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a b s t r a c t

Continuously identifying a user’s location context provides new opportunities to understand daily life and
human behavior. Indoor location systems have beenmainly based onWiFi infrastructureswhich consume
a great deal of energy mostly due to keeping the user’s WiFi device connected to the infrastructure
and network communication, limiting the overall time when a user can be tracked. Particularly such
tracking systems on battery-limited mobile devices must be energy-efficient to limit the impact on the
experience of using a phone. Recently, there have been a lot of studies of energy-efficient positioning
systems, but these have focused on outdoor positioning technologies. In this paper, we propose a novel
indoor tracking framework that intelligently determines the location sampling rate and the frequency of
network communication, to optimize the accuracy of the location data while being energy-efficient at the
same time. This framework leverages an accelerometer, widely available on everyday smartphones, to
reduce the duty cycle and the network communication frequency when a tracked user is moving slowly
or not at all. Our framework can work for 14 h without charging, supporting applications that require this
location information without affecting user experience.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many useful applications require long-term, high-accuracy
tracking of the location of their users while indoors. These include
wayfinding applications for people with disabilities [1–3], indoor
monitoring of elders [4], locating people in emergency response
situations, augmented reality and point-of-sale applications. How-
ever, the most accurate indoor tracking systems require infras-
tructure to be purchased and deployed, and for users to wear tags
or beacons [5,6]. Instead, researchers are relying on infrastructure
that is already commonly available: WiFi networks with multi-
ple access points andWiFi-enabled smart phones carried by users.
While there aremany interesting issues to be addressed in improv-
ing the accuracy of localization with such systems, here we focus
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on how to improve their energy-efficiency. Many applications re-
quire real-time tracking and/or long-term history, which necessi-
tates energy-efficient localization. But the WiFi adapter on smart
phones consumes a lot of energy, limiting the usage time of mobile
devices [7]. There are two types of long-term tracking applications:
One type is applications thatmaynot need ahigh sampling rate and
data communication frequency, such as wayfinding applications.
The other type is applications that need a high sampling rate, like
emergency tracking systems. Current studies do not provide mod-
els or algorithms for finding the optimal sampling rate and data
communication frequency for different types of applications.

The main goal of this paper is to build an energy-efficient lo-
calization framework that automaticallymanages sensor availabil-
ity, accuracy and energy. There is an important tradeoff between
localization accuracy in indoor environment and battery lifetime.
For wayfinding and health monitoring applications, they need the
longest battery lifetime possible and do not require the highest ac-
curacy. Some navigation systems need to have high accuracy, but
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Fig. 1. Energy consumption comparison.

are not very concerned with energy consumption as they are of-
ten not used for a long period of time. For our daily tracking ap-
plications, we need to build a model to extend the battery life as
long as possible, while also dynamically meeting the accuracy goal
at the same time. From a user experience perspective, this model
needs to allow the system to optimize battery life by intelligently
managing the location accuracy and energy trade-offs based on
available sensors. To realize the above goal, we developed an ap-
proach based on two observations. First, location applications do
not always need the highest available accuracy, such as when peo-
ple are standing in one spot for a long time or going down or up
stairs. Second, a phone has multiple modalities to sense indoor lo-
cation aside:WiFi triangulation [8,9], cell-tower triangulation [10],
Bluetooth vicinity, audio-visual sensing [11], accelerometer sens-
ing. Those modalities can be selected to efficiently meet the lo-
cation needs at lower energy costs. In another part, we can use
energy prediction method [12,13] to calculate how much energy
will be used in the next few minutes based on current motions of
a user.

To explore the framework, we first use a modular approach to
build a WiFi-based indoor location system based on the Android
platform and an existingWifi infrastructure. Then, a detailed mea-
surement study is conducted to quantify the energy consumed by
the differentmodules.We compare the energy costs of localization
when running a localization algorithm locally on themobile device
and on the remote server. We find that energy consumption is in-
timately related to the data transmission time and scan frequency
of theWiFi adapter. Executing the location algorithm locally on the
smart phone minimizes the use of the WiFi adapter, and thus pro-
duces the most energy-efficient results.

The work presented in this paper makes the following contri-
butions: (1) we profile the energy consumption of different com-
puting and communication use cases to design an energy-efficient
indoor tracking framework; (2) we propose an accelerometer-
based method for recognizing a user’s movement status for adap-
tively managing the use of the WiFi adapter; (3) we propose a
sensor management strategy for adaptive duty cycling and a data
upload strategy for indoor situations; (4) we demonstrate that
the framework, with the proposed strategies, can be implemented
on the Android platform with a battery life of 14 h in the pres-
ence of regular phone usage, an improvement of 4 h over a static
duty cycle approach. The evaluation results show our framework
can handle different activity modes, e.g., standing, walking, going
upstairs/downstairs. Furthermore, it can support whole day indoor
tracking without a significant impact on a smart phone’s battery
life.

