Simulating Open-Pit Mining and Lake Infilling Using MODFLOW and MINEDW

Presented by:

Dong Ding
Sandra Hodge
Itasca Denver, Inc.

28 January 2013
Objectives

• Two groundwater flow codes are utilized to simulate groundwater conditions related to open-pit mining and pit-lake infilling
 – *MODFLOW* (Finite-difference method)
 – *MINEDW* (Finite-element method)

• Comparisons of two models were made on:
 – Model Construction (e.g. grid/mesh design)
 – Model Convergence
 – Effective Simulations of Mining and Lake
Background
Background

- The modeling work includes mine dewatering, pit-lake infilling, and water supply pumping
- Complex geology (structures and heterogeneity) in the project areas
- Steep hydraulic gradients in some areas
Phase I Mining and Dewatering
Phase II Recovery after Phase I Mining
Phase II Mining and Dewatering
Model Structure Design

- Finer discretization needed in areas of interest both horizontally and vertically
- The more cells, the more time to compute
Model Construction

• **MODFLOW**
 – grid spacing should not increase by more than 50% between adjacent cells (GWV 2010; SWS 2011; Birch et al. 2006)

• **MINEDW**
 – Finite-element method provides grid flexibility (Durbin and Bond 1998; Azrag et al. 1998; Mehl et al. 2006)

• Local Refinement Methods (Mehl et al. 2006)
 – Telescopic mesh refinement
 – Iterative local refined grid
Model Convergence

- Convergence problem may lead to model failure
- Reasons that lead to failure to converge
 - Dry cells and re-wetting (stability)
 - Heterogeneity
 - abruptly change transmissivity – steep hydraulic gradient
 - Water balance errors (Harbaugh and McDonald 1996)
 - Numerical errors (Merritt and Konikow 2000)
 - Mass transfer near the boundaries
To Avoid Convergence Problem

- **MODFLOW**
 - Model structure
 - Discretization
 - Boundary Conditions
 - Reasonable Initial heads
 - Appropriate time steps
 (Merritt and Konikow 2000; personal communication)

- **MINEDW**
 - Converge based on the budget of entire model domain
 - This may save considerable time in fixing the model
Pit Geometry and Lake Infilling Simulations

• **MODFLOW**
 - Model needs to be separated into stages of mining, lake cells are treated as inactive (Merritt and Konikow 2000)
 - Mine dewatering is simulated using Drain package
 - Model grid dimensions define lake volume (Merritt and Konikow 2000)

• **MINEDW**
 - One single code package includes both drain and infilling, no inactive cells
 - Mining defined through collapsing the mesh, better evaluation of dewatering plan
 - Pit lake defined through the relationship between elevation, volume, and surface area
 - Seamlessly provide flow from different geologic units for Pit-lake geochemistry analysis
Model Calibration

- Model calibrated to water levels for both steady-state and transient conditions in both piezometers and lake
- Mass balance is honored ~ < 0.1%
Summary

• Both models have the ability to simulate open-pit mining and lake infilling reasonably well.

• *MINEDW* model has advantages in:
 – Flexible mesh construction
 – Model convergence
 – Ease of pit geometry and pit-lake infilling simulations

• Model grid should be built carefully not only for good representation of site conditions, but also for computation efficiency.

• A complex mining activity requires multi-stage models.
References