
Bonus

The Last Mile

OtherToolsOfTheTrade(p2).indd 2 12/23/13 10:25 AM

This chapter covers many of the details behind working with

code. This includes managing our source code as well as testing,

profiling and debugging our applications. While this does not add

any new features to our applications, these are vital skills that all

developers need to master if you want to produce production-

quality code.

3

OtherToolsOfTheTrade(p2).indd 3 12/23/13 10:25 AM

Managing Source code
As our project grows, we create and modify an ever-increasing number of files. Simply man-
aging these files soon becomes a huge job in its own right. For a single developer working on
their own computer, you might be able to just get by without any real organization or plan.
Just keep the files backed up and safe, and everything should be fine.

But, what happens if we start making big changes, and then decide that our new
approach simply does not work? How do we get back to the previous version of our code?
What do we do if our team grows? How do we add new artists or developers? How do we
integrate all of the individual edits and additions? How do we make sure each of us is work-
ing on the same, canonical version of the project?

Fortunately, this is a problem that software engineering has solved years ago. We just
need to use some sort of source control software (also called version control, revision control
or a software configuration management system). Some source control systems, like Subver-
sion, provide a single, centralized repository. Everyone commits their changes to this reposi-
tory, where they are merged into a single, canonical version. The team can then update their
local copy from this centralized version. Other systems, like Git, use a distributed source
control system—each user has their own copy of the entire repository. Changes are copied
from one repository to another. Both approaches have their own advantages and disadvan-
tages. People can—and will—argue endlessly over the details. Still, most of the basic opera-
tions remain the same.

Xcode supports both Subversion and Git repositories. As we saw in Chapter 2, “Our
Application’s Architecture,” Xcode can even create local Git repositories for us. In my opin-
ion, all projects should at least use a local Git repository, and most serious projects should
also use an off-site repository as well.

What Source control DoeS
Source control systems record a running history of all changes made to the project. They
coordinate changes from multiple sources, merging the changes where possible, and alerting
us to conflicts when they arise.

Let’s say we’re working on a project together. I modify line 42 in the mainView.m file, and
commit my change. Meanwhile, you delete line 42 entirely, and commit your change. Obvi-
ously these changes contradict each other. Since I committed my change first, you will receive
an error when you try to commit yours. You then need to review the conflict and decide
whether to use my change, to keep your change, or to otherwise fix the problem manually.

All committed changes are also annotated showing both who made the change along
with comments that hopefully explain the reasons behind those changes. We can also com-
pare different versions of the file from anywhere along the project’s history. We can even
revert the file to any of its previous states.

4 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 4 12/23/13 10:25 AM

Managing Source code
As our project grows, we create and modify an ever-increasing number of files. Simply man-
aging these files soon becomes a huge job in its own right. For a single developer working on
their own computer, you might be able to just get by without any real organization or plan.
Just keep the files backed up and safe, and everything should be fine.

But, what happens if we start making big changes, and then decide that our new
approach simply does not work? How do we get back to the previous version of our code?
What do we do if our team grows? How do we add new artists or developers? How do we
integrate all of the individual edits and additions? How do we make sure each of us is work-
ing on the same, canonical version of the project?

Fortunately, this is a problem that software engineering has solved years ago. We just
need to use some sort of source control software (also called version control, revision control
or a software configuration management system). Some source control systems, like Subver-
sion, provide a single, centralized repository. Everyone commits their changes to this reposi-
tory, where they are merged into a single, canonical version. The team can then update their
local copy from this centralized version. Other systems, like Git, use a distributed source
control system—each user has their own copy of the entire repository. Changes are copied
from one repository to another. Both approaches have their own advantages and disadvan-
tages. People can—and will—argue endlessly over the details. Still, most of the basic opera-
tions remain the same.

