
Bonus

UI State Preservation
and Restoration

State_Persistence_and_Restoration.indd 2 12/4/13 3:44 PM

iOS apps try to maintain the illusion that they are running in the

background. When the user presses the home button, the appli-

cation disappears. The system freezes the app’s current state in

memory. Then, when the user returns to the app, it restores that

state exactly where the user left off.

The problem is, if the system needs additional memory while

our application is in the background, it will silently kill our appli-

cation and recycle its memory.

Every time we go to the background, we must assume our

app could be killed. This means even quick tasks like checking

email or answering the phone could result in our application

being relaunched and the user losing their current position and

unsaved work.

As much as possible, we want to make the difference

between returning from the background and launching as trans-

parent as possible. In an ideal universe, the user should not be

able to tell the difference. They can leave the app, do whatever

they want, and return with the faith that their work will remain

exactly as they left it.

3

State_Persistence_and_Restoration.indd 3 12/4/13 3:44 PM

Saving the User Interface
The theory is simple, actually pulling it off is not a trivial task, and the real world often
requires a few compromises. Fortunately, UIKit offers some support in the form of State
Preservation and Restoration. This is an opt-in feature, but once we enable it, the system will
automatically record the current state of our application whenever we go to the background.
Then, the next time our application launches, it will restore that state.

To preserve our state, we need to do the following steps:

1.	 Tell the system to preserve our state.

2.	 Tell the system which view controllers to preserve.

3.	 Save any relevant data for those view controllers during the encoding step.

To restore, we do the following:

1.	 Tell the system to restore our state.

2.	 Tell the system which view controllers to restore.

3.	 Load any relevant data for those view controllers during the decoding step.

Fortunately, the preserving and restoring steps largely parallel each other, so we can look
at both sides of the operation at the same time.

Enable State Preservation and Restoration

Open AppDelegate.m. At the bottom of the @implementation block, add the following
two methods:

- (BOOL)application:(UIApplication *)application

shouldSaveApplicationState:(NSCoder *)coder

{

 return YES;

}

- (BOOL)application:(UIApplication *)application

shouldRestoreApplicationState:(NSCoder *)coder

{

 return YES;

}

Note:  The code examples used throughout the rest of this chapter was
originally planned for the end of Chapter 5 of Creating iOS Apps: Develop

and Design Second Edition. However, you should be able to add this
code to your Health Beat project any time after Chapter 5.

4  Bonus  UI State Preservation and Restoration

State_Persistence_and_Restoration.indd 4 12/4/13 3:44 PM

Saving the User Interface
The theory is simple, actually pulling it off is not a trivial task, and the real world often
requires a few compromises. Fortunately, UIKit offers some support in the form of State
Preservation and Restoration. This is an opt-in feature, but once we enable it, the system will
automatically record the current state of our application whenever we go to the background.
Then, the next time our application launches, it will restore that state.

To preserve our state, we need to do the following steps:

1.	 Tell the system to preserve our state.

2.	 Tell the system which view controllers to preserve.

3.	 Save any relevant data for those view controllers during the encoding step.

To restore, we do the following:

1.	 Tell the system to restore our state.

2.	 Tell the system which view controllers to restore.

3.	 Load any relevant data for those view controllers during the decoding step.

Fortunately, the preserving and restoring steps largely parallel each other, so we can look
at both sides of the operation at the same time.

Enable State Preservation and Restoration

Open AppDelegate.m. At the bottom of the @implementation block, add the following
two methods:

- (BOOL)application:(UIApplication *)application

shouldSaveApplicationState:(NSCoder *)coder

{

 return YES;

}

- (BOOL)application:(UIApplication *)application

shouldRestoreApplicationState:(NSCoder *)coder

{

 return YES;

}

Note:  The code examples used throughout the rest of this chapter was
originally planned for the end of Chapter 5 of Creating iOS Apps: Develop

and Design Second Edition. However, you should be able to add this
code to your Health Beat project any time after Chapter 5.