The rest of the paper is organized as follows: The challenges
of indoor energy-efficient tracking are explained in Section 2. The
related work is also summarized in Section 2. In Section 3, we
present the detailed design of our framework. Section 4 de-
scribes the framework architecture and our implementation
Fig. 2. Sensing interval comparison for WiFi.

method including the implementation of the motion monitor. The
framework’s performance is evaluated in Section 5. Finally, Sec-
tion 6 concludes with a discussion of our experiments and frame-
work.

2. Motivation

In this section, wemotivate thework by highlighting the results
from a set of experimental evaluations. We describe the factors
impacting energy efficiency in indoor location sensing through an
initial experiment with Android smart phones and summarize the
limitations of existing outdoor energy-efficient location-sensing
approaches.

2.1. Energy hungry device: WiFi adapter

We first estimate the impact of using the power intensive WiFi
adapter on smart phones. By considering a scenario where a user
is working in a building with a location tracking application (LTA)
running. The application determines the user’s current location in
a timely manner using the Android location API. The battery usage
level is measured using the Android power API. For comparison,
we run the same LTA on the same phone in 4 different settings: in
airplane mode, WiFi only, cellular network only, and GPS only. The
location refresh rate is set to 30 s and each experimental setting is
stopped when the phone turns itself off due to the battery dying.

Fig. 1 depicts the battery level of the phone for each experimen-
tal setting. As shown in Fig. 1, GPS consumes more power than the
other localization technologies. Using WiFi and GSM, the location
tracking application can work for more than 20 h without other
activities. WiFi and GSM signals are commonly available in indoor
locations. But these methods also use too much energy when the
location application is continuously running, limiting the use of
other applications.

2.2. Data transform compression

WiFi has two main energy consuming components: (1) scan-
ning and associating to an access point (AP) and (2) transferring
data [14]. We conduct experiments to understand the relative im-
pact of these aspects. Consider two conditions for a location track-
ing application (LTA) that uses WiFi-based location. In the first
condition, it only samples the WiFi signal strength with a scan in-
terval of 30 s, but does not transmit any data. The second condi-
tion is the same as the first, but it also transmits data to a server,
by having the WiFi adapter connect to an AP. We can see the im-
pact on battery lifetime of these two conditions in Fig. 2. The en-
ergy consumed by data transmission is nearly five times than that
of the scan and association. Other work has shown that transmit-
ting larger amounts of data does not consume significantly more



46 D. Yao et al. / Future Generation Computer Systems 39 (2014) 44–54
power, and can reduce the frequency of uploading data to a re-
mote server [14,15], reducing overall energy consumption. How-
ever, this approach has limited applicability as real-time needs
for localization information means data needs to be available in a
timely manner.

2.3. Sensing intervals

For many mobile platforms, we cannot set the length of each
scanning pass. However, it is possible to control the time interval
between each scan. Intuitively, longer time intervals will help save
energy [7]. To study the impact of adapting sensing intervals, we
consider our LTAwith a scan frequency of 2min. As shown in Fig. 2,
by simply enlarging the scan interval from 30 s to 2 min, energy
consumption is reduced by 30%.

2.4. Problem characterization

We now summarize these issues to better characterize the
problem of energy-efficient indoor tracking and our proposed
long-term sensing solution.

1. Accuracy: Location-tracking applications will need guarantees
that the requested level of accuracy will be met. An energy-
efficient system will need to make reasonable tradeoffs
between energy usage and tracking accuracy.

2. Use local computing resources: Smart phones have powerful
computing and storage capacities. A location sensing algorithm
and database can be executed entirely on such platforms,
reducing the energy spent on transporting data to a remote
server. Onlywhen the server requires location information does
the data need to be transported.

3. Dynamic data update rate: In many cases, data updates to the
server occur at a fixed interval. However, sometimes the data is
not meaningful (i.e., not different from the previous value), so
there is no need to transmit it. Dynamically adapting the update
rate based on accuracy requirements and changes in the data
can help to reduce energy consumption.

4. Use context model to optimize location-sensing: By leveraging
specific power-efficient sensors from smart phones, such as the
accelerometer and orientation sensors, additional context can
be obtained. In particular, human activity can be recognized and
used to save energy.When a user is stationary ormovingwithin
his/her office, we can reduce the sampling rate in order to save
energy.

