

Life on an Arctic Rig Photos and story by Sergio Ortiz

"It's flat, cold and dreary."

The answer to the question "What's it like up there?" may appear incomplete. But to those who have been "up there"—on Alaska's northern territories where oil companies are actively exploring for untapped energy deposits—the description is perfect.

It is flat—so flat that on a clear day some claim that it is possible to see the curvature of the earth. That may seem like stretching things a bit, but it is plausible.

It is cold—the temperature sometimes in January drops to -135. That's *minus* 135 (F). "Well," workers says, "it was actually 65 below, but there was a 70 mile-per-hour wind blowing.

And, above all, it is dreary. There is nothing there except a vastness so awesome it makes the human spirit cringe. The frozen winds blow with a vengeance, only easing their fury during the few hours of precious daylight. While weather conditions sometimes are excellent in the North Slope (ABOVE), the sunlight lasts only a few hours each day, making the unloading of drilling mud from Anchorage (RIGHT) a difficult operation.

But in that icebox of nature workers toil during the winter months when drilling conditions lend themselves to building the ice runways and roads needed to transport the heavy equipment necessary for those types of operations.

The North Slope is just about the end of the world, the northernmost point of North America and closer to Siberia than to Nome, the nearest large city. Waking up in the drilling campsites is a unique experience. The winds whip over the quarters in a frozen frenzy. At six in the morning the northerns blow at 90 miles-per-hour. Since the temperature outside is already 35 below zero, the wind chill factor drops the mercury to minus 105.

Motors and engines hum mournfully outside the quarters and there is no light outside. Sunrise is expected at about 11 that morning. A few days before, the temperature had dropped so much that all workers were instructed to remain indoors unless it was absolutely necessary to go outside. Life at the camp came to a standstill, except for the drilling crew that had the luxury of working inside a weather-proof shelter that protects the drilling deck from the bitter cold.

That unforgettable Wednesday morning a worker coming in from the cold turned the heavy, stainless steel handle on the door of the living quarters and it was so cold that the handle snapped in two. Fuel lines froze, boots cracked, the makeshift runway was inoperable and the wind kept on at a steady 95 miles-per-hour.

This is the North Slope in winter, a place where nature exhibits hair-triggered moods and the harshness of its winter is nature's way of telling man that he is definitely not welcome in this frozen moonscape. If there is a frozen version of Dante's *Inferno*, this is it. Only the hardy can survive outdoors here and then it's only for brief periods of time.

An eerie grayness seems to have enshrouded the world around the drilling camp. That grayness and the flatness of it all dulls the senses with an overwhelming feeling of void, cold and loneliness.

The wells are very expensive and difficult to drill and the high costs

incurred by such explorations are an example of the large capital investments needed by oil companies to explore for new oil and natural gas reserves in remote places.

In order to set up an exploratory camp in the North Slope, vast numbers of equipment are transported to the nearest available runway as close as possible to where the well is planned. Then, when the weather turns to below freezing, ice roads and runways

A worker trudges over the ice toward the antenna dish that serves as the camp's communication link to the outside world. are built over the tundra in order to transport all the machinery to the site.

Nature, however, usually has other plans.

The weather suddenly turns to above freezing just when the crews and the equipment have set up the first camp making it impossible to build the ice roads which would lead to the site. All operations then must be suspended, sometimes for up to a month. The workers must return to Anchorage to await the cold weather.

After the winter storm fronts from Siberia turn conditions to below freezing, the crews then hurry back to the camp and the actual construction of the exploration site begins. From the satellite camp, huge rolodons—mammoth vehicles capable of operating under the worst conditions imaginable—begin their trek to the drilling site and earth movers, snow makers and tractors soon follow.

Perhaps the most incongruous sight is that of snow makers moving over the frozen tundra.

The thought of snow makers in the Arctic is ludicrous, but before any serious activity is to be undertaken, runways must be built over the tundra. Man takes advantage of nature to suit his needs by laying a layer of snow some three feet thick over the rough terrain. After the snow has been

packed, a sheet of water is then sprayed over it and left to freeze. In a day or two a runway, 5,000 feet or longer is ready for operations.

Then the great migration begins.

Aircraft of all sizes bringing workers, supplies and equipment has become a familiar site on the ice runway there.

The tremendous logistics of the multi-million dollar exploration projects common to the North Slope call sometimes for hundreds of flights to use the runway between the two or three months before the ice begins to melt and the runways become inoperable, halting the projects.

By spring and summer the drilling sites are returned to their natural state—a barren land that otherwise does not see much of man, except for those in the nearby villages where the *Inupiag* (a name meaning "The Real People," commonly known as Eskimos) eke a living from this Arctic land.

Despite the harshness of winter, workers at the North Slope exploratory projects live a rather comfortable life. For example, the workers receive newspapers, taped television programs and movies every day.

It's a strange experience to sit inside one of the warm recreation rooms by the kitchen watching off-duty drillers, tool pushers and roughnecks guffaw at

General scenes from the drilling site reveal a grim life outside the camp as workers live in very good comfort indoors. The majority of these projects run in the millions and can be done only in the winter months when ice runways can be built over the tundra where Arctic foxes and caribou roam.

the improbable, silly antics of Bruce Lee in a kung fu epic. To one side, an electrician defends a video world from extra-terrestrial bad guys in a game of Asteroids, while on the corner a heated game of cribbage is going on.

But it's hardly all fun and games. The steamy window reveals a harsh picture outside. There is mostly snow and ice. The visibility is about 500 yards and a Hercules transport from Fairbanks appears like a gray, winged ghost sending angry trails of frozen rain flying in its wake. Workers hurry to unload pallets of drilling mud onto a truck that disappears in the gray, flat, frozen blanket. As soon as the truck leaves, the airplane takes off and the workers hurry back to the comforts of the quarters. The men look like walking sleeping bags, their breath hanging in the air like steam.

Bill, a toolpusher, takes off his parka and begins to unpeel layers of cloth-

Buffeted by 90-mile winds, a worker is thrown off his feet near the rig. (Left). While the site may look picturesque (Above), the first business at hand is to complete the well from a covered drilling deck where two daily shifts work against time and the elements (Above right).

ing from his body. "Ah," he says, "there's nothing to working up here. Just dress right, eat good, get plenty of sleep and save your money to go fishing all summer."

"Only problem with fishing Alaska in the summer," says another worker, "is the Alaskan mosquito. Anything that size should not be allowed to fly without numbers on its wings."

"I don't know a single person on the rigs out here who's got all his marbles," chides a Cajun accent.

"That's 'cause all you guys in the Gulf do is eat fish, sunbathe and complain," says Bill to much laughter.

Despite all the banter and the comforts that, although primitive in some ways, make Hearst Castle seem lacking after only a few minutes outdoors, this is a desolate place.

Slushing through the ice and snow one reaches a well-protected rig. A metal stairway leads to the deck where the actual drilling is being conducted. This is a warm, bright, noisy, hectic world. You have to shout over the roar of two huge GMC engines. It's serious work done amidst chains, collars, clamps and pipes. The air on the deck smells of hard work and sweat.

Finishing a visit to the North Slope is a welcome relief.

Just before the aircraft lands, a worker turns and says, "Look, there is a sun dog over the rig."

That is an iris effect much like a rainbow caused when the rays of the sun hit ice crystals in the air (see cover) and seen only under extremely cold conditions. In this case the sun dog comes at about 12:30 pm when the temperature is 63 below zero.

Someone says there's not much time to get aboard the airplane, since it will be on the ground only for a few minutes. Walking a few yards to it is an experience in itself. It's so cold and windy that it's hard to walk. It's as if your entire body was being flogged by an ice whip. Your nose and eyes run, your ears ring and flying ice crystals slap and sting your face.

There is a feeling of near joy upon reaching the plane. The pilot matter-offactly declares that it looks as if the winter everyone has been talking about is finally arriving.

Once airborne, the camp looks like a toy model sitting on a frozen void.

The words of a worker who said that "no one ever came to the North Slope for the hell of it" ring true.

It's a good two hours and 15 minutes to Anchorage over a wide, frozen range where forbidding mountains loom on the horizon and glaciers run so crooked they could have been laid out by drunks. And it seems as if nature itself had gone on a happy, swacked and careless spree and was showing off when this land was made. **7**

Retirement Planning Helps Start New Lives.

For some it may be a time to spend unlimited hours in the woodshop carefully honing fine pieces of wood, or perhaps to set up an easel and touch some oils to a canvas. Others might take delight in planning a long awaited vacation. But for everyone facing imminent retirement, it's also a time to make some significant and serious financial decisions.

Several years ago when some Union Oil retirees were asked what kind of information would have been most beneficial to them at the time they retired, they overwhelmingly indicated the need for more information on financial planning that specifically applies to Union Oil benefits and the tax implications those benefits bring upon retirement.

With that insight, Paul Doyle, then vice president of Corporate Industrial Relations who himself has since retired, began developing a program to explain those practical and sometimes complex issues.

In late 1980, the first pilot of the Retirement Planning Workshop was held. To date 257 employees have attended such sessions and an estimated 240 will choose to take part in the program this year.

...for everyone facing imminent retirement, it's also a time to make some significant and serious financial decisions. Faced with a multitude of decisions and the complexity of benefits and tax laws that are subject to continual change, it is only natural that those about to retire would request some guidance. In fact, the continuous questioning is what generated the program. "We have had all kinds of inquiries from people going into retirement about this type of program," says Don Solberg, manager of Benefit Plans Development. Solberg is reponsible for explaining the company benefits during the workshop.

To date 257 employees have attended such sessions and an estimated 240 will choose to take part in the program this year.