Here, we just tell the system that we want to both preserve and restore our UI state.
While just returning YES is a very common pattern, we can also examine our coder and

dynamically return a result. For example, we might want to check when the UI’s state was
last saved. If it was a significant time ago, we may want to just relaunch the app from the
beginning. We can access the timestamp in application:shouldRestoreApplicationState:
as shown here:

NSDate *timeStamp = [coder

decodeObjectForKey:UIApplicationStateRestorationTimestampKey];

Select the Views and View Controllers to Restore
For the step 2s, we need to provide a restoration ID for each of the controllers and views
we want to preserve. Each object must have a unique restoration path—this is the series of
restoration identifiers, starting with the root view controller and walking down the view
controller hierarchy until it reaches the desired object. Objects are loaded and saved based
on their restoration path.

We can easily set the restoration ID in our storyboard. Open Main.storyboard. Select the
Root Tab Bar Controller, and switch to the Identity inspector. We want to set Storyboard ID
to RootTabBarControllerID and then click the Use Storyboard ID checkbox (Figure 1).

The Storyboard ID is the ID we can use to programmatically load a view controller from a
storyboard. It’s always best to always use the same ID for both the storyboard and restoration.

By setting the controller’s restoration ID, we are telling it to both save and load its state
during UI State Preservation and Restoration. Specifically, the tab bar controller will record
which tab is currently selected.

Next, select the History Navigation Controller and set its Storyboard ID and Restoration
ID to HistoryNavigationControllerID. This will tell it to save and restore all the view con-
trollers in its stack.

Repeat this for the History Table View Controller. This time use HistoryTableView
ControllerID. While this lets us save and restore the table view controller, it won’t save
and restore the table’s state. So, we need to select the table view as well and give it its own
Restoration ID. If you’ve deciphered my clever naming scheme, you can probably guess that
it should be HistoryTableViewID.

Figure 1  Setting the restoration ID

Saving the User Interface  5

State_Persistence_and_Restoration.indd 5 12/4/13 3:44 PM

There are a couple of important points here. First, the table view controller only needs an
ID to pass the baton along, allowing the automatic loading and saving of its table view. If it
did not have an ID, the system would not save and restore its state. It also would not save and
restore its view hierarchy or any of its child view controllers—even if they have their own
restoration IDs.

Second, by default the table view will record its scroll position and the index path for the
currently selected row. This works for our application, since the content of the table cannot
change while the application is inactive. Unfortunately, as soon as we enable iCloud syncing,
things get more complicated. As a result, we will need a somewhat more complex procedure
to record our table’s state. We will look at this in Chapter 6, “iCloud Syncing.”

Finally, notice that views do not have Storyboard IDs. They have only Restoration IDs.
This is because we cannot load views directly from storyboards—only view controllers.

Repeat the procedure for our Graph View Controller (GraphViewControllerID) and
Entry Detail View Controller (EntryDetailViewControllerID). These controllers won’t save
any state, but if we don’t give them an ID, the system will assume we don’t want to restore to
their position and will roll back to the next logical point.

For the graph view controller, this means instead of restarting with the graph tab
selected, it will default to the starting tab (our history tab). For the Entry Detail Scene,
it means the navigator will simply show our history table instead.

Finally, we do not want to add an ID for our Add Entry View Controller. State restora-
tion and custom modal transitions do not play well together. The simplest solution is to just
ignore the Add Entry scene when preserving and restoring our UI state.

Run the application. Navigate to a view, and then press the home button to put it in the
background. Kill the application from Xcode and relaunch it. It should return—more or
less—to where we left off.

When the application is relaunched, it will show a snapshot of the UI from our previous
launch. This will then cross fade to our restored UI. However, we have to be a little care-
ful with the timing. State restoration finishes before our asynchronous document loading.
This means we cannot rely on our document being in place as the state is restored. In some
ways, this works to our advantage, since the graph and history scenes will be automatically
updated, but it means we may temporarily transition to an empty table or graph before the
data is ready. We will also have to put in a little extra work to get the Entry Detail scene to
work correctly.