2.5. Related work

2.5.1. Energy-efficient location tracking
Many systemshave beenproposed to improve energy efficiency

in position systems. They mainly focused on sensor management
strategies for determining when to deactivate energy hungry
sensors or optimizing sensor duty cycles by selecting sensors
with low power consumption whenever possible. An example is
EnTracked [15], which attempts to control the GPS duty cycle
for determining location. It schedules position updates by using
an accelerometer-based mobility estimation to save energy and
was evaluated only in simulation. Farrell et al. [16] present an
algorithm that determines when to perform GPS updates, based
on a positioning uncertainty model. However, their model too has
only been evaluated in simulation. Cloud computing [13] is a new
way to address this problem, but it cannot optimize the energy
usage for each sensor.

Several other researchers have explored the methods that
tradeoff accuracy for energy savings. RAPS is a position tracking
system used in urban areas [17]. The system motivation is that
GPS positioning tends to be inaccurate and often unavailable in
these areas. RAPS trades off location accuracy for reduced energy
use. It uses a combination of location history, user movement, and
GSM information to selectively activate GPS only when necessary
to reduce position uncertainty. It also proposes sharing position
readings among nearby devices using Bluetooth in order to fur-
ther reduce GPS activation. However, RAPS is mainly designed for
pedestrian use, and a significant portion of the energy savings
comes from avoiding GPS activation when it is likely to be un-
available. EnLoc [18] uses dynamic programming to find the op-
timal localization accuracy for a given energy budget and decides
which one of GPS, WiFi or GSM localization methods to use. Mi-
croBlog [19] exploits the accuracy energy tradeoff of GPS,WiFi and
GSM based localization for energy-aware localization. Specifically,
depending on the accuracy requirement of the application, it uses a
lower-energy method over a high-energy method. ALoc [20] pro-
poses to dynamically trade-off location accuracy and energy use,
based on probabilistic models of user location and sensing errors.
Thesemodels are used to choose the best among different localiza-
tion methods and tune energy expenditure to meet location accu-
racy requirements specified by an application.

Recently, tracking systems which use trajectory history have
been proposed. The StarTrackmiddleware [21] continuously tracks
users for smartphone applications. It uses a track abstraction and
employs similarity matching algorithms to find mobile users who
share the same routes. Mikkel et al. [22] monitors whether the
tracked objects have traveled a certain distance by using sensors.
They do not analysis user’s activities. Escort [23] is a positioning
system that obtains cues from social encounters and leverages
an audio beacon infrastructure. However, these systems do not
address how to collect trajectories in an energy-efficient manner.
The popular commercial indoor location system, Skyhook, uses
WiFi for positioning and uses energy-efficient techniques to obtain
a battery life on mobile devices of 16 h. However, its accuracy
guarantee is quite a bit lower than ours, at 30 m [18]. If an
application needs longer battery life and can accept the reduced
accuracy, Skyhook is a reasonable alternative to our proposed
approach.

In comparison to earlier work, the sensor management strate-
gies and location updating protocols present in this paper sig-
nificantly reduce battery consumption. We take advantage of
monitoring user’s activities to reduce the need to sample power
hungry sensors and to find the optimal location update interval, all
while maintaining high accuracy in tracking.

2.5.2. Motion detection
Several pieces of prior work have used accelerometer-based

motion detection in location systems in different ways. Kim
et al. [24] use motion detection to save energy: after a user has
arrived at a place and enough scans have been collected, the WiFi
radios are turned off. Once the motion variance exceeds its thresh-
old, WiFi scanning is resumed. Their goal is to find contextual in-
formation about human’s locations as places and paths. Shafer and
Chang [25] detect movement and, if walking is detected, perform
a ‘‘full localization’’, which presumably entails taking many scans
over a short period after truncating the scan queue. If a user walks
for a period of time longer than the movement detection period,
this can result in significantly more battery drain than our ap-
proaches because a long series of scans will be repeatedly dis-
carded. Ledlie et al. [26] aims at a more flexible and scalable point
in the design space of localization systems. All of this related work
does not consider the problem of data collection throughout an en-
tire day. Current studies are aiming to use less energy, but not to
optimize tracking accuracy according to the current battery life in
order to maximize tracking time. As such, we suggest that most of
those works are not suitable for the location tracking applications
that users will want to use in indoor environments.
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3. Framework design

To support an energy-efficient localization mechanism for
location tracking applications, we provide an energy consumption
model and present two guiding principles.

3.1. WiFi location

A fingerprint-based localization approach is adopted in this
work. We collected WiFi signal strength data across an entire
building on our campus multiple times, using a 1 m × 1 m grid.
We then built a signal strength map (WiFi fingerprint) containing
the means and standard deviations at each grid point. To locate
a user in real-time, our WiFi Localization algorithm uses Monte
Carlo Localization (MCL) [27] with Bayesian filtering to maintain
a set of hypotheses of the user’s location. The MCL method with
Bayesian filtering canbe separated into twomodels: the perceptual
model P(S|l) and themotionmodel P(lt |Lt−1, ut−1) of the user. The
perceptual model is used to calculate the probability of obtaining
a particular signal strength measurement S at a location l.