Xcode supports both Subversion and Git repositories. As we saw in Chapter 2, “Our
Application’s Architecture,” Xcode can even create local Git repositories for us. In my opin-
ion, all projects should at least use a local Git repository, and most serious projects should
also use an off-site repository as well.

What Source control DoeS
Source control systems record a running history of all changes made to the project. They
coordinate changes from multiple sources, merging the changes where possible, and alerting
us to conflicts when they arise.

Let’s say we’re working on a project together. I modify line 42 in the mainView.m file, and
commit my change. Meanwhile, you delete line 42 entirely, and commit your change. Obvi-
ously these changes contradict each other. Since I committed my change first, you will receive
an error when you try to commit yours. You then need to review the conflict and decide
whether to use my change, to keep your change, or to otherwise fix the problem manually.

All committed changes are also annotated showing both who made the change along
with comments that hopefully explain the reasons behind those changes. We can also com-
pare different versions of the file from anywhere along the project’s history. We can even
revert the file to any of its previous states.

By doing all this, the source control system gives us several advantages. It provides a
single, canonical version of our code. Anyone on our team can easily find, download and use
the most up-to-date version. Remote repositories also act as a backup for our projects. Even
if something unfortunate happens to our development machine, we can always re-download
the most recent version. Finally, source control provides a safe sandbox for experimenta-
tion. We can alter our code without actually modifying the main project. This is particularly
important when debugging.

Often, when trying to fix a bug, we need to write some exploratory code—we need to
play around with the project and figure out what exactly is going wrong. Then, once we
understand the problem, we can revert back to the original version and fix it.

Managing the coDe hiStory
We typically start by creating a new repository, or checking the project out of an existing
repository. To check projects out of a repository in Xcode, simply select the Source Code >
Check Out… menu item. Then, from the Check Out sheet, you can either select a repository,
or provide the URL to a new repository (Figure 1).

We can also create a new Git repository when creating our application. This can either
be a local repository on our development machine or a remote repository on a Git server.
To create a remote repository, click on the “Create git repository on” chooser. From here,
you can either select a known server, or add a new server (Figure 2). If you create a new
remote repository, Xcode will clone the repository for you, providing you with a local copy
to work on.

Figure 1 Check-
ing projects out of a
repository

Managing source code 5

OtherToolsOfTheTrade(p2).indd 5 12/23/13 10:25 AM

Once we have the repository in Xcode, we can open the project as normal. We can also
manage the source code using the Source Control menu. The exact content of this menu
may change depending on the type of repository we’re using. With a Git repository, Commit
is used to save your changes to your local repository. Push and Pull are then used to upload
and download these changes to the remote repository. In Subversion, commit uploads your
changes to the centralized repository, while update downloads all the new changes from
the repository.

When a file’s under source control, a letter may appear next to its name indicating its
status. Table 1 has more information on these status labels. We can right click on these files
to commit or update individual files, add files to the repository, discard all existing changes,
or mark a file to be ignored. We can also manually mark a file as resolved when we run
into conflicts.

The Working Copies section of the Source Control menu also lets us manage our proj-
ects branches. Our project’s menu item shows the current branch. We can also create new
branches, switch to a different branch or merge branches (Figure 3).

Figure 2 Creating a
remote repository

6 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 6 12/23/13 10:25 AM

table 1 Source Control Status Labels

Letter Meaning

M The local copy has been modified

u The copy in the repository has been updated

A File will be added to the repository on the next commit

D File will be deleted from the repository on the next commit

I Local file is ignored

R The file has been replaced in the repository

- Typically used for a group or folder when the contents have a mixture of statuses

? The local file is not under source control

Branches let us work on multiple versions of our project at the same time. Often this is
done to let developers modify one version of the project, while still keeping another version
intact. Typically, the main branch (often called the master or trunk) is where we do our day-
to-day development. We typically create a new branch for each release. This lets us main-
tain the released applications while simultaneously building the next. We may also create
branches for experimentation, letting us try out new ideas without touching the trunk code.

