
26 CROSSTALK The Journal of Defense Software Engineering August 2000

The problems linked to software
development have retained their challenge
since they were first documented by
Frederick Brooks in the Mythical Man-
Month [1]. Then as now, software-inten-
sive development projects have been
plagued by lack of predictability, schedule
and cost growth, failure to meet require-
ments, and as a direct result of these, low
customer satisfaction. We see numbers
quoted that show how dismal the state of
the art is; that the vast majority of software
projects are failures [2]. We have searched
for solutions to these problems, seemingly
ever since the days of Ada Lovelace.

There has been no lack of proposed
solutions. Alan Davis chronicled a list of
fads that have appeared on the software
scene every few years since the 1970s [3].
Structured programming, object orienta-
tion, reuse, commercial off-the-shelf
(COTS) products and others have had
their day in the sun. Each has been herald-
ed as a silver bullet, which none has been.
This is not to say these ideas have no
value; rather, that one must separate the
substance from the hype. We incorporate
what is valuable and make it standard
practice. Each is recognized as one piece of
the puzzle, not the whole solution.
Progress is achieved slowly, small gains are
made with each step. Because the prob-
lems remain largely unsolved, and because
each of these doctrines is introduced with
such fanfare, we are repeatedly seduced by
the promise of a Holy Grail. Davis catego-
rizes process maturity as one of these fads.

When Sarah Sheard writes about the
Frameworks Quagmire [4], she is reflect-
ing some of the frustration of those
attempting to comply with a confusing
and sometimes conflicting set of process
dictates. One look at her pictorial repre-
sentation (see Figure 1) is enough to make
us say that this has gone too far. The word

‘quagmire’ evokes the feeling by many
that they are drowning in too much
process. Other writers note that there is a
growing body of opinion that the prac-
tices that the Software Engingeering
Institute’s Capability Maturity Model
(SEI CMM®) advocate are justified only
for large and complex projects [5]. I can
hear the debate now. Let’s listen:

The Debate

Devil’s Advocate: Process champions
are quick to cite data to support the con-
tention that organizations that adopt bet-
ter processes produce better software.
However, this is far from proving a cause-
and-effect relationship between the two.
The data put forth as evidence would
never hold up against the standards
applied to hard science. Statisticians know
that there is a big difference between
demonstrating a statistical coincidence

and proving cause and effect. Because two
phenomena coincide in a statistically sig-
nificant sample does not necessarily mean
that one causes the other.

Statistical coincidence is never
accepted as proof of cause and effect.
There must be additional empirical evi-
dence to prove that one thing is the direct
cause of another. Organizations that have
good processes and also produce good
software may be a coincidence, and may
be due to a third factor, such as excep-
tionally good software engineers. Davis
makes the point that with the right peo-
ple you can succeed without process
maturity, but that the best process in the
world will not make you successful if you
have the wrong people. It seems likely
that if an organization is blessed with
good engineers, it will be able to create
good processes as well as good products.
Or perhaps it is because companies that

Don’t Say the ‘P’ Word
By Lori Pajerek

Lockheed Martin Federal Systems

Process maturity has been extensively analyzed and codified, and the goal of process maturity has become pervasive
throughout industry, government, and academia. The Software Engineering Institute estimates that there are more
than 30 process maturity models and more are being developed. ‘Process’ has been a buzzword for a long time,
and it may seem at times that more attention is paid to the process used to produce a product than to the product
itself. This article examines the background experiences that led to developing process maturity models, decon-
structs some of the arguments that have been posited—both for and against—and discusses some lessons learned.

SW-CMM
MIL-Q
-9858

Trillium Baldrige

IEEE Stds. 730,828
829, 830,1012,1016

1028,1058,1063ISO
15504*
(SPICE)

People
CMM

IPD-
CMM*

DOD
IPPD

SECAM
AF IPD
Guide

SDCCR

SCE

NATO
AQAP1,4,9

 BS
5750

MIL-STD-
498

DOD-STD
 -2167A

DOD-STD
-7935A

MIL-STD
-499B*

ISO/IEC
12207

IEEE
1220 ISO 10011

SDCE

 SE-CMM
SECM
(EIA/IS 731)

EIA/IS
632

ISO 9000
Series

EIA/IEEE
J-STD-016

IEEE/EIA
12207

EIA 632

MIL-STD-1679

IEEE
1074

TickIT
SSE-
CMM

ISO 15288*

EQA

* Not yet released

CMMI*

PSP

SA-CMM

Q9000

DOD-
STD-
2168

Copyright 1998, Software Productivity
Consortium, NFP, Inc. Used with permission.