Another need for this type of program arises out of the fact that Union Oil facilities are so widespread. "This makes it impossible for all employees to receive the same information explained with the same breadth of knowledge," says Carl Brick, manager of Management Development Services, who conducts the day-to-day administration of the program.

(L to R) Carl Brick, Chuck Strathman and Don Solberg address the implications of retirement for potential retirees.

"We have had all kinds of inquiries from people going into retirement about this type of program," Rather than duplicate programs used by other companies, Industrial Relations personnel solicited the guidance of a consultant and the input from the experts at Union's Tax Division to tailor the Retirement Planning Workshop from the ground up and thus fulfill the particular needs of the 300 to 350 employees who retire from Union Oil each year.

Experts with a thorough knowledge of the issues conduct the workshop...

Experts with a thorough knowledge of the issues conduct the workshop, it is aimed specifically at those who are committed to retiring in the near future in order to supply them with the most current information. Therefore, the materials used are constantly updated. "We chose our target group early. Due to consistent alterations in tax laws and benefits, much of the information we have now would be obsolete for anyone planning retirement in three years," explains Bill Barber, manager of Manpower Planning and Development. A significant feature of the program, which is offered regularly at Union Oil Center and upon demand at other Union locations, is the inclusion of spouses. Of the 257 employees who have attended, 190 were accompanied by their spouses.

The day-long workshops are conducted by Brick, Solberg and Chuck Strathman, a Union Oil attorney who explains the tax complications incurred by retirement. It is structured informally to encourage questions and a high degree of audience participation.

It is structured informally to encourage questions and a high degree of audience participation. Throughout the course of the workshop Union's retiring employees, whose average age is 62, are guided through the intricacies of the company's benefit plans, the options available to them and the tax considerations involved. The material is offered as a guide for making some basic decisions facing retirees concerning their retirement, profit sharing and employee stock ownership plans; whether to take lump sums or annuity distributions and how tax laws might apply.

Retiring employees must consider how much supplemental accident and life insurance should be continued after retirement and also whether medical coverage should be continued, if the employee or dependent is eligible.

...retirees are given financial planning worksheets on which to figure estimates of their present spendable income.

...compare spendable income before and after retirement.

Prior to the workshop all prospective retirees are given financial planning worksheets on which to figure estimates of their present spendable income. Another worksheet helps them figure cash needs before and after retirement, and another is used to list assets and liabilities. The worksheets are added to a Retirement Planning Workbook which is considered a key part of the program. This is supplemented with benefit booklets, a Social Security guide and another text on retirement planning

At the workshop participants are supplied with a report compiled from their personnel records reflecting their current status in the company's benefit plans and showing estimates of those benefits according to the different options available to them at retirement. These figures are used in conjunction with the worksheets completed before the workshop to estimate and compare spendable income before and after retirement.

"The main point of the program," says Paul Foreman, manager of Benefits Plans and Policy Development, "is that prospective retirees understand these worksheets and actually use them to analyze their own personal circumstances." Information given is not offered as specific advice. Future retirees are advised to seek financial expertise on an individual basis.

"The workshop is not designed to in any way influence the decisions facing the employee," explains Strathman. "We're just here to help arrive at decisions. We take a neutral position."

"We're just here to help arrive at decisions. We take a neutral position."

Says Foreman: "Because of the current economic environment people are especially concerned about their income after retirement. We try to help the people who attend this workshop recognize their own potential for planning their future finances and hope they leave with a better understanding of their financial situation at retirement."

GASOLINE:

THE FUEL THAT MAKES THE COUNTRY GO

Photos and Story by Linda Gleason

Whether it be an ancient wreck struggling through its last few miles or the newest shining model just off Detroit's assembly lines, each time you pull your car into a Union 76 service station and fill 'er up, you can rest assured that tankful after tankful, the gasoline you purchase is manufactured to precisely meet Union's specifications for quality and performance countless people and years of research have seen to that.

Gasoline is but one of the many petroleum products produced by Union Oil Company that is carefully monitored throughout all stages of production to meet stringent specifications.

All gasolines are not the same and each differs because of separate specifications demanded by region, climate and motorist needs.

"There are three basic reasons that specifications are needed," explains Edward Wiseman, supervisor of fuels research at the Fred L. Hartley Research Center in Brea, Ca. "One reason is to control the performance of the product in the customer's machine; the second is to meet legal requirements which usually have some basis to guarantee performance, too; and the third is to control the product's performance in relation to its competitive position in the marketplace."

The primary watchdogs for quality control on all Union Oil products not just fuels—are the company specifications committees. The two committees, one each for the company's western and eastern regions, are composed of representatives from three key groups within Union Oil with interests in marketing, research and refining.

The committees meet regularly to discuss at length and to consider all important ramifications while grinding out specifications for new Union Oil

(Left) Before any product leaves the Los Angeles Refinery it is checked against stringent specifications. (Above) Edward Wiseman, supervisor of fuels research. products or to institute changes in those items already existing.

"There is tremendous interplay between these groups in order to arrive at specifications," says Wiseman. "Simply speaking, the marketing people establish the types of products the company should offer in the marketplace. Research personnel then ask the committee for guidance as to what properties the products should have to provide the most acceptable balance of the many performance features of benefit to the customer. Research then recommends specification levels. With this information the refining people create a computerized model which takes into account all the oil stocks available and determine if, in fact, such a product from the stocks can be blended. In addition, they determine how much it will cost and the volume that can be produced."

Production is controlled by specifications imposed by the government and industry as well as those set by the company itself.

The government becomes involved directly with local, state and federal laws which specify the properties fuels must have in order to be marketed. The military also sets very stringent guidelines for the fuels it uses.

Industry standards are set through the American Society for Testing Materials (A.S.T.M.), a consensus body which sets voluntary guidelines. The group is composed of representatives from all interested parties including the automotive and petroleum industries, suppliers to these industries, state and federal people and consumer advocates. A.S.T.M. specifications evolve out of compromise, a tedious process which can take from five to 15 years.

(Right) Peter Rey, supervisor of the Los Angeles Refinery analytical lab, conducts an air quality test. (Below) All of Union's refineries abide by the guidelines set by the Specifications committee. (Bottom) Clyde Williams reviews octane levels on a computer printout. "When Union goes to set its own specifications it looks in all directions—to the A.S.T.M., the military and the local, state and federal governments. It's a huge, complex network in which everyone works together," says Wiseman. "We draw on all this conventional wisdom and overlay our own particular company demands to complete the picture."

It's up to the refineries to sort out the myriad specifications and make the products in accordance with those guidelines. The intricate task is achieved with continuous testing throughout the blending process.

After these guidelines have been determined, the refining process then begins.

Each week a blending schedule is devised by the blend engineer who takes into account the different types of fuels and oils that need to be pro-

duced from available stocks at the refinery. The blend engineer must be knowledgeable of all the specifications that must be met and compose a blend of stocks that will meet the set requirements.

"We have two major ways by which we control to specifications," explains Clyde Williams, blending process foreman at Union's Los Angeles refinery. "We take control samples periodically as we're blending the gasoline. These are sent to the chemical lab where standard tests are conducted to check different properties of the blend, such as volatility, a value which affects the occurrence of vapor lock in a car. Also, our computer gives us an update every four minutes on octane levels. During a typical 85,000 barrel blend, which takes from 17 to 20 hours to complete, the blender operator can closely monitor this information and make stock

adjustments at the blender control panel to be 'on grade,' or meet target specifications."

As specifications vary for different types of fuel, the stringency of those controls varies as well. "Gasoline is very tightly controlled compared to other fuels," explains Gary Johnson, blend engineer at the Los Angeles refinery. "When blending some fuels we aim somewhere between minimum and maximum specifications. Certain specifications for gasoline must be met exactly, simply because a gasoline engine won't burn quite the range of fuels that say, a diesel engine will."

To make an already complex process even more difficult, some specifications change seasonally and regionally, since temperature affects a car's performance and because automobile emission regulations differ from state to state. "We have to plan our production so that on a given date, when the specifications change, John Q. Public can go to the gas pumps and get the fuel he needs for his car," says Johnson.

Before anything leaves the refinery a final check to insure quality is made. "We take a 'true-cut' sample—a composite of the total blend taken from the pipeline," says Williams. "We check all the values of the sample against the specifications dictated by the committee before anything is dispersed throughout the marketing system."

HIDDEN BENEFITS FOR ALL

Otis Tobey commutes 42 miles round trip from Hacienda Heights to Union Oil Center in Los Angeles each day and still manages to operate his full-size automobile on a scant four gallons of gasoline per week. His large car isn't a fuel-saving marvel. The Union Oil Manager of Energy Efficiency simply stretches his mileage and shrinks his gas bill by participating in a five-person carpool.

Tobey's extended mileage isn't unique among Union Oil employees. A census conducted in December 1980 shows that approximately half of the 1,550 employees working at three large Union Oil facilities throughout downtown Los Angeles share rides in one form or another—some commuting from as far as El Toro, Laguna and Thousand Oaks, southern California communities as distant as 50 miles away.

Two-person ridesharing groups make up 35 percent of the total, the majority of them married couples dropping one person to another place of employment along the way. A number of married couples are also employed by Union Oil. Three person carpools make up 13 percent, four person groups comprise ten percent, and five percent of all company carpools are comprised of more than four riders.

The various government agencies involved in energy-saving programs consider groups of three or more persons a "carpool" and two persons a "rideshare." A "vanpool" is made up of 10 to 15 people. A small percentage of Union employees participate in vanpools.

Not only did the census prove that many Union employees were already in carpools, but also that many ex-. pressed an interest in joining their fellow employees in sharing rides to and from work.

"The company has an extreme interest in the conservation of energy in general, and that includes ridesharing," says Tobey. "We encourage all employees to conserve and we actively try to assist people in finding employees to share rides."