By fusing the results of the perceptual model, accelerometer
data and direction of the user movement, we can build a motion
model to calculate a location belief B(l) for location l. With an ac-
celerometer’s help, we can detect howmany steps the user walked
from location lt−1 to lt . From the previous two recent samples, we
can calculate the direction θ the user is moving in. Then the walk-
ing distance d(t) can be obtained. The details for our method are
presented in Section 3.4.

The term of motion model is obtained using the following
equation:

P(lt |lt−1, d(t))

=


1, direction change

1

σacc
√
2π

exp


−
(x′

t − xt)2 + (y′
t − yt)2

sσ 2
acc


,

otherwise.

(1)

A change in the direction of motion or a change in motion can be
detected by the accelerometer using the method we will describe
in Section 3.4.

3.2. Energy consumption measurement

To efficiently track a user, we require an energy consump-
tion model that can describe the relationship between power con-
sumption and an accuracy requirement (i.e., how frequently a
remote server/application requires location updates). The pro-
posed energy consumption model consists of two main parts: a
power model that describes the power usage for WiFi localization,
and a delay update model that describes the data transmission to
a remote server. Our model has the following features:

1. Tracking accuracy (Etrack): required accuracy distance of an
application, indicating the maximum distance a user can travel
between two sampling instances.

2. Walking speed (v(t)): user walking speed m/s at time t .
3. WiFi scan time interval (1ts): time delay between each scan.
4. Consumption ofWiFi scan (Pscan): energy spent in each scan cycle.
5. Delay interval (tupdate): time interval between each data upload.
6. Consumption of data update (Pupdate): energy spent in each data

upload to the remote server.

We model the energy cost for indoor location tracking for the
two functions as defined in Eq. (2): The total power consumption
Power(T ) in time T is the sum of the power spent on Power scan and
Powerupdate with a fixed scan time interval 1ts.

Power(T ) = Power scan(T ) + Powerupdate(T ) (2)

Power scan(T ) =

T
t=1


1 ∗ v(t) ∗ Pscan

Etrack


(3)

1ts =
Etrack
v(t)

(4)

Powerupdate(T ) =
T

tupdate
∗ Pupdate. (5)

As WiFi scanning and association consumes nearly five times the
energy of transferring data [14,28], we need a dynamic scanning
mechanism that provides a wakeup and sleep strategy for theWiFi
adapter to reduce energy consumption.

3.3. Comparing communication strategies

There are lots of indoor location tracking and navigation ap-
plications which need continuous location information [29]. Some
applications running locally on a mobile device need to know the
device’s location, and some of them need to send the trajectory
data to external devices or remote services to finish monitoring
tasks. Different applications have different system architectures,
and that will consume different amounts of energy. As shown in
Fig. 3, we use different combinations of client and server modes
to implement a location tracking system. We experimented with
these combinations to understand their respective energy con-
sumptions, and show the results in Fig. 4.

1. All run locally: TheWiFi fingerprintmap is stored on themobile
phone and the localization algorithm also runs on it (Fig. 3(a)).
In this setting, the WiFi adapter does not need to transmit data
between the mobile phone and a server.

2. Logging user’s trajectory: In this setting, the mobile phone
executes the localization algorithm, and only communicates the
user’s position to a server in a timely manner (Fig. 3(a)).

3. Logging sample and trajectory: This setting performs localiza-
tion on the mobile phone, but also shares the user position and
rawWiFi RSS (received signal strength) sampleswith the server
(Fig. 3(b)).

4. Return result to mobile phone: In this setting, the mobile
device passes the RSS samples to a server. The server has the
fingerprint database, computes the user’s position, and returns
the position result to the mobile device (Fig. 3(b)).

5. All stored on server: In this setting, the mobile device sends the
WiFi RSS samples to the server. The server calculates the po-
sition and logs all information, with no return communication
back to the mobile phone (Fig. 3(b)).

3.4. Sensor management strategies

Our framework provides three strategies for energy-efficient
localization: (1) motion detection, (2) speed-aware, and (3) data
upload. The strategy with the lowest energy estimate is executed.
The parameters for all strategies are selected based on localization
accuracy requirements (Etrack) of the application needing location
tracking and the current activity of the user. In coordination with
each other, the motion detection strategy and the speed-aware
strategy choose a sleep period and determine when to use a
different sampling frequency for tracking the user. Based on the
user’s current motion and speed history, the upload data strategy
will calculate when to send location records to a server to meet
the applications accuracy requirement. The flow control strategy
of our framework is shown in Fig. 5. The first step is to check the
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Fig. 3. Interactions between the server and mobile device.
Fig. 4. Lifetime comparison for each interaction method.

application’s accuracy requirement, followed by the collection of
context for input to the energy-efficiency strategies.