Currently, the detail view shows the previous snapshot and then fades to all zeros. To fix
this, we need to pass the correct data to the detail view when our document loads. But, to do
this, we need to save and load some additional data.

Note:  If you double-click the home button to bring up the list of applica-
tions and then up-swipe on an application to force close it, it will also delete

the state preservation data for that app. This acts as an emergency
escape hatch for the user, letting them clear the preserved data, just in

case their application happens to get into a bad state during restoration.
This also lets us clear our state data during testing.

6  Bonus  UI State Preservation and Restoration

State_Persistence_and_Restoration.indd 6 12/4/13 3:44 PM

Restoration Class

Along with the restoration ID, we may also need to provide a restoration class—this
class adopts the UIViewControllerRestoration protocol and then must implement the
+viewControllerWithRestorationIdentifierPath:coder: method. In this method, we can
create and configure the view or view controller that is being restored.

If we don’t provide a restoration class, the system will check to see whether it has already
loaded an object with the matching restoration path. If it has, it simply returns that
object. If it hasn’t, it will attempt to load the object from the storyboard.

We should never use a restoration class for any objects that the system automatically
creates for us when the application loads. Otherwise, we may end up with two
copies of these objects. In Health Beat this includes our RootTabBarController,
HistoryNavigationController, HistoryTableViewController, and GraphViewController,
as well as each controller’s view hierarchy.

Additionally, we don’t need to provide a restoration class, if the object can simply be
loaded from the storyboard. Again, in Health Beat, we aren’t going to do any special
configuration or processing of the EntryDetailViewController, so we can just let the
system automatically load it from the storyboard. That means none of the controllers
or views needs a restoration class.

Load and Save Additional Data
In the step 3s, we load and save any additional data and perform any last-minute
configuration. There are three methods we can override to save, load, and update our
data: encodeRestorableStateWithCoder:, decodeRestorableStateWithCoder: and
applicationFinishedRestoringState.

The encode and decode methods are called during state preservation and state restora-
tion, respectively. They each have a single argument, an NSCoder object that we can use to
save or load our data.

The applicationFinishedRestoringState method is called only during state restora-
tion, after all of the object decoding has finished. We can override this method to perform
configuration tasks that depend on other objects in the archive. By the time this method is
called, everything in the archive has been instantiated and is ready to use. Conceptually, this
is similar to the way we use viewDidLoad to configure our views after everything has loaded
from the nib file.

As we take a closer look at the encode and decode methods, they should look familiar. The
State Preservation and Restoration use the same NSCoding/NSCoder pattern we used to save our
document data. In this case, the coders are not NSKeyedArchiver/NSKeyedUnarchiver objects.
They have the same interface, but the state preservation coders are specifically designed to set
up the user interface.

Saving the User Interface  7

State_Persistence_and_Restoration.indd 7 12/4/13 3:44 PM

For example, if we are saving a view or view controller, the state preservation coder looks
to see whether it has already saved an object with a matching restoration path. If it has, it
simply adds another reference to the matching saved object. If no match is found, it records
the object’s restoration path and then calls its encodeRestorableStateWithCoder: method.

When restoring, it checks to see whether it’s already loaded an object with a matching
restoration path. If it has, it simply returns a reference to that object. If not, it loads the correct
object from the given restoration path and then calls decodeRestorableStateWithCoder:
on that object.

Using these methods requires a bit of thought. We want to save enough data to restore
our application to a functional state—but we don’t want to just set up a fake façade. And we
never want to use this to save our document’s data.

Most of the time, if we wanted to record a piece of document data, we would record some
sort of ID here, and then we would use that ID to request the actual data from our document
when the system restored our controller.