The search begins with a list of all employees in the area, categorized by zip code area to enable neighbors to find each other. If a person fails to locate a fellow employee in the zip code area list, Tobey uses maps to prepare area surveys which may turn up potential riders in other adjoining zip code areas. "I only make these on individual requests, but over the course of time I've covered just about the entire southland basin," says Tobey, explaining that Los Angeles, not counting

CARPOOL RIDER PERCENTAGES

suburbs, is spread over 464 square miles and has relatively poor public transportation systems.

"We have an advantage in organizing our ridepools within the company because, basically, we're talking about people being at work from 7:45 to 4:30. When we can't find a ridepool for someone within the company, we look elsewhere," he adds. When neither the zip code list or the area survey produces a shared ride, the employee is referred to Commuter Computer, a publicly funded group to help people find rides.

It's up to the employee to negotiate his own rideshare, but when there is a special problem Tobey is willing to step in. "Sometimes I can devise a special route that will help reduce the commute or even find them a ride for at least part of the commute."

Tobey estimates that the average one-way commute for Union Oil employees is about 20 miles. High concentrations of Union employees come from communities such as Long Beach, Palos Verdes, Pasadena, La Crescenta, West Los Angeles, West Covina and Whittier.

"Carpooling and ridesharing have gone on ever since people began working in downtown Los Angeles," says Tobey, who recalls his father used to share a ride in the 1930s while working at a downtown Union Oil building. "We have one ridepool that has been together, pretty much in the same composition it's in now, since Union Oil Center opened in 1958," he says.

"Ridesharing calls for flexibility," Tobey adds. "Many people feel that they can't rideshare because they work irregular hours, but you can always find someone with whom to work that out. Others feel that it takes too much time in the morning to drive around the neighborhood and gather riders. They can solve this problem by making arrangements to meet at one house and 'park and ride? They don't have to drive very far and it saves a lot of time."

The most obvious incentive to employees is the reduction of monthly gasoline bills. "With the Arab Oil embargo in 1973, which created long lines at service stations and rising fuel prices, ridesharing became crucial to some people," says Tobey. "While ridesharing is good for our own pocketbook, it's also good for the national economy. The American Petroleum Institute reported that in 1977 the United States imported 47.7 percent of its crude oil and product—the highest amount ever imported. By 1981 that number was reduced to 35.9 percent.

There are many environmental benefits as well, the main ones being the reduction in traffic and air pollution.

"It also helps to have a carpool when the Air Quality Control district predicts a second-stage smog alert (an occasional summer condition in southern California when emissions reach what is considered an unhealthy level). There are usually five to ten days in the late summer months when it is predicted that air pollution will exceed a certain level," Tobey explains. "Certain large companies, including Union Oil, are mandated to cause a reduction in the number of cars driven to work on those days. Union is allowed to have one car per three employees parked in its garages."

Some people who rideshare may do so with the sole intent to save money, others to break the monotony of a long commute alone, but the benefits produced from ridesharing are reaped by everyone.

Modern Facilities Sprout in Old Farmlands

In years past the 237 sprawling acres surrounding the Union 76 Eastern Region headquarters in Schaumburg, IL., were blanketed with field upon field of soy bean.

(Left) Guests can relax in the open, casual setting of Woodfield's Lobbibar. (Top) An abundance of potted plants creates an airy atmosphere in the hotel lobby.

(Top right) The handsome five-story building blends well with the surrounding community of Schaumburg. (Right) Around the clock the nearly 500 employees see to guests' needs.

More recently the Chicago suburb has witnessed a tremendous spurt of development, the luxurious five-story Hyatt Regency Woodfield hotel being the newest structure to sprout from a parcel of that land.

In 1958, prior to the 1966 merger with Union Oil, the Pure Oil Company purchased the 237 acres for \$500 an acre. "Today it's worth about \$175,000 to \$250,000," says Bill Huston, manager of real estate investments and new projects, in the Union Real Estate Division. "The Schaumburg area has become one of the hottest development areas in the country. The growth there is comparable to that of Orange County in California."

At the time of purchase the 237 acres were in three parcels, with the 51 acres in the center reserved for what was then the Pure Oil headquarters. To the west, 82 acres were designated to be left for future development property, while the eastern 104 acres were considered for more immediate development possibilities, explains Huston, who was real estate manager in Schaumburg at the time.

In 1972 Union entered into a partnership which included the Pritzker family, owners of the Hyatt Hotels Corporation, and Bennett and Khanweiler Assoc., corporate real estate developer and operating partner, for the sole purpose of developing that specific 104 acre parcel of land. They devised a three-part development scheme and named the project Woodfield Metrocenter.

In September 1980, with the opening of the 13-story Centennial Center I, in which much of the Union Chemicals Division is now based, Phase I was completed. Identical office buildings will be constructed adjacent to the green-tinted glass office building as the need arises. Groundbreaking for Centennial Center II is already scheduled for this year.

In two to three years, the partnership hopes to break ground on Phase III of the development—a shopping mall.

"The shopping center will be small in relation to the Woodfield Shopping Mall across the street. The market indicates that there is a demand for some of the specialty stores that are not already established in the existing

mall," says Huston. "Right now we're meeting with a shopping center developer and looking at high style merchandisers as possible tenants."

Last year the Hyatt Regency Woodfield opened its graceful arched doorways to guests, thus completing Phase II of the development.

"When the market demanded a hotel in the area, the obvious came to mind since the ownership consisted of the Hyatt people themselves," explains Huston. "They are what we believe to be the finest partnership we could get into, as far as the hotel business is concerned." Hyatt has contracted to manage the hotel for 20 years.

Although most Hyatt Regencies are recognized for their opulent towering edifices, the Hyatt Woodfield is an exception. "The five-story design is Hyatt's answer to a residential, neighborhood hotel, in order to blend with the Schaumburg community," says Huston of the conservative looking building.

Once inside however, the Hyatt Regency Woodfield is every bit as elegant as the Hyatt Regency San Francisco or the Hyatt Regency O'Hare in Chicago.

The building is designed around four atria, giving every room a pleasant garden view. The walls in the lobby and the restaurants are covered with specially hand woven silks and cottons from France, Israel, Morocco and India. All the rooms are decorated with colorful nature photographs.

The new hotel is managed by Helmut Brenzinger, who gained his hospitable skills at the Bad-Reichenhall Hotel School in his native Bavaria. Brenzinger has worked at some of the finest European hotels.

Like other Hyatt Regencies, the Woodfield also offers a variety of restaurants and lounges to satisfy any palate.

A Swiss chef prepares the sumptuous gourmet offerings in Baguettes, named for the freshly baked French bread served there.

A more casual dining atmosphere is found in Crumpets, where anyone with a sweet tooth would be stumped with making only one selection at the tempting dessert bar.

Guests can relax with a cocktail in the Lobbibar to the lull of water

gently flowing over Japanese river rocks underneath four seating platforms, or listen to one of the pianists performing in the more intimate setting of Blossoms Bar.

Adjacent to the hotel is the Playground, quickly becoming one of the most popular singles bars in the area. Thirty computerized, syncronized projectors flash more than 3,000 images onto three huge screens lighting up the otherwise austere grey surroundings of this prototype bar. Add three color lazers and five sound systems and while enjoying the beautiful peaks and valleys of the Rockies, Playground guests might find themselves caught in the middle of a seconds-long, multimedia thunderstorm before returning to the serenity of the mountains.

Being part of a larger development plan, the elegant hotel was designed to accommodate future expansion. When the need arises a 400-room addition will be constructed. Architects have also envisioned the addition of an enclosed aerial walkway connecting the hotel with Centennial Center I and another connecting it with the shopping mall.

"People envision Schaumburg to be the second downtown Chicago by the year 2000 when this project is completed and other land in the area has been developed. It's an exciting piece of ground and it has tremendous potential," says Huston.

(Top Left) The hotel was designed around four atria, giving all 484 rooms and suites a pleasant garden view. (Left) Water gently flows over Japanese river rocks underneath four seating platforms in the Lobbibar. (Below) Both of the hotel's restaurants overlook the year-round heated outdoor pool and two Jacuzzis.

Surrounded by lush ferns, a CBMM employee suns himself in the appealing living quarters (Above right). The childcare center is a well-kept, professional operation (Above), where children up to seven years of age are taught. As the construction of the conveyor belt goes on (Right) the quiet serenity of the city of Araxa is self evident (Facing page).

Photos by Sergio Ortiz

At one time in the not too distant past, the bellwether of all Brazilian economy was found in the state of *Minas Gerais.* This land-locked but charming state in mid-eastern Brazil was then relatively poor in agriculture, but it was blessed in other resources that made the early settlers of that country rush to *Minas Gerais* much like the Forty Niners once flocked to the gold fields of California in the middle of last century.

The migration to both *Minas Gerais* and California was due to one reason —gold fever. Both states underwent a booming gold rush that brought wealth to many and despair to others.

The mines at *Minas Gerais* were largely responsible for keeping the tottering Portuguese empire as a formidable world colonial power along with other great empires like Great Britain, France and Spain.

This was due to a Portuguese imperial decree which dictated all taxes paid to Lisbon by Brazil, by far its richest colony, must be remitted in gold. The rich gold veins of *Minas Gerais* sated Lisbon's imperial thirst much in the same manner that the mines of Peru and the silver of Mexico's Taxco kept the Spanish crown as a mighty world power during the same time.

Minas Gerais means "General Mines," an obvious name for the state since extremely prolific mines were found throughout its borders. But, of course, that was more than a century ago. The gold mines at Minas Gerais have been depleted for the most part. Today's Brazilian gold strikes are in an area far north from Minas Gerais mostly in the Amazon basin.