3.4.1. Motion detection strategy
The Android platform has a default policy to turn off the WiFi

when the screen turns off. But for location applications, we need
to track location even when the screen is off. Design goals of our
motion detector are: (1) low-power usage, (2) robust detection
regardless of orientation, and (3) low tolerance to movement.
We implemented a motion detection method to track a user’s
motion using the phone’s built-in 3-axis accelerometer. Using the
orientation sensor and magnetic sensor on the mobile phone, we
can calculate the acceleration along the vertical and horizontal
axes when the mobile phone changes orientation. x(t), y(t) are
the orthogonal coordinate values in the horizontal axis direction
and z(t) follows the vertical axis direction. Theoretically, the
moving speed and distance can be obtained by integrating the
acceleration signal. But for indoor pedestrians, it is challenging to
inferwalking distance fromacceleration due to issues of offset drift
and tilt variation. An alternative approach is to detect the walking
pattern. When people walk, the vertical acceleration fluctuates
periodically. This periodical signal can represent the steps people
Fig. 5. Flow of control strategy.

walked, as shown in Fig. 6. So we need to identify the fluctuation
pattern and fluctuation frequency to obtain the walking distance
and walking speed.

d(t) = StepSize × Num_Fluctuation(Steps) (6)
Freq_z = max(FFT (z(t))). (7)

In our paper, the Fast Fourier Transform (FFT) algorithm is
used to analyze the acceleration value for recognizing the walking
pattern and inferring the number of steps taken. We know that
the vertical acceleration signal is a fixed cycle fluctuation that
occurs when people are walking and the vertical acceleration
signal crosses the zero line twice every step. Hence, we can count
the number of zero crossing points and divide it by two, deriving
the number of walked steps Num_Fluctuation(Steps). The step size
is usually 0.5 m. The vibration frequency of a human is around
0.7–3 Hz [30], when walking. After we have the walking distance,
we can calculate the moving speed: v(t) = d(t)/t .

To detect more activities from people, we use the improved
normalized signal magnitude area (SMA) [31] to detect human
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Fig. 6. Filtered acceleration in z-axis. (The offset g in z-axis is already
compensated.)

Table 1
Human activities recognize.

Pre-State SMA > 2.5 2.5 < SMA < 1.5 Other
0.7 < SMA < 3.0 0.7 < SMA < 3.0

Standing Walking Walking Standing
Walking Turning Walking Standing
Turning Turning Walking Walking

movement speed and direction changing events. Defined in Eq.
(8), SMA was used as the basis for identifying periods of activity/
motion:

SMA =
1
t

 t

0
|x(t)|dt +

 t

0
|y(t)|dt +

 t

0
|z(t)|dt


. (8)

When a user starts to walk, stop or turn a corner, there is a signif-
icant acceleration in the horizontal direction, but small changes in
the vertical direction. So the start of walking, stoppingwalking and
turning events can be detected.

Calculation of the parameters in Eq. (8) is performed by
summing each sampled valued progressively over a 1 s interval. An
appropriate threshold value, see Table 1,was determined through a
pilot study with three users. With knowledge of the previous state
(Pre-State) and the current max(FFT (z(t))) and SMA value, we can
classify whether the user is standing still or moving. If the user is
standing still, the WiFi adapter is set to sleep. Otherwise, the WiFi
adapter is turned on. Ourmotion detection system has an accuracy
of 90%.

Knowing whether a tracked person is going upstairs or
downstairs, is also an important context, which can help to reduce
theWiFi scan frequency. As going upstairs or downstairs is usually
a series of vertical movements and WiFi signal strength tends to
be weak in stairwells, we can just use the accelerometer to track
a user’s location to improve the accuracy. Using an empirically
determined threshold of 0.8 m/s2 in the horizontal direction, and
a direct current (DC) value about 10–20 in the FFT result of the
vertical acceleration, we can conclude whether the user is going
upstairs (median value of vertical acceleration is above a positive
vertical threshold) or downstairs (below the negative threshold).
Assuming the usermoveswith uniform speed,we can calculate the
distance the user is moving up (or down): dz =


avg_accz ∗ 1t ,

where1t is the timebetween acceleration samples that exceed the
threshold. As the height of each floor is about 5m, we can calculate
how many floors the user has traversed.