Figure 3 Managing branches

Managing source code 7

OtherToolsOfTheTrade(p2).indd 7 12/23/13 10:25 AM

coMparing VerSionS
So far, Xcode’s built-in source control support provides functional access to all our source
control system’s major features. However, it really starts to shine when we begin comparing
different versions of a given file. Start by opening a file as normal, and then click on the Ver-
sion editor button (in the toolbar).

Like the Assistant, this displays two files side-by-side in the editor area. Unlike the assis-
tant editor, this shows two versions of the same file. By default, the left file is our current
local copy. The right file is the base file in the repository (the most recent version committed
to the repository). If you’ve just updated your file from the repository, and you haven’t made
any local changes yet, these files will be identical.

Xcode will highlight the differences between the files for us. Figure 4 shows how local
additions are highlighted. In addition, as you scroll, red tick marks appear in the scroll bar,
indicating the location of our changes.

Figure 4 Highlight-
ing changes between
versions

8 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 8 12/23/13 10:25 AM

Xcode also makes it easy to navigate back through the file’s history. Simply click the Time-
line button (the icon at the bottom of the editor window) to bring up our repository’s
history. This appears as a black bar between our versions, with a track of grey lines running up
the middle. Longer lines indicate time periods (separating different days). Shorter lines indicate
the different versions. Faded lines are not being used. As you mouse over each version, Xcode
displays a bubble with information about that commit—including the revision number, the
person who committed the changes, and the commit’s comment (Figure 5).

The two grey arrows along the side of the timeline show us which versions are being
displayed. You can click on any of the revisions in the timeline to open them. Click the right
side of the timeline to open that version in the right editor. Click the left side to open on the
left. Alternatively, you can drag either arrow (left or right) to change the corresponding view.

While we’ve gone through the source control basics, there’s a lot more to learn. Xcode’s
built-in support makes common tasks easy—but I still find myself retreating back to third-
party tools or even the command line when things go awry. This is particularly true when
dealing with distributed teams and remote repositories—anytime you add a network con-
nection or multiple developers, you’re bound to have unexpected issues sooner or later.

A number of great books cover different source control systems and practices in detail. I
highly recommend finding and reading through some of these, especially if you’re setting up
a large or distributed team.

Figure 5 Exploring the repository’s history

Managing source code 9

OtherToolsOfTheTrade(p2).indd 9 12/23/13 10:25 AM

TeSTing
Testing—a short word that covers so many different topics. When we talk about testing,
we’re really talking about a large group of loosely related tasks. At a minimum, this includes
unit testing, performance testing, usability testing, and beta testing.

 J Unit testing: Here, we are testing individual functions or methods, making sure they
perform as expected. Unit tests need to be both automated and repeatable. The goal is to
run these tests as frequently as possible, and to have them produce consistent results. We
don’t want random results. We don’t want to manually set up or tear down our test suites.

Ideally, we want to run all our unit tests after any significant change to our code. We typi-
cally don’t want to run all of the tests every time the app is built—that would quickly bog
down our development, making it difficult to perform quick iterations. Therefore, we typi-
cally run a more focused set of tests while working with the code, and only run the entire
suite just before committing our changes. Many teams also automatically run nightly tests
on their repository’s trunk. Having your commits red-flagged in the next morning’s build
report really discourages developers from committing broken or incomplete code.

Ideally, unit tests should cover every possible branch throughout your entire applica-
tion. In the real world, 100% coverage is rarely practical. In particular, it is often difficult
(if not impossible) to test the user interface. Still, at a bare minimum most of our model
should be covered. Many developers also prefer to focus their unit tests on complex,
bug-prone code, and avoid writing extensive test cases for accessors and other common,
low-risk methods.