But that does not mean that *Minas* Gerais has lost its significance in the mineral world.

Far from it.

For in the soil of *Minas Gerais*, so rich in many minerals, one of the most important minerals to modern man is found in good quantities.

In the southern part of *Minas Gerais* near the city of Araxa (pronounced Ah-rah-sha), vast reserves of niobium are found in deposits of pyrochlore ore

Niobium (known as columbium in the U.S.) is used in many modern industrial projects where strong steel is needed. Niobium is a must in the

manufacture of steel for trans-Arctic pipelines, heavy-duty turbine blades, offshore drilling platforms and tough earth-moving equipment. All the steel used in these projects must have a very hard resistance to harsh weather and other conditions that wreak havoc on even the toughest alloys.

A significant increase in the strength of steel is acquired by adding a minute amount of niobium. According to metallurgical experts, all that's needed is roughly 0.03 percent of niobium in steel to reach the toughness required for most of today's projects.

This is the reason why niobium has emerged as one of the most useful alloying elements in industry. Its ready availability and competitive prices have resulted in a sustained and vigorous growth in its uses.

That is a long way for the metal to have gone in 20 years, since niobium

was considered a relatively exotic metal without any significant use as recently as the early 1960s.

It was then that the benefits of niobium came to light after research work at England's Sheffield University first demonstrated that very small amounts of the metal result in a significant increase in the strength of steel.

Soon after that, extensive developments and additional discoveries of carbonatite deposits containing niobium were made near Araxa. That new source was so vast that it is practically inexhaustible.

The mine at Araxa, managed and operated by *Companhia Brasileira de Metalurgia e Mineracao* (CBMM)—or Brazilian Metallurgical and Minerals Company—stands today at the forefront of the world's niobium industry. The ore mined there is owned in part by CBMM and partly by the *Minas Gerais* state government.

CBMM, in turn, is owned 53 percent by Brazilian interests and 47 percent by Molycorp, Inc., a wholly owned subsidiary of Union Oil Company of California.

Araxa is perhaps the most efficient and cleanest operation of its type in the world. The open pit mine where the niobium ore is found sits smack in the middle of a series of rolling meadows that resemble the hills of Kentucky.

According to Jose Alberto de Camargo, managing director of CBMM, "every care has been taken to make sure the mine and its operations adapt to the surrounding area."

And it shows.

Located about three miles south of Araxa, a series of modern buildings that resemble a clean and peaceful college campus more than anything else, serve as the administration center, research laboratories, warehouses, work centers and other support facilities necessary for the operation of the mine.

At the base of a lush green knoll, there is even a small zoo where a vacant-eyed lion named "Juruna" shares a cage with a frisky Doberman called "Happy" in the most admirable of friendships. On the other side, another fenced compound houses mynah birds, toucans, fawns and emus. Mine workers sometimes delight in visiting the zoo during breaks and lunch periods.

The administration building is as impeccable and appealing as the rest of the operation. The sparkling laboratories, where modern computer technology is used to determine the conditions of the ore and control product quality, are equal to those found in many hospitals.

But it is at the mine where the real work begins.

At the pit, giant earth movers and tractors wrest the ore from the ground and load it onto trucks that transport it to the mill.

According to Camargo, "this (the transport operation) will end soon, since we are currently constructing a conveyor belt that will allow us to receive ore at the mill 24-hours a day."

From a distance this conveyor belt looks like a miniature Great Wall of China. It stretches over verdant hills like a giant strip running from mine to the mill where the work of producing niobium takes place. It is two miles long, 42-inches in width, and is capable of transporting 1,000 tons of ore an hour.

Camargo, however, says the belt will handle only 3,500 tons of ore a day during its initial phase.

Still, that's quite a figure and it is

The mine and mill's final product, ferroniobium (Facing page), stands on the foreground as trucks and loaders remove ore from the open pit mine. The ferroniobium is obtained after workers fire charges poured into reactor vessels (Top). Some 16 hours later, the slag is tapped from the vessels and left in sand to cool (Above). During all this, construction of the conveyor belt loading station (Left) goes on unimpaired some distance away.

Before touring the mine and mill operations at the Brazilian complex near Araxa, Jose Alberto de Camargo (L), CBMM managing director, confers with Thomas B. Sleeman, president of Molycorp, Inc.; Octaviano de Souza Paraiso and Lionel Raby, both CBMM directors and senior managers and Helio Dias de Moura, Molycorp's legal representative in Brazil.

one of the reasons the total production of the Araxa mine will exceed 875,000 tons of yearly ore production by the end of 1982.

Even a cursory visit to the CBMM mine reveals that everything the Brazilian operation was said to be is true. It definitely ranks among the cleanest and safest operating mine and mill of its kind.

The new mill completed at the end of 1981 and responsible for doubling CBMM's capacity, is a very impressive project.

Once the ore has been crushed during the initial production step, it is carried by a small conveyor belt into a ball-mill grinding process. After going through the ball-mill grinders, the ore goes into a magnetic separation process where the magnetite prevalent in the Araxa ore is removed.

From there, the ore goes through a

flotation process which separates niobium from other minerals and results in a niobium concentrate.

The concentrate then goes through a calcining and leaching plant where remaining impurities are eliminated.

Through it all, workers criss-cross catwalks and work in a very no-nonsense manner aimed at producing niobium.

Throughout the project, CBMM personnel take the outmost care in maintaining the cleanliness and beauty of the area.

If the mining and milling processes are impressive, the actual production of ferroniobium—the form in which most of the metal is used—is nothing short of awesome.

The Araxa ferroniobium operation is the largest facility of its type in the world, in terms of size and quantity of ferroniobium produced. Six smelting charges are fired each day producing approximately 11 metric tons each of ferroniobium.

To accomplish this, charges are poured into reactor vessels and the reaction is initiated with a mixture of sodium peroxide and aluminum powder.

The result is a fire of quite a magnitude. Workers stand back as the building becomes increasingly hot while the metals begin to separate and form.

This all lasts about 15 minutes and the temperature in the vessels reaches 2,400 degrees (Celsius). This temperature allows for the slag and liquid niobium-iron alloy to gradually separate into two layers, with the slag floating on top of the metal. When the reaction is finished, the slag is tapped from the vessel and left in the sand to cool and solidify.

Sixteen hours after the reaction, the

(Top row, l-r): Overall scenes of CBMM's niobium mine and mill operations include a young employee operating a computer in the laboratories, the open pit mine with mill facilities in background, the ball mill and a view of the partly finished conveyor belt.

(Bottom row, l-r): A fire of quite a magnitude results from the reaction, close pals "Juruna" and "Happy," new construction going on in Araxa and workers testing samples in the laboratories.

slag is removed from the sand bed, transferred to a dump truck and taken to a disposal area where it is buried.

What remains is a ferroniobium "button" kept in the sand for several more hours until it solidifies before it is crushed and screened to meet the necessary specifications.

If the production of niobium is the foremost business on hand, maintaining a high quality of life for the more than 500 workers employed in all facets of operation by CBMM ranks among the most important.

A distance from the mine, just outside Araxa, CBMM has built modern structures where its personnel live in comfort. There are medical and dental clinics, stores, game rooms, auditoriums, playing fields and even a daycare center where pre-school children of employees are cared for while their parents work.

Although the new plant will not be fully operational until later this year, the success of CBMM is evident. All this is due to the result of diligent efforts CBMM to put the Araxa mine at the forefront of the niobium industry.

According to Thomas B. Sleeman, president of Molycorp, Inc., "The project is a one-of-its kind, and as shareowners and one of the distributors of CBMM products in North America, Molycorp takes pride in having been instrumental in the development of the mine and the initial process, which has since been improved. The success of the Araxa mine is evident when one considers that it produces over half of the niobium used in the world."

The total operations are unlike anything in the industry, and workers at all levels express pride that the technology for new products which have important uses in aerospace, aircraft industry and modern technology have been developed in Brazil by CBMM staff, with Brazilian government researchers lending a helping hand.

Very rapidly, Araxa is becoming a mineral center that would leave the old mining camps at *Minas Gerais* that once helped put the Portuguese empire on the map, seem almost void of richness and resources.

SHALE PROJECT EXPLAINED

An artist's conception of Union's oil shale mine and retorting complex in Garfield County, Colorado. The rendering "cuts away" the face of the cliff to reveal the mine's interior.

Shale crushers operate inside the room and pillar mine to crush 12,500 tons of ore per day into pieces less than two inches in size. In the room and pillar mine roughly 75 percent of the ore is mined leaving large pillars to support the ceiling of the 50 by 60 foot mine face.

A conveyor belt carries the crushed shale ore to be screened to the proper size and held in the storage area. The ore is later transported from the storage area, via another conveyor belt, to the feed bin of the Union upflow retort for the extraction of shale oil.

At the retort a rock pump with a tenfoot diameter piston forces ore upward into the retort. Recycle gas, heated to 1000 degrees F, enters the top of the retort releasing liquid and gaseous shale oil from the ore.

After treatment, the gas produced from the retorting of shale is burned in the recycle gas heater to fuel the plant.

Shale oil equipment prepares the oil to go to the upgrading plant eight miles away where impurities are removed and it is converted into 10,000 barrels of high quality syncrude oil daily. From the upgrading plant the syncrude is sent to Union's conventional refineries to be fractionated.

Union's Unisulf process removes the sulfur from the gas before it is burned in the recycle gas heater.

The retorted shale is cooled in two 150-foot deep shafts and conveyed to an enclosed chute and dropped to the valley floor where it will be spread, compacted and revegitated.

RADIAL TIRES HELP STRETCH CAR MILE4GE

From the first pneumatic tubes which were invented in the mid 1800s for the sole purpose of making automobiles ride smoother, to today's radials which offer innumerable benefits for automobile operation—namely that of improving gas mileage—tires have come a long way.

