-9

9

Aug
-9

9

UNPL (1.6974)

LNPL (0.2867)

x (0.9920)

USL (1.1200)

UCL (0.8667)

mR (0.2652)

GREEN: x < 1

Figure 5. Software Development Project CPI-1 Data

SPI  Data

SPI-1

Moving
Range

0.00

0.40

0.80

1.20

1.60

2.00

2.40

Oct-
96

Dec
-9

6

Feb
-9

7

Apr
-9

7

Ju
n-9

7

Aug
-9

7

Oct-
97

Dec
-9

7

Feb
-9

8

Apr
-9

8

Ju
n-9

8

Aug
-9

8

Oct-
98

Dec
-9

8

Feb
-9

9

Apr
-9

9

Ju
n-9

9

Aug
-9

9

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Nov
-96

Ja
n-9

7

Mar-
97

May
-9

7

Ju
l-9

7

Sep
-97

Nov
-97

Ja
n-9

8

Mar-
98

May
-9

8

Ju
l-9

8

Sep
-98

Nov
-98

Ja
n-9

9

Mar-
99

May
-9

9

Ju
l-9

9

Sep
-99

UNPL (1.9187)

LNPL (0.3886)

x (1.1536)
USL (1.00)

UCL (0.9400)

mR (0.2876)

RED: x > USL

Figure 6. Software Development Project SPI-1 Data

Statistical Process Control Meets Earned Value



20 CROSSTALK The Journal of Defense Software Engineering June 2000

the project will exceed its allocated cost. Performing the mathe-
matics, and using the normal distribution table [8], the probabili-
ty of overrunning the cost ratio is determined to be 29.3 percent.
Observed directly from the CPI-1 graph, worst expected monthly

performance (UNPL) is 1.694. The average value of CPI-1 (X-
bar) is seen to be less than the cost ratio, so the process can be said
to be capable. Likewise, X-bar is less than 1.0 and, thus, the status
indicator color is green. The project manager can expect the proj-
ect to be completed within its planned cost. With very good
numbers, the project manager does not have much worry here.

Let us shift our attention to Figure 6. The control of sched-
ule is not as good as for cost. The average value of mR (0.2876)
is somewhat larger, and, correspondingly, the value for UNPL
(1.9187) is computed to be larger than for the CPI-1 Control
Charts. The average value of SPI-1 is greater than one, and
greater than USL, a red status condition. Here is something to
worry about—not meeting the customer’s schedule. Using the
schedule ratio and the average value of SPI-1, and the normal dis-
tribution table [8], the probability of failure is found to be 72.7
percent. This is definitely not good; the condition needs man-
agement action. Before the recommended action is described, a
few observations can be made. This project planned no manage-
ment reserve for schedule (USL=1.0). The only way this project
can correct its poor schedule performance, other than having a
miraculous improvement in schedule efficiency, is through the
use of the cost reserve. It is always better to have reserve in both
cost and schedule. 

Returning to Figure 6, focus on the last three data points
(May, June, and July ’99) of the SPI-1 graph. They are especially
interesting. These points, which hover around UNPL, are anom-
alous. The probability of these data points occurring is infinitesi-
mal. Their existence is virtually impossible. From SPC theory, this
behavior leads the analysis to seek an assignable cause [1 and 3],
some influence outside of the system. Reviewing the same
months on the CPI-1 graph, the data appears to be reasonable.
From EV analysis, we know, if CPI performance is good and SPI
is poor, then the project is likely suffering from a manpower
shortage. Actually, the project had several software engineers hired
away (by a single employer) in those months and, corresponding-
ly, the manager was unable to hire a sufficient number of replace-
ment employees. Also, we found there were other significant con-
tributors to the poor schedule performance: the impact of the
huge Oklahoma City tornado that affected many of our people
from May through July; unplanned Air Force-driven training;
and, a computer security alert that required the staff’s attention.
In proceeding with the analysis, a decision should be made as to
whether to include the data attributable to an assignable cause.
Because our purpose is merely to demonstrate the calculations, we
have chosen to retain the data.