Unit tests are also the basis of Test Driven Development (TDD). TDD is an approach to
writing code that emphasizes tests as part of the design process. It’s often described as
writing tests before writing code—but that’s a bit of an over simplification. For example,
if we wanted to make a new class, we would first write a few tests to begin sketching out
the class’s interface. With those tests were in place, we begin implementing the class
itself, writing just enough code to get our tests to pass. Once all our tests pass, we add
more tests, and then write more code. We proceed iteratively, switching between writing
tests and writing code until our class is complete.

While TDD is an interesting concept, it often feels more idealistic than practical. Still, it
can greatly help organize and focus your thoughts—especially when you’re struggling
with a piece of code. Often, it’s easier to define a few tests, and start working from there.

For me, however, the real benefit of unit testing comes when we start modifying our
code. This happens whenever we add new features to our project, refactor old code, or
begin fixing bugs. With a strong set of tests in place, it’s easy to make changes, confident
that we’re not simply replacing old bugs with new ones. This is particularly important in
larger teams, where the developer fixing the bug may not be the person who wrote the
code in the first place.

 J Performance testing: Performance tests focus on using software tools to monitor the
application while it runs. Typically, these tests look for performance bottlenecks and

10 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 10 12/23/13 10:25 AM

TeSTing
Testing—a short word that covers so many different topics. When we talk about testing,
we’re really talking about a large group of loosely related tasks. At a minimum, this includes
unit testing, performance testing, usability testing, and beta testing.

 J Unit testing: Here, we are testing individual functions or methods, making sure they
perform as expected. Unit tests need to be both automated and repeatable. The goal is to
run these tests as frequently as possible, and to have them produce consistent results. We
don’t want random results. We don’t want to manually set up or tear down our test suites.

Ideally, we want to run all our unit tests after any significant change to our code. We typi-
cally don’t want to run all of the tests every time the app is built—that would quickly bog
down our development, making it difficult to perform quick iterations. Therefore, we typi-
cally run a more focused set of tests while working with the code, and only run the entire
suite just before committing our changes. Many teams also automatically run nightly tests
on their repository’s trunk. Having your commits red-flagged in the next morning’s build
report really discourages developers from committing broken or incomplete code.

Ideally, unit tests should cover every possible branch throughout your entire applica-
tion. In the real world, 100% coverage is rarely practical. In particular, it is often difficult
(if not impossible) to test the user interface. Still, at a bare minimum most of our model
should be covered. Many developers also prefer to focus their unit tests on complex,
bug-prone code, and avoid writing extensive test cases for accessors and other common,
low-risk methods.

Unit tests are also the basis of Test Driven Development (TDD). TDD is an approach to
writing code that emphasizes tests as part of the design process. It’s often described as
writing tests before writing code—but that’s a bit of an over simplification. For example,
if we wanted to make a new class, we would first write a few tests to begin sketching out
the class’s interface. With those tests were in place, we begin implementing the class
itself, writing just enough code to get our tests to pass. Once all our tests pass, we add
more tests, and then write more code. We proceed iteratively, switching between writing
tests and writing code until our class is complete.

While TDD is an interesting concept, it often feels more idealistic than practical. Still, it
can greatly help organize and focus your thoughts—especially when you’re struggling
with a piece of code. Often, it’s easier to define a few tests, and start working from there.

For me, however, the real benefit of unit testing comes when we start modifying our
code. This happens whenever we add new features to our project, refactor old code, or
begin fixing bugs. With a strong set of tests in place, it’s easy to make changes, confident
that we’re not simply replacing old bugs with new ones. This is particularly important in
larger teams, where the developer fixing the bug may not be the person who wrote the
code in the first place.

 J Performance testing: Performance tests focus on using software tools to monitor the
application while it runs. Typically, these tests look for performance bottlenecks and

memory usage. We can use performance testing either proactively or reactively. In proac-
tive performance testing, we are looking for places where we might be able to optimize
our application. Our app can never be too fast, and its memory footprint can never be too
small. Reactive performance testing, on the other hand, is used to troubleshoot perfor-
mance or memory problems.