Because manufacturers produce tires with an infinite variety of properties, motorists today are faced with a number of choices when selecting automobile tires. For example, tires come in ten sizes, three rim diameters, three tread types and three sidewall types—and that's just a few of the variances. Of all the choices to be made, however, one of the most significant considerations affecting a car's performance is simply, how a tire has been constructed.

There are three basic tire construction types: radial, bias and bias-belted.

The radial tires sold in Union Oil service stations, which are manufactured by Kelly-Springfield, a Maryland based tire company, usually have two plies—or layers of rubber covered polyester cords—running parallel to each other at 90 degree angles to the center of the tire. The plies are attached to beads, or strands of brassplated rubber-coated steel wire, which anchor the tire onto the rim.

Three to six layers of belted fabric, steel cord or fiberglass are sandwiched between the body plies and the grooved rubber tread running circumferentially around a radial tire.

The construction of a bias tire consists of plies which criss-cross over each other at an angle to the center of the tire. The bias tire's plies are also anchored with steel beads. The bias tire, which has been the traditional type of tire construction for many years, is noted for its smooth riding qualities.

Steel wire, so essential in the manufacture of radial tires, is being prepared for use as belts in radials at the Kelly-Springfield plant in Fayetteville, N.C., where Union Oil's Five-Star radials are manufactured (Above). "Green," or vulcanized, tires are waiting to be placed in curing presses where they will receive their more familiar shape (Left).

In the bias-belted tire again the plies are criss-crossed at an angle and also has stabilizing belts between the tread and body plies. The stabilizing belts reduce wear in tread, but also give a harsher ride than bias tires and more rolling resistance than radial tires which reduce gas mileage.

While the radial tire may cost more, its construction results in lower rolling resistance—or tread "squirm" when the tire comes into contact with the road—than other types of construction thus increasing gasoline mileage and offsetting the extra cost.

In 1980, studies conducted by the Society of Automotive Engineers showed that under varied test conditions a radial tire's rolling resistance is 12 to 60 percent lower than that of other types of tires.

While consumers frequently replace their worn tires with bias or biasbelted tires, it is estimated that automobile manufacturers will equip 100 percent of the cars rolling off their assembly lines with radial tires this year. But increased mileage is only one of the many advantages of using radial tires.

Automobiles equipped with radial tires handle better because radial sidewalls are more flexible and allow the tread to remain flat on the road. This also gives a smoother ride at highway speeds. Radial tires give more traction for cornering, braking and acceleration.

A radial's stabilizing belts support the tread grooves, keeping them open and in more efficient contact with the road surface. The belts also increase resistance to punctures and road hazards and while enhancing the life of the tread.

In order to get the optimum performance from a radial tire, as with any type of tire, it must be maintained

properly.

A properly inflated radial tire has a distinctive bulge in the sidewall which sometimes gives it the appearance of being underinflated. Kelly suggests the vehicle manufacturer's recommendations be followed and also that inflation pressures be checked monthly, if not weekly, warning that tires must never be underinflated. Kelly also recommends that inflation pressures be checked "cold," that is before the car

A tire sorter (Top) inspects a Five-Star Union Steel radial tire as rolls of fabric are processed for use as tire plies (Above). A tire builder prepares to remove a "green" tire from his machine (Left).

has been driven more than a few miles. Improperly inflated tires cause a safety hazard, wear faster and also reduce fuel economy.

Premature or uneven tire wear is usually caused by misalignment. An unusual shimmy, or vibration, could mean that some front-end repairs are needed.

Proper tire rotation at periodic mileage intervals insures more uniform tire wear and increases the tire's life. When rotating tires, inflation pressures should be adjusted according to their new position on the car. A vehicle owner's manual should be consulted for rotation instructions.

Different types of tires may be used on the same vehicle but never on the same axle. For example, two bias ply tires may be used on the front axle and two radials on the rear. When mixing however, radial tires must always be placed on the rear axle.

Radial tires were first introduced in the late 1940s in Great Britain. With the design and materials undergoing continual improvement the radials becoming so widely used today bear little resemblence to the original European innovation. With fuel economy at the forefront of everyone's mind these days advances in technology will undoubtedly result in a radial tire even further removed from its predecessor.

A tire inspector at the Kelly-Springfield plant examines a tire bead. The bead is assembled along with other component parts by a highly-trained builder, all part of the delicate process that results in radial tires.

CORPORATE

March 19	82
50 YEARS	Oliver M. Frinier, Union Oil Center
40 YEARS	Herbert P. Scharlow, Union Oil Center
30 YEARS	John J. Heller, Union Oil Center Lewis D. Lawrence, Union Oil Center Mary P. Nevis, Union Oil Center
20 YEARS	Donald C. Gearhart, Union Oil Center
15 YEARS	Michael E. Dodd, Union Oil Center Joseph E. Perkins, Union Oil Center Charles R. Schiavi, Schaumburg, Il.
10 YEARS	Maria G. Forster, Union Oil Center John T. Newton, Union Oil Center
5 YEARS	William J. Hand, Schaumburg, Il. Saul D. Miller, Union Oil Center Donna L. Wong, Union Oil Center
April 1982	2
35 YEARS	Edward A. McFadden, Union Oil Center
25 YEARS	Patricia L. Huebert, Schaumburg, Il
15 YEARS	Franklin E. Beavers, Schaumburg, Il George D. Bennett, Union Oil Center Carl R. Brick, Union Oil Center Darryll E. McMaster, San Luis Obispo, Ca. William N. Scruggs, Union Oil Center
10 YEARS	Daniel C. McTaggart, Union Oil Center
5 YEARS	Fredric A. Bonner, Union Oil Center

UNION SCIENCE AND TECHNOLOGY DIVISION

March 1982	
15 YEARS	Rick V. Bertram, Brea, Ca.
10 YEARS	John M. Bickel, Brea, Ca. Charles E. Schoenfeld, Brea, Ca.
5 YEARS	Hugh E. Haven, Jr., Brea, Ca.

april 1962	1982	April
------------	------	-------

30 YEARS	John R. Macievic, Brea, Ca. Laurie C. Smith, Brea, Ca.
25 YEARS	William M. Finn, Brea, Ca.
10 YEARS	Jerald R. Cranz, Brea, Ca. Arthur J. Doerr, Brea, Ca. Rodney J. Meyer, Brea, Ca.
5 YEARS	Joanne E. Basinger, Brea, Ca. Craig E. Carlson, Brea, Ca.

UNION OIL AND GAS DIVISION

March 1982

- 35 YEARS Gale Conner, Van, Tx. Fred L. Hixon, Coalinga, Ca. Claude O. Piepkorn, Coalinga, Ca.
- 30 YEARS Lynn C. Brown, Orcutt, Ca. Rosie Lee Hart, Midland, Tx. Irene G. Williams, Midland, Tx.
- 25 YEARS Mary J. Donald, Union Oil Center Elward J. Price, Houma, La. Mickey W. Renaud, Houston, Tx. K. J. Robertson, Los Angeles, Ca.
- 20 YEARS Robert B. Bellamy, Houma, La.
- 15 YEARS Michael L. Atmore, Santa Paula, Ca. Lowell T. Bernard, Lafayette, La. Robert H. Church, Anchorage, Ak. Audrey G. Scott, Ventura, Ca.
- 10 YEARS Bruce S. Alexander, Houston, Tx. Tony R. Lopez, Santa Paula, Ca. Mary L. Meena, Ventura, Ca. Virginia A. Simons, Ventura, Ca.
- 5 YEARS Earl D. Backus, Olney, II. Russell J. Bertrand, Houma, La. Larry C. Broussard, Lafayette, La. Charles L. Ellison, Van, Tx. Jeanne M. Gallagher, Ventura, Ca. Harry Granger, Houma, La. Michael J. Langlinais, Lafayette, La. John M. Lingol, Anchorage, Ak. Randall K. Smith, Anchorage, Ak. Harry O. Thomas, Jr., Andrews, Tx.

April 1982

- 40 YEARS William E. Phares, Midland, Tx. 35 YEARS C. Don Case, Houston, Tx.
 - Wayne M. Hunt, Los Angeles, Ca. Harold Muscio, Orcutt, Ca. Buford E. McBride, Houston, Tx. Dale W. Noble, Worland, Wy. Sidney J. Vial, Houma, La.
- 30 YEARS Thurman L. Archer, Santa Fe Springs, Ca. William R. Gardner, Orcutt, Ca. Robert O. Johnson, Santa Fe Springs, Ca. Allyn T. Sayre, Union Oil Center Alfred E. White, Worland, Wy. 25 YEARS J. E. Delahoussaye, Lafayette, La. Lillian S. Lee, Houston, Tx. 20 YEARS James E. Brixey, Coalinga, Ca. Joseph C. Carnes, Midland, Tx. Everett C. Stangle, Midland, Tx. Robert L. Caine, Worland, Wy. 15 YEARS Robert J. Levine, Midland, Tx. Fred H. Neal, Midland, Tx. Lelen Maddux, Orcutt, Ca. Edward Ratto, Jr., Orcutt, Ca. Robert K. Rios, Jr., Orcutt, Ca. Robert C. Warthen, Anchorage, Ak. 10 YEARS Lavern Brewer, Midland, Tx. Stephen W. Earp, W. Liberty, Il Willard M. Harper, Anchorage, Ak. Aubin J. Hutchinson, Houma, La. James H. Jones, Houma, La. James T. Lowe, Lafayette, La. George G. Stanley, W. Liberty, Il. **5 YEARS** Terry D. Adcock, Ventura, Ca Dallas L. Caldwell, Coalinga, Ca. Edward L. Chancery, Mobile, Al. Benjamin E. Duggins, Orcutt, Ca. Albert L. Giles, Mobile, Al. John R. Giles, Mobile, Al. Robert V. Hoffmeyer, Casper, Wy Steven E. Leusby, Olney, Il. William W. McGinnis, Santa Fe Springs, Ca. Eria M. Meurer, Midland, Tx. Ronald J. Monceaux, Houma, La. Timothy R. Munoz, Orcutt, Ca. Ernie Ortiz, Santa Fe Springs, Ca. Ronnie M. Oyabu, Orcutt, Ca. Roy O. Priest, Santa Maria, Ca. Onnie J. Rainey, Anchorage, Ak. Michael D. Sehie, Clay City, Il. David T. Sites, Jr., Midland, Tx. Edward C. Smith, Mobile, Al.