FAA-
iCMM

DO-
178B

SW-CMM

Figure 1. The Frameworks Quagmire

Open Forum

August 2000 www.stsc.hill.af.mil 27

Don t Say the P Word

make good software also make money—
enough money to support the overhead
of process management.

The Rebuttal

Process Advocate: Unfortunately, we
probably can not expect ever to have the
kind of data that would satisfy a scientist.
How could you ever really trace the good-
ness of a certain piece of software back to
first causes with any certainty? You can
only observe the statistical coincidences
and draw inferences. Is that not good
enough? If the two things go hand-in-
hand, is it unreasonable to think that
obtaining one of the two will increase your
chances of obtaining the other? Remember
Jay Forrester’s warning that “intuitive
judgments about cause-and-effect relation-
ships may not be effective in complex
feedback systems . . . with their multiple
feedback loops and levels. Complex sys-
tems have a multitude of interactions, not
simply cause-and-effect relationships.
Causes may not be proximate in time and
space to effects [6].” Certainly this com-
ment applies to the complex relationships
inherent in a development process.

Good software may be developed
without a good process—once. That is an
accident. Good processes help ensure that
good software can happen more than
once. A smart hacker can write a killer
application, and undoubtedly makes some
mistakes along the way. To an individual,
those mistakes may not matter very much.
Time and effort wasted are probably of lit-
tle consequence. But in an organizational
environment, mistakes do matter, because
they consume valuable resources. Nobody
ever sees software scrap, but it affects the
bottom line as surely as hardware scrap.
Can you imagine any manufacturing man-
ager tolerating the amount of scrap com-
ing off his production line as is routinely
accepted in our software factories? Soft-
ware scrap may not represent an expense
in raw materials, but costs are incurred in
terms of labor and schedule time, both of
which are usually in short supply.

Devil’s Advocate: I will acknowledge that
software scrap is bad, but what makes
you sure that process maturity will reduce
it? Many companies are investing large
amounts of money to raise their CMM
maturity level, but do they really know if

they will get the expected payoff? They
will at least get bragging rights to a high
SEI rating, which will probably be an
indirect cause of increased revenue. But it
may be that they would get a better value
by using that money to hire the best
engineers they can. It is hard to say,
because we can not be sure which is the
cause and which is the effect.

Process is merely a means to an end.
It actually is a combination of ends: tech-
nical, quality, cost, and schedule perform-
ance, that will ultimately lead to cus-
tomer satisfaction. There is evidence that
companies with mature processes do
indeed achieve these objectives. But even
accepting the inference of a cause-and-
effect relationship between the two, you
must still consider whether there might
have been another way to meet that goal.
This is not to suggest that process matu-
rity is bad, but that you should think
about why each process step exists, and
whether there is a better (i.e., easier or
more cost-effective) way to achieve the
same end. Furthermore, organizations
can not afford to lose sight of the fact
that achieving the highest levels of quality
and customer satisfaction may not be the
pre-eminent goals. They must also make
enough profit to stay in business.

Process Advocate: You are right,
process exists as a means to an end.
Individual process steps exist for a variety
of reasons —technical, cost, schedule,
legal. Some steps are recommended as
best engineering practices; they are there
to promote technical quality. Other steps
within the same process are there only for
management reasons. If we pretend that
we have infinite time and money to com-
plete a project, we would not have to
employ a lot of management controls.
Since that situation never occurs, we have
to find ways to optimize technical quality
while maintaining some schedule and
cost limits. Because these controls have to
be embedded in the engineering tasks,
our engineering processes contain a mix-
ture of management and technical proce-
dures. The advent of initiatives like
Integrated Product Development have
intertwined them even more, making it
harder to separate the strands.

Software has given us the capability to
build systems that are far more complicat-

ed than before its advent, and they are
becoming more complicated all the time.
Now that we are building systems contain-
ing millions of lines of code, development
must be parceled out. Process is what
makes this division of labor succeed; just
being smart does not carry it off any more.
Documented processes become the reposi-
tory for an organization’s collective wis-
dom and experience—lessons learned
about what works and what does not.