In Health Beat, this causes some complications. Since we are asynchronously loading our
document, the document’s data won’t be available until after the state restoration has fin-
ished. So, we need to store the information and use it to update the interface once the docu-
ment data becomes available.

Let’s start by making the EntryDetailViewController’s updateUI method public.
Open EnteryDetailViewController.h and add the following method declaration in the
@interface block:

- (void)updateUI;

We also want to reorganize the method definition in the .m file so that it’s in a
#pragma mark – Public Methods section, instead of the private methods section.

Next, we have another small problem to work around. Apparently, the table view’s ability
to save and restore its scroll position works only as long as our history table view controller
is the top of the stack. Once we’ve selected a detail view, state preservation stops recording
both the scroll position and the index path.

I suspect this happens because at the point where the index path is restored, the table
view is empty. This means the index path is invalid. This seems to prevent the table view
from restoring at all. Unfortunately, that means we must manually record and restore both
the scroll position and the selected index path. And we need a place to stash that data until
we’re ready to use it.

We’re going to store all the actions we need to update our table view in a block. This
means we need a property to hold the block. I find that it’s easiest to use blocks in properties
and method arguments if I create a block type first.

8  Bonus  UI State Preservation and Restoration

State_Persistence_and_Restoration.indd 8 12/4/13 3:44 PM

Open HistoryTableViewController.m. At the top of the file, just under the #import
lines, add the following:

typedef void (^CompletionBlock)(void);

static NSString * const HistoryTableViewControllerIsShowingDetailKey =

@”HistoryTableViewControllerIsShowingDetailKey”;

static NSString * const HistoryTableViewControllerScrollOffsetKey =

@”HistoryTableViewControllerScrollOffsetKey”;

static NSString * const HistoryTableViewControllerSelectedIndexPathKey =

@”HistoryTableViewControllerSelectedIndexPathKey”;

This creates a block type named CompletionBlock that does not take any arguments and
does not return any values. Then we define three static keys, which we use to encode and
decode our data.

Now, in the class extension, add a property for our block.

@property (strong, nonatomic) CompletionBlock restorationCompletionBlock;

Next, we need to override the encodeRestorableStateWithCoder: method. Add this
after the navigation methods, as shown here:

#pragma mark - State Restoration Methods

- (void)encodeRestorableStateWithCoder:(NSCoder *)coder

{

 [super encodeRestorableStateWithCoder:coder];

 BOOL isDisplayingEntryDetailView =

 [self.navigationController.topViewController

 isKindOfClass:[EntryDetailViewController class]];

 [coder encodeBool:isDisplayingEntryDetailView

 forKey:HistoryTableViewControllerIsShowingDetailKey];

 if (isDisplayingEntryDetailView)

 {

 [coder

 encodeCGPoint:self.tableView.contentOffset

 forKey:HistoryTableViewControllerScrollOffsetKey];

Saving the User Interface  9

State_Persistence_and_Restoration.indd 9 12/4/13 3:44 PM

 [coder

 encodeObject:[self.tableView indexPathForSelectedRow]

 forKey:HistoryTableViewControllerSelectedIndexPathKey];

 }

}

We start by calling super. Then we check to see whether our navigation controller is cur-
rently displaying our EntryDetailViewController. We store that value, and if it is YES, we
also store the current scrolling offset and the currently selected index path.

Next, we need to implement the decodeRestorableStateWithCoder: method as shown here:

- (void)decodeRestorableStateWithCoder:(NSCoder *)coder

{

 [super decodeRestorableStateWithCoder:coder];

 BOOL isDisplayingEntryDetailView =

 [coder decodeBoolForKey:HistoryTableViewControllerIsShowingDetailKey];

 if (isDisplayingEntryDetailView)

 {

 CGPoint offset =

 [coder decodeCGPointForKey:

 HistoryTableViewControllerScrollOffsetKey];

 NSIndexPath *indexPath =

 [coder decodeObjectForKey:

 HistoryTableViewControllerSelectedIndexPathKey];

 __weak HistoryTableViewController *_self = self;

 self.restorationCompletionBlock = ^{

 [_self.tableView

 selectRowAtIndexPath:indexPath

 animated:NO

 scrollPosition:UITableViewScrollPositionNone];

 _self.tableView.contentOffset = offset;

 };

 }

}

10  Bonus  UI State Preservation and Restoration

State_Persistence_and_Restoration.indd 10 12/4/13 3:44 PM

Again, we start by calling super. Then we extract the Entry Detail scene’s state from the
archive. If we are displaying the detail scene, we extract our offset and our selected index path.
Then we store a block that selects the correct row in the table and then update its scroll offset.

Now, we need to call and clear this block when our document loads. Navigate to the
weightHistoryDocument:stateDidChange: method, and modify it as shown here:

- (void)weightHistoryDocument:(WeightHistoryDocument *)document

 stateDidChange:(UIDocumentState)state

{

 if ((state == UIDocumentStateNormal) ||

 (state == UIDocumentStateClosed))

 {

 [self.tableView reloadData];

 }

 if (state == UIDocumentStateNormal)

 {

 id topController = self.navigationController.topViewController;

 if ([topController isKindOfClass:

 [EntryDetailViewController class]])

 {

 if (self.restorationCompletionBlock)

 {

 self.restorationCompletionBlock();

 self.restorationCompletionBlock = nil;

 }

 [self configureWeightEntryViewController:topController];

 }

 }

 else

 {

 if ([self.presentedViewController

 isKindOfClass:[AddEntryViewController class]])

 {

 [self dismissViewControllerAnimated:YES completion:nil];

 }

 }

 [self updateAddButton];

}

Saving the User Interface  11

State_Persistence_and_Restoration.indd 11 12/4/13 3:44 PM

When our document changes to the normal state (for example, because the
document has successfully loaded), we check to see whether our navigation controller’s
top view controller is an Entry Detail View Controller. If it is, we check to see whether
we have a restoration block. If we do, we call the block and clear it. Then we call our
configureWeightEntryViewController: method to pass the correct data to our Entry
Detail View Controller.

This gets the data to our Entry Detail scene, but it doesn’t update the scene’s UI. Navigate
down to the configureWeightEntryViewController: method. Add the following line to the
bottom of this method, right before the closing curly bracket:

[controller updateUI];

With this in place, our state restoration should work, even for the detail scene.

Wrapping Up
That’s it. As you can see, adding state restoration is conceptually easy—but things rapidly
get more complex once real code is involved. Fortunately, we don’t have to implement a com-
plete state restoration system all at once. We can start by simply capturing the low-hanging
fruit, and then determine how far we want to push things. It may not be perfect in all cases,
but we should be able to cover most situations with a minimal amount of effort.

Other Resources
JJ iOS App Programming Guide: State Preservation and Restoration

iOS Developer’s Library

While the entire iOS App Programming Guide is worth reading, the section on State
Preservation and Restoration provides detailed information about the State Preservation
and Restoration process.

12  Bonus  UI State Preservation and Restoration

State_Persistence_and_Restoration.indd 12 12/4/13 3:44 PM

Wrapping Up
That’s it. As you can see, adding state restoration is conceptually easy—but things rapidly
get more complex once real code is involved. Fortunately, we don’t have to implement a com-
plete state restoration system all at once. We can start by simply capturing the low-hanging
fruit, and then determine how far we want to push things. It may not be perfect in all cases,
but we should be able to cover most situations with a minimal amount of effort.

Other Resources
JJ iOS App Programming Guide: State Preservation and Restoration

iOS Developer’s Library

While the entire iOS App Programming Guide is worth reading, the section on State
Preservation and Restoration provides detailed information about the State Preservation
and Restoration process.

Other Resources  13

State_Persistence_and_Restoration.indd 13 12/4/13 3:44 PM