UNION INTERNATIONAL DIVISION

April 1982 15 YEARS Thomas K. Muir, Balikpapan, Indonesia

UNION GEOTHERMAL DIVISION

April 1982	
30 YEARS	Betty Lou Kinney, Santa Rosa, Ca.
25 YEARS	Carel Otte, Union Oil Center
15 YEARS	Stephen Pye, Santa Rosa, Ca.
5 YEARS	Douglas L. Crea, Santa Rosa, Ca. Gene A. Suemnicht, Santa Rosa, Ca.

UNION 76 DIVISION

March 1982

40 YEARS Frank Mathos, San Francisco Refinery Joseph E. Rose, San Francisco Refinery Bernard M. Schwalm, Seattle, Wa. Oscar F. Smith, Columbus, Oh. Eugene C. Vaugn, Los Angeles Refinerv 35 YEARS W. C. Bowie, San Francisco Refinery William Budd, Beaumont Refinery Olga A. Dianovsky, Schaumburg, Il. Kenneth L. Falconer, Los Angeles Refinery Lourae E. Gorich, San Francisco Refinery John W. Gorman, Avila, Ca. Homer Gregory, Atlanta, Ga. John A. Russell, Pure Transportation Co., Van, Tx. Robert R. Smith, Chicago Refinery 30 YEARS Melvin P. Bowers, Tallmadge, Oh. Charles L. Ferguson, Cincinnati, Oh. Harry E. Kenny, Jr., Charlotte, N.C. Frank S. Moranda, Schaumburg, II. Aaron M. Palmer, Los Angeles Refinerv Ernest L. Savala, Chicago Refinery Raymond F. Shields, Chicago Refinery Donald F. Wilson, Coalinga, Ca. Vincent S. Zielinski, Chicago Refinery

- 25 YEARS T. D. Esse, Colton Terminal Denny W. Evans, San Francisco, Ca. Eddie J. Girado, Fresno, Ca. Charles T. Kumle, Schaumburg, Il. Donald W. Robb, Milwaukee, Wi. Joseph A. Saliba, Jr., North Hollywood, Ca. John F. Shaltz, Los Angeles Refinery Donald G. Trapp, San Diego, Ca. James H. Vanderveen, Los Angeles, Ca.
- 20 YEARS Ludivina D. Reyes, San Francisco, Ca. Gerald A. Lyons, Schaumburg, Il. Norwood L. Williams, Bainbridge, Ga.

15 YEARS Hugh P. Bain, San Francisco

Refinery William Brent, Jr., Los Angeles Terminal Johnny Castillo, Los Angeles Refinery Gary L. Conklin, San Francisco Refinery James A. Deshotels, Forked Island, La. Ronald J. Fontenot, Beaumont Refinery Vernon L. Jorgensen, San Francisco Refinery Augusta F. Mueller, Schaumburg, Il. Gregory L. Powers, Los Angeles Terminal Richard M. Roach, San Francisco Refinery Laura E. (Sandi) Ross, Los Angeles, Ca. Anthony L. Stefan, San Francisco Refinery Jack E. Thorpe, San Francisco Refinery 10 YEARS John K. Bassett, Beaumont Refinery David C. Cotter, Chicago Refinery Clemencia Y. Dehesa, San Francisco, Ca. Kenneth R. Dorion, Chicago Refinery Constance Godines, Los Angeles, Ca. James C. Hall, Schaumburg, Il. Willie E. Harris, Chicago Refinery Dwight D. Hays, Chicago Refinery William J. Houser, Los Angeles Terminal Thomas J. Hylka, Chicago Refinery William Jackson, Chicago Refinery Lawrence T. Leslie, Jr., Chicago Refinery Harry J. Litchfield, Chicago Refinery Deborah Patton, Portland, Or. Edward D. Pawlowski, Chicago Refinery George Pitchford, Chicago Refinery James M. Potter, Colton Terminal Eugene Stockton, San Francisco Refinery Michael D. Ussery, Anchorage, Ak. Ronald S. Willet, Los Angeles Terminal 5 YEARS Earl R. Bagley, Colton Terminal Gary R. Balzhiser, Los Angeles, Ca. Ruskin A. Battersby, Los Angeles Refiner

Jerr A. Bell, Los Angeles Refinery Gerald C. Berggren, San Francisco Refinery

Thomas F. Bradley, Beaumont Refinery Michael J. Calligan, Chicago Refinery James C. Carr, Beaumont Refinery Tommy G. Casey, San Francisco Refinery Lee D. Chamberlain, Chicago Refinery Melinda A. Chester, Beaumont Refinery Kenneth L. Clendening, Cincinnati, Oh. Shelley Cole, San Francisco Refinery Mildred P. Coles, Beaumont Refinery G. B. Cravey, Beaumont Refinery Darrell R. Davis, Los Angeles Refinery Ruby L. Decuir, Beaumont Refinery Daniel E. Ener, Beaumont Refinery Robert P. Ficks, Schaumburg, Il. Clarence J. Galler, Beaumont Refinery Diane Gibula, Schaumburg, Il. Thomas R. Gilcrease, Beaumont Refinery Ruben Gomez, Beaumont Refinery Herbert David O. Guerra, Beaumont Refinery Walter F. Guy, Los Ángeles Refinery Kellogg R. Hunt, Chicago Refinery Gene D. Ingram, Chicago Refinery Sherman M. Jackson, Beaumont Refinery Franklin D. R. Kelley, Beaumont Refinery Terry W. Keyes, Beaumont Refinery Adam G. Leday, Beaumont Refinery James E. Leonard, Beaumont Refinery Michael W. Lovell, Chicago Refinery Michael C. McMillin, Chicago Refinery Barbara L. Meyer, Schaumburg, Il. William F. Miller, Chicago Refinery Myrna F. Morgan, Beaumont Refinery Patricia A. Mrazek, Schaumburg, II. John R. Neil III, Chicago Refinery John C. Nevils, Chicago Refinery Roxie C. Odom, Beaumont Refinery Lloyd I. Parkhurst, Chicago Refinery Leroy Pete, Jr., Beaumont Refinery Joe G. Price, Beaumont Refinery Ronald R. Read, Beaumont Refinery Edward J. Reiser, Chicago Refinery Jacob L. Rexroat, Chicago Refinery Daniel C. Reynolds, Chicago Refinery Frederick E. Robbins, Portland, Or. Robert M. Schoeppler, Los Angeles, Ca Don S. Simmons, Beaumont Refinery George E. Smith, Jr., Chicago Refinery Thomas C. Sorenson, San Jose, Ca. Edward C. Strysik, Chicago Refinery Ruth A. Summers, Schaumburg, Il. Peggy A. Thomas, Chicago Refinery Grayce M. Wilkinson, Schaumburg, Il. Thomas P. Zak, Beaumont Refinery

April 1982

40 YEARS Raymond J. Boland, Chicago Refiner Walter E. Haupricht, Chicago Refinery Ernest R. Padilla, San Francisco Refinery William E. Norris, Beaumont Refinery 35 YEARS Raymond M. Bancroft, Chicago Refinery Myron L. Clark, Chicago Refinery Benjamin A. Hurst, Montgomery, Al. Flora J. Jenkins, San Francisco, Ca. Thomas E. Lee, Jr., Beaumont Refinery Richard Rapoza, Honolulu Terminal 30 YEARS Russell E. Anderson, Chicago Refiner John H. Bercovitz, Los Angeles, Ca. Lavern Dean Bishop, Los Angeles Refinery John E. Brown, Columbus, Oh. Jack W. Cannon, Los Angeles Refinery King R. Heath, Schaumburg, Il. Thomas R. Hutchins, Anchorage, Ak. Elmer M. Johnson, Los Angeles Refinery Roy D. Lint, Sacramento, Ca. Marjorie E. Monahan, San Francisco, Ca. Robert R. Parker, Schaumburg, Il. Clarence G. Prichard, Pure Transportation Co., Olney, Il. 25 YEARS John N. Hunt, Schaumburg, Il. Mary L. Jones, Atlanta, Ga. Richard W. Schreiner, Atlanta, Ga. 20 YEARS David M. Carlson, Eureka, Ca. Orville G. Linz, Cincinnati, Oh. Hertha C. McKee, Beaumont Refinery Robert D. Millen, Schaumburg, Il. Robert E. Towell, Schaumburg, Il. 15 YEARS Dennis Brannagan, Los Angeles, Ca. Leo D. Carr, Milwaukee, Wi. Richard C. Clark, Beaumont Refinery Theodore J. Hickel, Portland Terminal Jimmy L. Holley, Americus, Ga. Jimmy R. Huckaby, Griffin, Ga. Walter A. Manzanares, Los Angeles Refiner Edward T. Meyers, Chicago Refinery James A. Moller, Schaumburg, Il. Robert L. Panasiewicz, Detroit, Mi.