3.4.2. Speed-aware strategy
With the user’s current speed and the given accuracy require-

ment, the speed-aware strategy predicts the interval 1ts between
each WiFi signal scan. To determine the value of 1ts, we use the
energy consumption model described in the previous section. To
minimize the energy consumption and to calculate1ts, the current
activity information and SMA value are used. The current battery
level in the smart phone is Power left (minimum amount of power
user wants to have) and the accuracy requirement, set by the user
or application is E track meters. From Eqs. (3) and (4), we derive
Eq. (9). The energy used in a WiFi scan is:

Power scan(T ) =

T
t=1

1 ∗ Pscan
1ts

. (9)

We assume the user is moving uniformly, so the power consump-
tion can be calculated as.

Power scan(T ) = T ∗
Pscan
1ts

. (10)

If we want our smart phone to continue to work for T hours, we
need Power scan(T ) < Power left . From Eq. (4), 1ts has a maximum
threshold due to the accuracy requirement, then:

Etrack
v(t)

> 1ts >
T ∗ Pscan
Power left

. (11)

So 1ts should be less than Etrack
v(t) , where v(t) is the user’s current

speed and Etrack is the current required accuracy distance. The
Android platform warns the user when the battery is lower than
10% (Poweralert ). In our framework, we try to avoid reaching this
level:

1ts =
T ∗ Pscan

Power left − Poweralert
. (12)

To understand the trade-off for energy saving, we can calculate the
tracking accuracy that the current battery level will support:

E ′

track = v(t) ∗ 1ts =
v(t) ∗ T ∗ Pscan

Power left − Poweralert
. (13)

When E ′

track ≥ Etrack: it means that the current battery can only
support E ′

track accuracy requirement, so we need to use the scan
interval from Eq. (12).

When E ′

track < Etrack: it means that current battery can support
much more accuracy than the system requirement. However, we
use Eq. (4) to get scan interval, in order to save energy.

3.4.3. Data upload strategy
If we store the fingerprint database on the mobile phone, our

location algorithm can execute locally to get the user’s current
location. This approach consumed the least energy (Figs. 3 and
4, Case a). However, it is often the case that a remote server
or application needs location updates from the phone (Figs. 3
and 4, Case b). Using the user’s motion context information, our
framework can dynamically change the upload frequency without
violating the application’s accuracy requirement. Given knowledge
of the user’s current speed pattern and accuracy threshold, the data
upload strategy can determine when to upload the log of locations
to the server. Our framework calculates the accumulated distance
traveled by the user: d. If d is above the accuracy requirement or a
moving event is detected (activity status changes), our framework
will upload the trajectory dataset.

4. Framework architecture and implementation

In this section, the software architecture of our framework
is presented. We explain the details of our implementation on
Android smart phones.
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Fig. 7. Framework architecture.

4.1. Architecture and implementation

We implemented the framework (Fig. 7) in Java on an Android
smart phone. The framework was implemented on Android OS
versions 1.6, 2.1, 2.2 and 2.3. In most of our case studies, we used
a HTC G1 smart phone. The Android phone comes with several
built-in sensors, including GPS, WiFi adapter, accelerometer, and
orientation sensor. Our framework controls the state of the WiFi
adapter. The phone acquires theWiFi signal strength from theWiFi
adapter, calculates its location locally and updates the server in a
timely fashion (Fig. 3(a)). The framework has four main modules:
Energy Control Module, Location module, Sensor Management
module and Watchdog module. The framework also has other
components for motion detection, speed detection and sensor
management.

In our case study, the motion detection component uses the
acceleration and orientation sensors’ data to calculate the accel-
eration x(t), y(t) and z(t) value in three directions. Using the clas-
sification algorithms on this processed data, the motion detection
component returns user activity features such as ‘‘standing’’,
‘‘walking’’, ‘‘running’’, ‘‘going upstairs’’ and ‘‘going downstairs’’.
The speed detection component also gathers 3-axis accelerometer
sensing data to compute the user’s current walking speed. Based
on the real-time walking speed, we can measure how far the user
haswalked.With this result, we can adjust theWiFi scanning inter-
val. With the results from the speed detection and motion detec-
tion components, the energy control module configures the WiFi
on/off, scanning interval and update rate.

Our framework does not have a Graphic User Interface (GUI)
to show information to user. All of the modules in Fig. 7 are ser-
vices, running in the background that are woken up and kept alive
by the Watchdog module. The role of each component is: (1) The
remote server stores the fingerprint database and runs the loca-
tion algorithm. (2) Network interface has a buffer to store loca-
tion data results. (3) LocationModule is in charge of gatheringWiFi
signal strength and movement. (4) Energy Control Module config-
ures the framework based on the context environment. (5) Speed
Detection component gives the real-time walking speed. (6) Mo-
tion Detection component detects user activity status. The Sensor
Managementmodule listens to theAndroidOS broadcastmessages
when the sensors’ status changes. (7) Sensor Management Module
configures sensors and read sensor data. (8) TheWatchdogmodule
wakes up the other modules when they go to sleep.