Devil’s Advocate: You agree, then, that
less process is needed for small programs.
Many organizations recognize this fact
intuitively, and let smaller programs off
the hook. That helps relieve the burden,
but it does not help them figure out what
is appropriate for programs their size.
Even for large programs, one of the
process mantras is that “the process must
be tailored for your program.” Practical
tailoring guidance is hard to come by and
difficult to apply.

Process Advocate: Yes, many of the
sub-processes of systems engineering are
really systems management. They exist,
like the science of systems engineering,
because of the need to manage large,
complex efforts that involve many com-
ponents, interfaces, people, sites, compa-
nies, etc. They are needed to keep a large
project organization moving in sync
towards a single goal at the right time.
These subprocesses are more easily
waived when you have a small team and a
short schedule.

One mental exercise that can help is
to assess each process step against the fol-
lowing questions:
• Would I do this if I were building this

product by myself?
• Why is this process step here; is it for a

technical or a managerial reason?
This will help to identify and segre-

gate the steps that exist primarily to serve
management goals. Those may be nego-
tiable on small projects. For example,
process steps that require completion of
checklists, preparation of status reports,
or multiple levels of approval to do things
can probably be simplified or eliminated.

People fear that processes are going to
tell them how to work. The most impor-
tant processes for an organization to
mature do not prescribe how to work but
how to coordinate. No one minds being

28 CROSSTALK The Journal of Defense Software Engineering August 2000

told how to get others to do what they
want them to do. That is the function of
most good processes. A newly minted
engineer may not initially understand why
he has to follow the process—he never
had to do this in college. Eventually he
sees the value when he realizes he is no
longer working by himself, and his success
is dependent on what others do.

When Bad Things Happen

to Good Engineers
It must be understood that process

maturity can not be realized by the efforts
of engineers alone. As Watts Humphrey
has noted, poor project management will
defeat good engineering, and is the most
frequent cause of project failure [7]. When
managers insist that engineers shortcut the
best engineering practice due to schedule
or budget pressures, process maturity fails.
These managers are often responding to
inflexible contract demands to which their
company committed in order to win a
competitive bid. The procurement process
encourages bidders to submit proposals
that set unrealistic schedule and cost tar-
gets. Hence, while the customer commu-
nity may be professing the desirability of a
contractor’s high level of process maturity,
the incentive to industry promotes the
exact opposite result. Thus, another pre-
requisite for a mature development process
to thrive is the co-existence of a mature
procurement process on the customer’s
part [8]. Even then, reality has a way of
subverting the best intentions. Although
everybody wants to accrue the benefits of
capable processes, managers often experi-
ence ‘sticker shock’ that causes them to cut
corners.

A hallmark of a mature development
process is emphasis on early requirements
analysis and up-front planning. This
requires program schedules and budgets to
be more heavily loaded on the front end.
Despite having heard the caution, “Pay me
now or pay me later,” some program man-
agers think they can get away with not
paying at all. This includes managers in
both customer and contractor organiza-
tions. Budgets and schedules are drawn up
optimistically, trusting in a best-case sce-
nario. This is rarely the scenario that
unfolds, and the fact that it does not is
largely a self-fulfilling prophecy.

Spending a lot of time and money up

front is an expression of faith. It manifests
the belief that heavy investment in thor-
ough requirements analysis, trade studies,
etc. will prevent problems later, and that
the cost of fixing those problems would be
greater than the initial investment. But it
is difficult to quantify the cost of problems
that never happen, so it is hard for pro-
gram managers to commit to spending lots
of resources early, when the payoff is so
intangible. Despite numerous studies to
support its validity, few programs are
scheduled and budgeted this way. There is
never sufficient time and money to do all
the tasks that engineering best practice
would dictate, i.e., to follow the process!
Projects seem to be programmed for fail-
ure before they even start. Once the
inevitable problems occur, projects revert
to crisis management mode, which is not
noted for its high level of process maturity.