In both cases, we will want to run our tests both before and after making any changes.
By comparing our new code’s performance with our old performance, we can quantify
how our changes affect our application. Obviously, we don’t want to accidentally make
changes that reduce our application’s performance.

Unfortunately, much of the time the true costs and benefits of our changes are not
completely clear. We often need to decide if the change in performance justifies the
additional complications introduced by our optimizations. Similarly, we may need to
sacrifice memory usage for increased performance (or performance for memory usage).
Sadly, once the obvious mistakes are removed, software engineering often grinds down
to a game of compromise and balance between different, contradictory goals.

 J Usability testing: Usability testing involves getting the app into the hands of a new
user and observing how they interact with it. Typically the user is given a list of tasks to
perform, but are not told how these tasks should be performed. Engineers then observe
the users and see how they actually interact with the application, making notes on how
to improve the experience.

Some types of usability testing may also occur after an app has been released. Many
developers use third-party analytic toolkits to remotely monitor their users’ interac-
tions. These tools can provide vital information about the app. Which features do the
users spend the most time using? Are there any features that are not being used very
often? How can those features be improved? Unfortunately, these monitoring tools can
be somewhat controversial. There are definite privacy concerns, since many users may
object to apps that, essentially, spy on them and report back to the mother ship.

 J Beta testing: Here we distribute our application to a large number of users. The goal is to
get the app into the hands of “typical customer.” Often, this means finding a wide range
of people with different backgrounds. It is hoped that these testers will uncover bugs and
problems that were not found during the earlier stages of testing. Beta testers are given
pre-release access to the application. In return they are supposed to report any bugs they
find. It’s usually easy to find people willing to try out your product for free—getting good
feedback from them can be more difficult.

Beta testing typically involves making and distributing ad hoc builds to your testers. This
can be a somewhat tedious process—since you need to gather and register all the UUIDs
for all the test devices. Then you need to distribute the application back to the users.
Finally, you will need to gather crash reports and logs from the users.

Fortunately, there are a number of third-party libraries that can help facilitate beta test-
ing. The two most popular are TestFlight and HockeyApp. While there are some differ-
ences between the features that they offer, both of these help automate many of the tasks
involved in getting builds to your beta testers and getting information back from them.

TesTing 11

OtherToolsOfTheTrade(p2).indd 11 12/23/13 10:25 AM

These aren’t the only types of software testing. Many teams incorporate formalized inte-
gration, regression, verification and validation, alpha and other testing in their development
cycles. They may have formalized test requirements and a dedicated testing team. Other
times, developers implicitly perform these tests as part of their routine, daily work.

There are a number of books that cover software testing and software project management
in great detail. For the rest of this section; however, we will focus on unit testing and perfor-
mance testing. Unlike many of the other testing topics, both of these have a strong technical
side. We must either write custom code, or use specialized tools to perform these tests.

unit teSting
Xcode supports integrated unit testing through the XCTest framework. Tests can be run on
both the simulator and on a physical test device. We can also automate unit tests using bots.

The XCTest framework also divides our tests into four parts: test targets, test cases, tests
and asserts.

test targets
Test targets determine how our tests are built and run. By default, all new projects begin
with two build targets, the application target and the test target. We’ve used the application
target to modify both our application’s configuration and its build settings. The test target
provides similar control over our unit tests.

In particular, the test target will include all the test cases in our project by default. How-
ever, we can modify which test cases are included in the build. This lets us control which test
cases are built and run during unit testing.

The test target also determines the build settings for our unit tests. This means our unit
tests could use a different set of build settings than our application. For example, if we cus-
tomize the warnings and errors for our application, we may want to duplicate those settings
for our test build as well.

However, note that our unit tests always run within the context of our full iOS applica-
tion. This means we have access to all the classes in our application target—we don’t need
to add them to the test target as well. Additionally, Xcode will always build our application
classes using our application’s build settings. The test target’s build settings only affect the
unit tests themselves.