From Table 1, management’s correction strategy is increase
overtime or staffing. Next, the schedule recovery formulas of
Table 4 are used to quantify the necessary increases. The formu-
las require the value of the schedule correction index, X-bar
/prime. Knowing the values for X-bar (1.1536), and BCWP/
BAC (.617), the completed portion of the project, X-bar/prime
is computed to be 0.7526 from the equation given in Table 3.
Having the value for X-bar/prime, we can determine if the

schedule correction can be accomplished by simply increasing
overtime. For the completed portion of the project, the effective
overtime rate is 7 percent. The rate required for the remainder
of the project is determined to be nearly 42 percent. Working
employees at 42 percent overtime for very long is not advisable.
Doing so will likely increase the loss of employees and worsen
the problem. More employees are needed. Dividing the effective
number (59) of employees for the completed portion of the
project by X-bar/prime (0.7526) yields 78, the number of
employees needed for the remainder of the project. It is interest-
ing to note that the project manager, in his effort to determine
the corrective action, reported the same number of employees
after spending two days manipulating a commercial project
scheduler. Certainly, this single correspondence with a commer-
cial project scheduler is not enough evidence to say the methods
described here will always provide good management informa-
tion, but it does greatly increase the level of confidence. Also,
the 10 minutes we spent making the estimate compares very
favorably to the two days needed by the project manager to
come to the same result.

Summary
The concepts of statistical process control, specifically control

charts, have been discussed with respect to software project man-
agement of cost and schedule. SPC Control Charts are shown to
have a practical application to the EV indicators, Cost and
Schedule Performance Indices. SPC can be easily utilized by soft-
ware projects using Earned Value Management. Furthermore,
example results discussed indicate this application of SPC can be
useful. It appears that coupling SPC Control Charts to EV has
the potential to be extremely powerful. The methods and tech-
niques described can be used for:
• Quantifying Problems.
• Process Capability.
• Probability of Failure.
• Worst Expected Monthly Performance.
• Developing Recovery Strategies.
• Overtime.
• Staffing.
• Negotiation Values.
• Project Planning.
• Quantifying Risk.

Final Thoughts
Beyond project planning and control application described in

this article, implicit in SPC is process improvement. An example of
assignable cause was provided in the discussion, but just as impor-
tant is the improvement of common cause entities [1, 2]. Improve-
ment to common causes reduces variability of the process and,
thus, risk. For the software development organization, the reduc-
tion of risk leads to decreasing the requirement for management
reserve, thereby making the organization more competitive. And
for the customer, reduced variability in the software developer’s
process means lower prices and greater probability of achieving
cost and schedule. Everyone wins—it is powerful stuff. 

8This article is continued on page 28.8

PSP/TSP



28 CROSSTALK The Journal of Defense Software Engineering June 2000

portions. In the above Kalman gain equa-
tion, for example, intermediate expressions
for PHT are computed first, followed by
[HPHT + R]. Then [HPHT + R]-1 is
derived and that result premultiplied by
the PHT term that was already expanded.
Although this requires somewhat more
work due to the maintaining of intermedi-
ate results, overall savings and code genera-
tion metrics are still very impressive.
Depending on the particular implementa-
tion and the correlation of the measure-
ments, FLOP savings on the order of 4:1
to 6:1 and more have been tabulated.
These savings were achieved with signifi-
cantly less effort and higher reliability than
the manually tedious and error-prone tra-
ditional approach.

A process similar to the above is then
used to unit test the algorithm in the tar-
get language. A test driver is created that
executes the unit under test. Its executable
image is called in place of the expanded
code bracketed in the example m-file
above. The MATLAB script and the tar-
get language test driver must both provide
for the reading and writing of data files to
effect the transfers of test data and results.
The author has elected to mechanize these
transfers in IEEE 64-bit binary format to
take full advantage of the numeric capa-
bilities of MATLAB. An outline of the
MATLAB script was shown in Figure 2.

Although applications vary enormous-
ly in complexity, the author has experi-

enced estimated savings from 40 to almost
80 percent in development and testing
time (including debugging effort). For
example, it took approximately 20 hours
to manually develop and test code to
decrement a 6-state covariance matrix and
about 16 hours for the 6-state Kalman
gain matrix. Applying the techniques out-
lined in this paper reduced these efforts to
approximately 12 and eight hours, respec-
tively. Without manually deriving corre-
sponding 9-state equations, a fairly daunt-
ing task, extrapolations from actual 6-state
manual results and other similar experi-
ence were used to estimate the level of
effort that would be required for the man-
ual derivation of 9-state equations. The
following table summarizes and compares
both approaches. 