While engineers working in the real
world are told to follow best practices, cir-
cumstances often make it difficult for
them to do so, and they are blamed when
they fail. Is it any wonder they become
annoyed and think that the Process Police
issue lofty dictates from the ivory tower,
while they struggle in the trenches to get
the product out the door? Who can be
surprised that engineers fighting daily fires
do not want to hear the ‘P’ word? They
want to do the right thing, but it seems as
if their hands are tied when, for example,
they have six months worth of require-
ments analysis activity to squeeze into the
four weeks allotted in the schedule. Watts
Humphrey also states that if engineers can
reasonably defend their plans, manage-
ment should respect these plans and not
override them with schedule edicts. Too
often, this caution is ignored.

Where Process Models Fall Short
Investing time and money up front

should not require a leap of faith. We
ought to be able to draw up a front-
loaded schedule and budget with a rea-
sonable degree of certainty that we can
shorten the back end without undue risk.
We can not do this today because of defi-
ciencies in our process models and our
base of collected measurement data. The
reason we create models is to validate
designs by varying operational parameters
and conditions, and observing the results.
Engineers trust their models because they

trust the data that goes into them.
Program managers, however, can not
place the same level of trust in process
models because we lack the abundance of
hard data to substantiate them.

Many current process models are defi-
cient because they do not always view the
processes as systems. The process is the
system an organization uses to generate all
its other systems, i.e., its products.
However, few organizations apply the
same engineering rigor to creating their
development processes that they apply to
the systems developed for external cus-
tomers. A properly engineered develop-
ment process would be modeled in such a
way that managers could accurately foresee
the outcomes of various hypothetical
actions. What happens to Integration and
Test (I&T) time if we cut the Require-
ments Analysis time in half? Who knows
for sure? We can probably guess correctly
that it will increase, but by how much?
Ideally, we could vary these parameters in
a formula to find the optimum balance.

An example discussed previously pro-
vides a further illustration of this point.
We have all seen empirical data to sup-
port the premise that the cost of correct-
ing system defects increases as the system
development progresses into later phases.
But process models have not fully instan-
tiated this data to the point where we can
quantitatively predict the downstream
effects of qualitative changes to the
process. In an ideal model, you would be
able to calculate how much time devoted
to requirement reviews or design inspec-
tions is required to remove a certain per-
centage of defects, and at what point the
law of diminishing returns indicates that
the I&T savings no longer offset the cost
of additional up-front reviews. The accu-
racy of such a model depends on having a
substantial amount of validated measure-
ment data, something that few organiza-
tions possess today. It is essential that we
collect this data if we are to arrive at the
point where our process models can be
sufficiently calibrated to perform these
sophisticated what if analyses.

Integrated Product Development
notwithstanding, few process models in
use today are truly integrated. Even with
the best intentions, organizations tend to
quickly decouple constituent subprocesses
as they descend through a top-down

Open Forum

August 2000 www.stsc.hill.af.mil 29

decomposition of their development
process. Except for time sequence depen-
dencies, the system-wide effects of chang-
ing one subprocess are unknown. Practi-
tioners still operate within their traditional
stovepipe processes, even though their
command media and their management
structure may proclaim them integrated.

Another shortcoming in current
process models is that the rationale for
each process step is rarely captured. If it
were, this type of data could be of great
value when attempting to tailor or re-
engineer a process. People are often afraid
to change or eliminate a process step if
they do not know why it is there. Worse,
more aggressive individuals may rashly
eliminate steps because they do not
immediately see their value. If they were
aware of the possible consequences, they
could at least take the risk knowingly.
While some organizations collect histori-
cal lessons learned information, it is often
poorly organized, difficult to access, and
not kept up-to-date. Most signficantly, it
is not tied directly to the process model.
A good process model would have links
to these lessons learned to show when a
process step was changed, added, or
deleted as the result of a lesson learned.
We often maintain rationale for other
engineering decisions, why not for
processes? Capturing rationale for techni-
cal decisions is another one of the tenets
of a mature engineering process. This is
just another example of how we need to
engineer the development process with
the same rigor we engineer other systems.