Alvin C. Sadler, Beaumont Refinery Ronald E. Smith, Los Angeles Terminal James T. Tatum, Beaumont Refinery Edison R. Willett, Beaumont Refinery 10 YEARS Shawn B. Gilfillan, Portland Terminal Eulojio Hernandez, Jr., Beaumont Refinery John A. Jarzynka, Chicago Refinery Ken B. Malkin, Santa Maria, Ca. Roger E. Mandley, Chicago Refinery Larry W. McGaughy, Chicago Refinery Donald Meyer, Schaumburg, Il. Fave M. Miles, San Francisco, Ca. Freddy Morales, Avenal, Ca. Julia A. Teskey, San Francisco, Ca. Gregory J. Tollefsrud, South Holland, Il. Dalisay B. Ycmat, San Francisco, Ca. **5 YEARS** Morris J. Allen, San Francisco Refinery Cecil T. Atkins, Beaumont Refinery Larry G. Burton, San Francisco Refiner Priscilla Cheveres, Beaumont Refinery David R. Coleman, San Francisco Refiner Billy G. Dalby, Beaumont Refinery Steve A. Flack, Fresno, Ca. James H. Glover, Richmond Terminal Raymond J. Guillory, Beaumont Refinery Ralph C. Isaacs, San Francisco, Ca. Monty U. Jarrett, Beaumont Refinery Loren M. Johnson, San Francisco Refinery Kyle L. Koepf, Cleveland, Oh. Randolph G. Ladd, San Francisco Refinery Scott B. Lee, San Francisco Refinery Wilson J. Leleux, Jr., Beaumont Refinery James R. Lemons, Jr., Pure Transportation Co., Olney, Il. Steve D. Maher, San Francisco Refinery Wayne L. McDowell, Spokane, Wa. Lloyd J. McGlothin, Beaumont Refinery Gene H. Michaud, San Francisco Refinery Richard D. Moreno, Stockton, Ca. Craig E. Notter, San Francisco Refinery Randy L. Philpott, Sr., Beaumont Refinerv Caryn L. Reynolds, Sacramento Terminal Buel L. Sauls, Jr., Beaumont Refinerv Bette J. Smythe, Los Angeles, Ca. Bryce W. Stansbury, Beaumont Refinery

Robert P. Raschke, Chicago

Ann Russell, Schaumburg, Il.

Refinery

Wiley G. Sullivan, Jr., Beaumont Refinery
Barbara F. Todd, Sacramento Terminal
James D. Walter, Taft, Ca.
Brian J. Ward, San Francisco Refinery
Vonscylle I. Wilson, Atlanta, Ga.
Ronnie M. Worth, Beaumont Refinery
Becky L. Wyatt, Van Nuys, Ca.
Phillip Yates, Jr., Beaumont Refinery

UNION CHEMICALS DIVISION

March 198	32
30 YEARS	James Hardy, Bridgeview, Il.
25 YEARS	Lupe Adame, Arroyo Grande, Ca.
15 YEARS	Alfred Brown, Brea, Ca. Seldon Reese, Brea, Ca.
10 YEARS	Harold Bloodworth, Kenai, Ak. Ben H. Flores, Rolling Meadows, Il. Ronald E. Poe, Charlotte, N. C.
5 YEARS	Mott B. Covington, Charlotte, N. C. Victor Sieux, Newark, Ca. Roaul A. Yates, Charlotte, N. C.
April 1982	2
30 YEARS	Sekordrei Hawkins, Bridgeview, Il. Loye G. Rains, Kansas City, Mo. Henry L. White, Bridgeview, Il.
20 YEARS	Dan Stump, Union Oil Center Henry T. Waits, Birmingport, Al.
15 YEARS	John J. Falco, Clark, N. J. Elena S. Mercurio, Providence, R. I. James F. Ronan, Conshohocken, Pa. Dionisio Sarmiento, Arroyo Grande, Ca.
10 YEARS	Sandra L. Grimes, Atlanta, Ga. Barbara A. O'Neal, Oakland, Ca. Darrel R. Wallauer, La Mirada, Ca.
5 YEARS	Richard A. Burgess, La Mirada, Ca. Graydon Mallory, La Mirada, Ca. Douglas Weathers, Kenai, Ak.

UNION OIL COMPANY OF CANADA LIMITED

January 198215 YEARSBert Van Donselaar,
Ft. St. John, B.C.
Jack Yucytus, Calgary, Alberta5 YEARSHisham Abdullah, Calgary, Alberta
Hart Schneider, Calgary, AlbertaFebruary 198215 YEARSW. Jack Gelineau, Calgary, AlbertaMarch 19825 YEARSDoral Paxman, Calgary, AlbertaApril 198210 YEARSHelmut Verges, Calgary, Alberta

UNION ENERGY MINING DIVISION

March 1982		
5 YEARS	Norman M. Nelson, Rawlins, Wy.	
April 198	2	
5 YEARS	Clark R. Whitson, Rawlins, Wy.	

MOLYCORP

March 1982	
30 YEARS	Roy Reily, York, Pa.
20 YEARS	William Hewitt, Washington, Pa. Paul Hickman, Washington, Pa. James Horne, Washington, Pa. Carl Miller, Washington, Pa. John Penn, Washington, Pa. John Pettit, Washington, Pa. Shirles Williams, Washington, Pa.
15 YEARS	Aladino Archuleta, Questa, N. M. Leroy Garcia, Questa, N. M. Bennie Martinez, Questa, N. M. Jake Martinez, Questa, N. M.
5 YEARS	Margaret Gonzales, Questa, N. M. Bradley Knaub, York, Pa.
April 1982	2
25 YEARS	Ricardo Gonzales, Questa, N. M.
20 YEARS	Robert McBratney, Washington, Pa Richard Miles, Washington, Pa. A. Ray Plants, Washington, Pa. Thurman Steele, Washington, Pa.
15 YEARS	Joe Archuleta, Questa, N. M.
5 YEARS	Charles Clontz, Mountain Pass, Ca. Chauncey Gladfelter, York, Pa Michael Glatfelter, York, Pa. Eileen Hendon, Spokane, Wa. Dan McClung, Questa, N. M. Steve Steever, Mountain Pass, Ca. Michael Sterner, York, Pa.

POCO GRAPHITE

March 1982	
5 YEARS	Donna McCullar, Decatur, Tx.
April 198	2
5 YEARS	Thomas Norriss, Decatur, Tx.

JOBBERS AND DISTRIBUTORS

January 1982

10 YEARS David Black, Haines, Ak.

March 1982

- 35 YEARS Bagwell Oil Co., Onancock, Va. Stocks Oil Co., Snow Hill, N.C.
- 30 YEARS Mid-South Oil Co., Tunica, Ms. W. Van Caster, Sanger, Ca.
- 15 YEARS Allen Oil Co., Florence, S.C. Bugge Oil Co., Thief River Falls, Mn. Newman Oil Co., Inc., Maryville, Tn. Twig & Sons Oil Co., Warren, Oh.
- 10 YEARS D. O. Blevins & Sons, Inc., Spruce Pine, N.C. Maury River Oil Co., Lexington, Va. The Clay Distributing Co., Attica, Oh.
- 5 YEARS Monroe J. Scelzi, Biola, Ca.

April 1982

- 40 YEARS Latvala Oil Co., Nashwauk, Mn.
- 25 YEARS Bruce A. Cooper, Kelso, Wa. Waterman Oil Co., St. Marys, Oh.
- 15 YEARS Earman Oil Co., Inc., Vero Beach, Fl. Ralph O. Lowe Oil Co., Rome, Ga.
- 10 YEARS Arlington Oil Co., Arlington, Tn. Carrigan Oil Co., Buffalo Lake, Mn. Salter Oil Co., Temperance, Mi. St. Johns Oil Co., St. Augustine, Fl.
- 5 YEARS Rolla Oil Co., Rolla, N.D. Thiel Oil Co., Edon, Oh. Wise Oil & Fuel Co., Cambridge, Md. Zero Oil Co., Belzoni, Ms.

RETIREMENTS

January 1982

- William B. Browne, Union 76 Division Beaumont, Tx. August 21, 1950 Beulah I. Dedde, Oil and Gas League City, Tx. August 16, 1955 Robert A. Fellows, Oil and Gas Santa Maria, Ca. October 7, 1937 James R. Goldsmith, Molycorp Upper St. Clair, Pa. February 15, 1963 Russell Hiatt, Corporate Taft, Ca. August 25, 1945 Perry M. Hicks, Jr., Oil and Gas Lafayette, La. August 3, 1948 August S. Hoyer, Union Chemicals Palatine, Il. August 9, 1936 Willie B. Julian, Union 76 Division Los Alamitos, Ca. August 25, 1945 Lucille V. Magee, Oil and Gas Houston, Tx. February 16, 1960 Charles A. McGuire, Union 76 Division South Euclid, Oh. October 1, 1946 Helen A. Melvin, Union 76 Division North Hollywood, Ca. August 14, 1961 James I. Morris, Oil and Gas Houma, La. March 16, 1949 Bernice E. Pfeiffer, Union 76 Division
- Rolling Meadows, Il. October 14, 1957 Thomas E. Shelton, Jr., Union 76 Division Beaumont, Tx. October 17, 1949

Iris N. Smith, Union 76 Division Nederland, Tx. June 10, 1948
Henry V. Staudt, Union 76 Division Lemont, Il. August 1, 1954