4.2. Motion monitor

After detecting user motion, we need to configure our WiFi
scan frequency depending on the activity being performed. Fig. 8
Fig. 8. Motion detection implementation.

Fig. 9. Real-time motion detection and decision classification algorithm. This
flowchart displays the major motion detection method and WiFi control method.

shows the workflow of motion detection. We calculate the 3-
axis acceleration values x(t), y(t) and z(t) from the accelerometer
sensor, orientation sensor and magnetic sensor. The direction of
motion, calculated from the trajectory record, helps to calculate
moving speed. With the user’s recent position information, we can
calculate the current speed of motion. The speed, location records
and acceleration values are provided to the motion detection
component.

From Fig. 9, we use the user’s current motion to determine the
WiFi scan frequency and whether to turn on/off the Wifi adapter.
The values of the 3-axis acceleration and history location records
are used as input as shown in Fig. 9, to determine the user’s current
activities. There are five types of activities we need to recognize:
standing, running, walking, going upstairs and going downstairs.
For example, when the user step frequency (max amplitude’s
frequency) is around 0.7–3.0 Hz, the direct current value of z(t)
is above 10 and median value of z(t) is above 0.5, there is a high
probability that the tracked user is going upstairs. When SMA <
1.5, x(t) < 0.6, y(t) < 0.6, and step_frequency < 0.7 Hz, there
is a high probability that the user is standing still. For the standing
activity, we do not need to record location records, andwe can turn
off the WiFi adapter. When the user is going upstairs, the median
value of the accelerometer z(t)will be above 0.5 (downstairs below
−0.5). When a person is walking on a single floor, the value of
the accelerometer z(t) will not cross the threshold 0.5 and x(t) +

y(t) will cross 0.8. The accuracy of our detection algorithm for
determining when a user is going upstairs is 72%. We can reduce
the WiFi scan rate or turn off the WiFi when the user is going up
or down, because the accelerometer can be used to calculate the
verticalmovement distancewithhigh accuracy.Whenwalking, the
scan frequency is 1/1ts, which is calculated using Eq. (12).

5. Performance evaluation

To assess the impact of the different powermanagement strate-
gies and data transfer protocols on energy power consumption and
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Table 2
Accuracy measures for the proposed framework, kNN, and kernel-based ap-
proaches.

Alg. Mean error (m) Variance (m) Complexity

Proposed 3.27 6.67 Moderate
kNN 2.74 8.53 Moderate
Kernel-based 2.31 4.57 High

Fig. 10. One trajectory traversed by user for one day.

the accuracy requirement, we collected datasets from 3 people for
one week. In the evaluation, we considered power models for (1)
different localization technologies strategies (GSM, WiFi), (2) data
transmission over GSM and WiFi and (3) CPU load.

5.1. Data collection

The system was tested in a building on our campus. A total
of 2440 APs were detected over 9 floors, and RSS readings at
952 fingerprint points were collected. Our experiments were
performed using an HTC G1 phone, which runs Android 1.6 with
a 1150 mAh battery and only uses theWiFi interface. We recorded
3 people’s daily trajectory information including position, motion,
battery usage and timestamp. When the system predicted that a
user’smotion detection activity changed, half the time it presented
the current motion prediction and asked them to verify or correct
the prediction. We collected information for a week to validate the
energy consumption of the approach with a guaranteed accuracy
of about 4.5 m at the 85th percentile. Our participants were told to
use the phone as they normallywould: e.g., calls, text, music, apps,
web.

As our location algorithm (described in Section 3.1) is running
on themobile phone, it has high accuracy and short response time.
We had each user stop at 20 known points in the building, and
we calculated the error distance between ground truth and the
point the algorithm reported. Table 2 compares the mean location
accuracy with other systems, such as RADAR (using a k-Nearest
Neighbor approach) [9,32] and a kernel-based framework [33].

The location algorithm is controlled by our energy control
module. The location data is buffered in the smart phone, and
is transmitted to the server as necessary using our data upload
strategy.

5.2. Results

5.2.1. Location records
The framework keeps track of the user’s location and motion,

and updates a remote server in a timely manner. Fig. 10 shows a
trace (red dots) captured by the framework of one participant for
a single floor. During the time frame of the trace, the framework
continues to run and update the server. We scan for available
networks to detect if the user has left the building. Once detected,
the framework scan frequency is reduced and the server is no
longer updated, until the user is detected again.