Taking the Long View
Continuous Process Improvement

(CPI) sounds like a good thing, and it is.
The point is not that CPI is an impossi-
ble or unworthy goal, but that like the
process, CPI is a means to an end. There
may well be alternative routes to the same
end. Organizations pursue CPI because
they believe it will increase productivity
and quality while reducing the cost of
doing business. However, even the
authors and champions of maturity mod-
els admit, when questioned, that there is
no hard data to quantify the return on
investment (ROI) in process maturity.
Unless the goal is to achieve a CMM
Level 5 rating for its own sake, it is valid
to suggest that money spent on CPI may

be better spent elsewhere in pursuit of the
same goals. We should not forget that the
law of diminishing returns will apply to
CPI just as it does to any other invest-
ment. CPI requires a significant capital
investment, with a promise of return on
that investment. As with many corrective
actions, the biggest ROI on CPI is
achieved by a few heavy hitters. This is
embodied in the well-established theory
of Pareto analysis. For this reason, many
practitioners believe that the difference
between a Level 3 organization and a
Level 1 organization is probably greater
than the difference between a Level 5
organization and a Level 3 organization.

Once an organization has achieved a
high level of process maturity, it is valid
to question whether the ROI on contin-
ued improvement is sufficient to justify
the investment. The gains will become
smaller and smaller, and there may be a
point where the investment is larger than
the payback. Most organizations are still
at relatively immature levels of process
capability, and there are many valuable
gains to be made. In this current state, it
is hard to imagine that someday we will
be at the point where all the low-hanging
fruit has been picked. When that day
arrives, we will have to take a hard look
at the received value of pursuing CPI.

Also, there is a danger of confusing
continuous improvement of the process
with improving the process deployment.
Deploying any reasonably adequate pro-
cess rigorously and uniformly is of greater
value than having a perfect process on
paper, but not enforcing it effectively. An
organization’s priority, therefore, might be
to ensure that a majority of programs
within the organization are performing at
Level 3 (for example), before investing in
advancing to Level 5 for a limited num-
ber of programs.

The bottom line is that process matu-
rity is only one of many factors that con-
tribute to the ultimate success or failure of
any project. There is no doubt that per-
sonal attributes such as education, train-
ing, and work ethic of the individuals exe-
cuting the process will also have an effect.
Likewise, the finest engineers can not per-
form up to their potential if not given an
adequate working environment with suffi-
cient resources of time, money, and tools.
Finally, even the best engineers with the

most ample resources may still fail if the
project is badly managed in other ways.
Process is just one ingredient in the mix.u

References
1. Brooks, Frederick, The Mythical Man-

Month, Addison-Wesley, 1975.
2. Alder, Rudy, Instead of the Wrecking

Ball, CROSSTALK, May 1998.
3. Davis, Alan, Software Lemmingineering,

IEEE Software, September 1993.
4. Sheard, Sarah, The Frameworks

Quagmire, A Brief Look, Proceedings of
the Seventh Annual International
Symposium of the International Council
on Systems Engineering, August 1997.

5. Hadden, Rita, How Scaleable Are CMM
Key Practices?, CROSSTALK, April 1998.

6. Hughes, Thomas P., Rescuing Prometheus,
Pantheon, 1998.

7. Humphrey, Watts S., Three Dimensions
of Process Improvement Part I: Process
Maturity, CROSSTALK , February 1998.

8. Courteney, H. and Ruston, S., Mature
Procurement of Large Scale Systems: A
Better Way to Buy, Proceedings of the
Seventh Annual International Symposium
of the International Council on Systems

Don’t Say the ‘P’ Word

Additional Reading
Gundrum, Valerie, Architecture for a Process
Meta-System, Proceedings of the Seventh Annual
International Symposium of the International
Council on Systems Engineering, June 1999.

About the Author

Lori Pajerek is an Advisory
Systems Engineer at
Lockheed Martin Federal
Systems in Owego, N.Y.
Her current assignment in
the Systems Engineering

Technology department includes surveying,
evaluating, selecting, and deploying Systems
Engineering tools. With more than 15 years
experience in systems and software engineer-
ing for defense-related industries, her areas
of interest and expertise is requirements
engineering and management. She has a
bachelor of science degree in mathematical
sciences from Binghamton University, and is
a member of the International Council on
Systems Engineering (INCOSE).

Lockheed Martin Federal Systems
1801 State Route 17C
Maildrop 0210
Owego, N.Y. 13827
Voice: 607-751-6226
Fax: 607-751-6025
E-mail: lori.pajerek@lmco.com