Summary
The use of commercial tools, such as

MATLAB and MathCAD, can dramatical-
ly improve the efficiency of the software
development process as well as the reliabil-
ity of the final embedded product. Since

systems engineering groups are increasing-
ly using these tools to develop and docu-
ment their products, it is becoming imper-
ative that software engineers acquire the
necessary proficiency to use and integrate
these products into their processes. This is
especially critical as contractors strive to
remain competitive while meeting exigent
schedules and maintaining budgetary con-
straints. Although not a panacea for all
that is ailing in the software development
process, the logical application of available
commercial tools can have a significant,
positive impact on that effort. This paper
outlines such a process that the author has
successfully applied on a current develop-
ment program.

Pencil &
Paper

MathCAD 
&

MATLAB
Estimated
Savings

Decrement Covariance
[I-KH]P[I-KH]

T
 + KRK

T

6-State 20 12 40.0%
9-State 56* 16 71.4%

Compute Kalman Gain
PHT[HPHT + R]-1

6-State 16 8 50.0%
9-State 42* 10 76.2%

* Extrapolated from similar 6-State experience

About the Author
Keith R. Wegner is a Fellow
Engineer in the software
engineering group at
Northrup Grumman
Corporation’s Electronic
Sensors and Systems Sector

in Baltimore. He has a master’s degree in
electrical engineering from the Johns
Hopkins University with emphasis in signal
processing and control systems. He has used
MATLAB for approximately 14 years.

Northrup Grumman Corp.
P.O. Box 746, MS-429
Baltimore, Md.  21203
Voice: 410-765-4664
Fax: 410-765-1492     
E-mail: keith_r_wegner@mail.northgrum.com

References
1. Florac, William A., and Anita D. 

Carleton, Measuring the Software Process, 
Addison Wesley, Reading, Mass., 1999.

2. Pitt, Hy, SPC for the Rest of Us, Addison-
Wesley, Reading, Mass., 1995.

3. Software Engineering Institute Course, 
Statistical Process Control for Software, 
July 1999.

4. Software Productivity Consortium Course,
Statistical Process Control and Quality 
Management Techniques, August 1998.

5. Radice, Ron, Statistical Process Control 
for Software Projects, 3rd Annual Software
Metrics Conference, December 1997.

6. Fleming, Quentin W., Cost/Schedule Con-
trol Systems Criteria, The Management 
Guide to C/SCSC, Probus, Chicago, 1988.

7. Lipke, Walter H., Applying Management
Reserve to Software Project Management,
CROSSTALK, March 1999.

8. Crow, Edwin L., Davis, Francis A., 
Maxfield, Margaret W., Statistics Manual, 
Dover Publications, New York, 1960.

Notes
1. To remove any confusion, by monthly 

performance values, we mean the values 
include only the performance occurring 
during the month.

2. The application of Table 1 in [7] required
CPI-1 and SPI-1 to be cumulative values. 
For this application, CPI-1 and SPI-1 are 
average values of the monthly data.

3. The assumption in overtime and staffing 
equations is that the plan is being execut-
ed; i.e., the overtime rate and the staffing 
employed is in agreement with the project 
plan. If the effective values for either differ
from the plan, it is recommended to use 
those values in the equations.

4. See the Table 1 management action 

description for the condition: cost com-
parison green, schedule comparison red.

About the Authors
Walt Lipke is the deputy
chief of the Software
Division at the Oklahoma
City Air Logistics Center,
which employs approximate-
ly 600 people, most of whom

are electronics engineers. He has 30 years of
experience in the development, mainte-
nance, and management of software for
automated testing of avionics. In 1993, with
his guidance, the Test Program Set and
Industrial Automation (TPS and IA) func-
tions of the division became the first Air
Force activity to achieve Software
Engineering Institute Capability Maturity
Model (SEI CMM®) Level 2. In 1996,
these functions became the first software

Software Engineering Technology

Table 1. Estimated Effort to Code and Test (hours)

8Statistical Process Control Meets Earned Value, by Lipke/Vaughn, continued from page 208