February 1982

Louis R. Cargo, Union 76 Division Rodeo, Ca. March 25, 1954 Nathan R. Carouthers, Union 76 Division Sour Lake, Tx. May 10, 1948 Grover L. Cleveland, Jr., Union Chemicals Yorba Linda, Ca. February 15, 1954 John A. Coxon, Union 76 Division Beaumont, Tx. August 11, 1952 William J. Esgar, Union 76 Division Lockport, Il. September 5, 1961 William H. Foster, Union Chemicals Rolling Hills Estates, Ca. February 17, 1953 Elton L. Goodwin, Union 76 Division Santa Maria, Ca. February 10, 1955 Guy Harrod, Oil and Gas Lovington, N. M. January 26, 1946 John D. Hobbs, Molycorp Taos, N. M. January 6, 1966 George B. Holliday, Union 76 Division Beaumont, Tx. March 28, 1949 Wilbur R. Hunsworth, Science and Technology Laguna Hills, Ca. August 15, 1969 Alfred G. Johnson, Union 76 Division Lemont, Il. November 29, 1939 Thomas M. Jolly, Jr., Union 76 Division Nederland, Tx. January 7, 1953 Harold L. Le Blanc, Oil and Gas Abbeville, La. April 3, 1950 Frank K. Lord, Union 76 Division Huntington Beach, Ca. November 5, 1945 Edward F. Miller, Union 76 Division Crockett, Ca. March 2, 1944 Albert W. Murphy, Oil and Gas Flora, Il. June 29, 1964 George L. Pagan, Oil and Gas Santa Paula, Ca. January 31, 1946 Walter Pollard, Union 76 Division Pismo Beach, Ca. March 14, 1946 Walter P. Primbsch, Union 76 Division Vallejo, Ca. May 9, 1946 Paul J. Purser, Oil and Gas Kermit, Tx. May 13, 1948 William H. Roberts, Union 76 Division Rodeo, Ca. August 22, 1955 Frank W. Robinson, Corporate West Covina, Ca. September 13, 1947 Joseph E. Rose, Union 76 Division Rodeo, Ca. March 17, 1942 Burton B. Sandiford, Science and Technology Placentia, Ca. May 10, 1948 Leonard H. Saunders, Union 76 Division Orinda, Ca. April 14, 1939 Bernard M. Schwalm, Union 76 Division Redmond, Wa. March 23, 1942 Richard E. Sorg, Union 76 Division Joliet, Il. February 24, 1947 Frank S. Sunofsky, Union Chemicals Long Beach, Ca. September 7, 1949 Newman E. Tate, Union 76 Division Albany, Ca. February 2, 1953 William R. Van Liere, Union Chemicals Rancho Palos Verdes, Ca. April 1, 1959

March 1982

Jack E. Coler, Union 76 Division Long Beach, Ca. February 25, 1952 Charles G. Gearhart, Union 76 Division Santa Margarita, Ca. June 2, 1945 Florence K. Graf, Corporate Sepulveda, Ca. May 16, 1966 Marvin L. Hobbs, Oil and Gas Winona, Tx. November 26, 1945 John J. McGowan, Oil and Gas Brea, Ca. August 7, 1964 Arthur J. Nelson, Union 76 Division Santa Maria, Ca. February 10, 1955 Harriet A. Riker (Appel), Corporate New York, N. Y. September 28, 1965 Robert M. Sandmeyer, Corporate Burbank, Ca. June 6, 1955 William A. Speights, Oil and Gas Van, Tx. November 7, 1945 James A Stimpson, Oil and Gas Coalinga, Ca. June 15, 1953 Elden H. Turner, Union 76 Division Santa Maria, Ca. September 16, 1944

IN MEMORIAM

Employees

Shahram Arastoozad, Union 76 Division Beverly Hills, Ca. December 5, 1981 Garret R. Cypher, Oil and Gas La Habra, Ca. January 16, 1982 Robert Eisenhart, Molycorp York, Pa. January 13, 1982 Frank M. Hastings, Molycorp Henderson, Nv. December 13, 1981 Don Jennings, Union 76 Division Long Beach, Ca. December 4, 1981 Vernon F. Pilz, Union 76 Division Lockport, Il. December 22, 1981 Dennis G. Sing, Union 76 Division Joliet, Il. December 12, 1981 Ilee G. Spencer, Union 76 Division Lockport, Il. January 30, 1982 James Warrick, Corporate Buffalo Grove, Il. January 22, 1982

Retirees

Horace A. Lapham, Corporate Alhambra, Ca. January 23, 1982 Norman C. Arnold, Oil and Gas Acton, Ca. December 17, 1981 Louis A. Bernard, Oil and Gas New Iberia, La. January 4, 1982 Arthur N. Bjork, Union 76 Division Highland Park, Il. December 23, 1981 Virgil J. Braun, W. H. Barber Oil Minneapolis, Mn. January 17, 1982 Marvin C. Bressler, Union 76 Division Cincinnati, Oh. December 6, 1981 George W. Buckalew, Union 76 Division Beaumont, Tx. January 8, 1982. Walter L. Bugg, Union 76 Division Phoenix, Az. January 14, 1982 John W. Carlson, Union 76 Division

Eugene, Or. November 26, 1981 Robert T. Collier, Union Chemicals Escalon, Ca. December 18, 1981 Charles N. Combs, Jr., Union 76 Division El Cerrito, Ca. December 23, 1981 Joseph J. Cotter, Union Chemicals Newark, N. J. December 4, 1981 Samuel C. Deleese, Union 76 Division Anaheim, Ca. January 17, 1982 Edwin G. Deleree, Union 76 Division Arrovo Grande, Ca. December 8, 1981 John Denney, Oil and Gas Amarillo, Tx. December 23, 1981 Clarence S. Edgar, Molycorp Washington, Pa. December 8, 1981 Charles A. Goughnour, Union 76 Division Palm Springs, Ca. January 8, 1982 Rolla Grainger, Union 76 Division Bakersfield, Ca. January 30, 1982 Otha A. Hawthorne, Union 76 Division Long Beach, Ca. January 26, 1972 Francis L. Holmgrem, Oil and Gas Fallbrook, Ca. December 5, 1981 Art W. Johnson, Union 76 Division Astoria, Or. December 10, 1981 Verner B. Kelly, Union 76 Division Winter Gardens, Fl. January 22, 1982 Henry C. Kinkade, Oil and Gas San Luis Obispo, Ca. January 7, 1982 Martin Koester, Union 76 Division Richmond, Ca. December 22, 1981 Frank E. Loughrey, Union 76 Division Evanston, II. December 20, 1981 Charles Macho, Union 76 Division Paso Robles, Ca. January 20, 1982 Glen Irving Morin, Union 76 Division Grizzly Flats, Ca. January 10, 1982 Leonard Olson, Union 76 Division Monterey Park, Ca. December 5, 1981 Joseph A. Parker, Barber Oil Minneapolis, Mn. November 8, 1981 Herbert M. Pinkston, Oil and Gas Parkensburg, Il. January 24, 1982 Floyd W. Pratt, Oil and Gas Sapulpa, Ok. November 24, 1981 Jacob D. Rohr, Union 76 Division Cincinnati, Oh. December 16, 1981 Emil F. Rostain, Union 76 Division Delano, Ca. November 28, 1981 Lyle S. Salisbury, Union 76 Division Fort Lauderdale, Fl. January 6, 1982 Paul F. Scheuffler, Union 76 Division Toledo, Oh. November 20, 1981 Frederick S. Scott, Science and Technology Whittier, Ca. January 18, 1982 Leslie Silva, Union 76 Division Pinola, Ca. January 19, 1982 Harold W. Stewart, Oil and Gas Cut Bank, Mt. December 29, 1981 Harold J. Upchurch, Union 76 Division Bakersfield, Ca. December 3, 1981 Arthur I. Van Olinda, Corporate Los Angeles, Ca. January 25, 1982 William F. Waldren, Union 76 Division Fairfield, Ca. January 31, 1982 Gerral W. Wainscott, Oil and Gas Orcutt, Ca. November 24, 1981 Roland T. Williams, Union 76 Division Los Angeles, Ca. December 14, 1981 Robert M. Wilson, Union 76 Division Temple Terrace, Fl. January 15, 1982 Norman A. Wood, Science and Technology Placentia, Ca. December 21, 1981 Tom Wooten, Union 76 Division Nederland, Tx. December 1, 1981

UNION OIL COMPANY OF CALIFORNIA P.O. Box 7600 Los Angeles, California 90051 BULK RATE U.S. POSTAGE PAID Los Angeles, CA Permit No. 62

GARY L FOY 16823 LIGGETT STREET SEPULVEDA CA 91343

VOLUME LXI, NUMBER 2 MARCH/APRIL, 1982 CONTENTS

Employee changes processed automatically All others include label with change of address

Life On An Arctic Rig Workers brave forbidding conditions on Alaska's frozen North Slope.	Page 1
Retirement Planning Helps Start New Lives Experts explain the intricacies of retirement to Union employees.	Page 8
Gasoline: The Fuel That Makes the Country Go High quality products are the result of a complex specifications network.	Page 12
Ridesharing: Hidden Benefits For All Union's downtown Los Angeles employees save energy through ridesharing.	Page 16
Modern Facilities Sprout in Old Farmlands An elegant hotel is part of an ambitious development scheme.	Page 20
Tapping Brazil's New Mineral Wealth Brazil's rolling hills are rich with a steel strengthening mineral.	Page 26
Shale Mining Explained An artist's rendering reveals Union's shale mining and retorting process.	Page 32
Radial Tires Help Stretch Car Mileage The rubber that meets the road means added savings.	Page 34
Service Awards	Page 37

29

Published by CORPORATE COMMUNICATIONS DEPARTMENT, Union Oil Company, Box 7600, Los Angeles, CA 90051. Jerry Luboviski, Vice President Sergio Ortiz; *Editor*; Linda Gleason, *Associate Editor*; Ray Engle and Associates, *Art Directors*;

where oil companies constantly seek to find new deposits. Photograph by Sergio Ortiz.

Janis Derrick, Editorial Assistant.