5.2.2. Motion recognition accuracy
First, we examined the overall motion recognition accuracy

for our users. Recognition accuracy is the ratio of the number of
correctly recognized states to the total number of states. Fig. 11(a)
shows a record of our participants from 8:00 to 20:00. The
percentage of two activities, standing and moving, is summarized
as columns for each hour. From 10:00 to 11:00 and 15:00 to 16:00,
the participants are in a stationary state. At the same time, it
consumes less energy than the other hours as shown in Fig. 11(b).
From Fig. 11, we can see that more energy is consumed when
there ismoremovement. The averagemotion recognition accuracy
across all 3 users is 90% with a standard deviation of 2.53%. Our
recognition accuracy varies slightly across users, suggesting that
the recognition algorithm can be applied to general users, and not
just the ones we used in our study.

5.2.3. Tracking accuracy
The use of energy saving management strategies potentially

reduces the accuracy of the location tracking. In particular, when
(a) Activities percentage over time. (b) Energy consumption over time.

Fig. 11. Standing motion for one user for one day.
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Fig. 12. Relationship between movement speed and tracking accuracy.

Table 3
Analysis of the amount of data captured.

User Continuous tracking Proposed tracking Redundant data

A 1680 692 58.81%
B 1200 363 69.75%
C 1560 479 69.29%

Table 4
Evaluation of our framework.

User In school time per
day (h)

Device lifetime per
day (h)

Motion recognition
accuracy

A 12.2 13.7 88.24%
B 11.8 13.6 86.71%
C 11.1 14.1 90.82%

the smart phone is low on power, the sampling rate cannot be
increased too much. We compare the accuracy of our framework
with a system that continuously tracks location. The continuous
tracking system does not use our energy saving strategies and
performs a fixed WiFi scan every 30 s. Our framework consumes
less energy and, as shown in Fig. 12, it has a reduced error for
different moving speeds.

Our proposed tracking method does not record as much
position data as a continuous tracking approach. People who are
not moving do not need to be tracked. Also, due to weak WiFi
signals in stairwells, when a person is going upstairs or downstairs,
they often cannot be tracked accurately. So for those situations, we
can turn off the WiFi adapter and stop tracking. By turning off the
WiFi adapter, our method collects between 59% and 70% less data
than the continuous approach, based on our experimental results.
The details of this comparison work are shown in Table 3. Not only
is energy saved by turning off the WiFi adapter, but additional
energy is saved as the framework does not need to update the
remote server when the user is stationary.

5.2.4. Energy saving cost
As an accelerometer is used to detect user’s activities and

calculate the distance traveled, it will also consume extra energy.
However the energy spent on using the accelerometer is much
less than the WiFi adapter, even if the accelerometer is always
on [24]. In our framework, the accelerometer’s delaymode is about
10–15 Hz and the energy consumption per minute is nearly 0 [24].
The minimal energy consumed is from the extra CPU usage.

5.2.5. Device lifetime
Table 4 shows the performance results for our framework. We

asked users not to charge their phone until the battery was under
5%. The three participants are all graduate students, who usually
stay in the building from 9am 10pm. Even with users performing
other activities on the phone, the framework allowed the smart
phone battery to last about 14 h. This is an improvement of 4 h,
over the lifetime using the continuously sensing approach with
30 s updates (10 h with similar phone usage). Our framework
can identify motion states with accuracy between 86% and 91%.
Fig. 11 indicates that one of our users B sat for 70% of the time
during working hours. If that result generalizes, and for many
office employees it should, using the motion detection strategy
can greatly extend mobile device lifetime. Note that the smart
phone lifetime will differ for different users. For example, a phone
whose owner is stationarymost of the daywill experience a longer
lifetime than one whose owner is in motion most of the day.

6. Conclusion and future work

Supporting applications that require continuous location sens-
ing on mobile phones is very challenging [34]. In this paper, we
present the design, implementation and evaluation of an energy-
efficient indoor tracking framework. The most important compo-
nent for our framework is the sensor management module that
monitors user activity and reduces energy consumption by shut-
ting down unnecessary sensors and adaptively using WiFi. Our
framework achieves around 14 h of lifetime, which should cover
most people’s working day. In addition, it achieves this lifetime
in the presence of regular user phone activity, meaning that the
framework has little impact on the user experience with their
smartphone. While the tracking accuracy can be dynamically con-
figured by different applications, we have validated that with an
accuracy of 4.75 m, our framework is energy efficient. In future
work, we plan to further improve the energy-efficiency by lever-
aging additional energy-efficient sensors to detect users’ activities.
We also plan on generalizing our sensor management approach to
many other sensors, and apply this to more complex sensing ap-
plications.
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