Creating test Cases
Test cases are classes that contain one or more unit tests. Each test case is a subclass of
XCTestCase. When we run our unit tests, the system will look for all the subclasses of
XCTestCase, and run all of their test methods.

Xcode automatically creates an initial test case for us when we create our project. We
can add other test suites by selecting New File…, and then selecting the iOS > Cocoa Touch >
Objective-C test case class template. In the options panel, we can set the class’s name and its
superclass—though we almost always want to leave the superclass as XCTestCase.

12 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 12 12/23/13 10:25 AM

Test case files are organized a little differently than most class files. First, we place both
the @interface and the @implementation blocks within the same .m file. This simplifies
our testing code, and helps keep everything in one file. We can get away with this, because
we will never be importing our test cases into other files—so there’s no need for a separate
.h file.

Next, the test case template provides three method stubs: setUp, tearDown and
testExample. setUp and tearDown are special methods. As the names suggest, setUp is run
before every test, while tearDown is run after each test. We should use these methods to
instantiate and configure any resources our tests need, then dispose of them cleanly once
the test has ended. By bracketing each test case, we ensure that our tests are run in a clean
environment, and that all our resources are in a known good state. This helps prevent side
effects, interactions or dependencies between test cases.

The testExample provides an example test. The default implementation simply fails.
While this may not seem particularly useful, we can use testExample as a quick sanity check
to ensure that our test case has been properly added to the test target. Run the unit tests. If
everything is wired up properly, the testExample will fail. Typically, however, we will delete
the testExample method and replace it with our own tests.

tests
Each test is simply a method containing one or more asserts. To create a new test, we simply
add a new method to our suite. This method must begin with the word “test.” It cannot take
any arguments and it shouldn’t return any values. When we run our tests, the system uses
reflection to search for these methods at runtime, and then executes them. As long as we fol-
low the naming convention, the system handles everything for us automatically.

asserts
Finally, we get to the asserts themselves. Asserts are simply XCTest macros that evaluate
or compare expressions. Each assert is an atomic operation that either passes or fails. The
system then records and reports the results of all the asserts in all of our tests across all our
test cases.

The complete list of asserts can be found in Table 2.

Note: Both our test suites and our individual test cases may be run in any
order. therefore, we cannot have any dependencies between individual test
cases. each test case should be independent and isolated from all others.

TesTing 13

OtherToolsOfTheTrade(p2).indd 13 12/23/13 10:25 AM

table 2 XCTest Asserts

test naMe DesCription

XCTFail(format…) This test always fails.

XCTAssertNil(a1, format…) Fails if the provided expression does not evaluate to nil.

XCTAssertNotNil(a1, format…) Fails if the provided expression evaluates to nil.

XCTAssert(expression, format…) Fails if the given expression evaluates to NO.

XCTAssertTrue(expression, format…) Fails if the given expression evaluates to NO.

XCTAssertFalse(expression, format…) Fails if the given expression evaluates to YES.

XCTAssertEqualObjects(a1, a2, format…) Fails when [a1 isEqual:a2] is NO or when one of the objects is nil and the
other is not.

XCTAssertNotEqualObjects(a1, a2, format…) Fails when [a1 isEqual: a2] is YES or when both of the objects are nil.

XCTAssertEqual(a1, a2, format…) Fails when a1 == a2 is NO. This macro should be used when comparing C
scalar values, structures or unions.

XCTAssertNotEqual(a1, a2, format…) Fails when a1 == a2 is YES. This macro should be used when comparing C
scalar values, structures or unions.

XCTAssertEqualWithAccuracy

(a1, a2, accuracy, format…)

Compares two C scalars. It fails if the difference between the objects is
greater than the specified accuracy. This is designed for use with floating
point values, where small differences could be introduced due to rounding
errors—however, it should work for any C scalars.

XCTAssertNotEqualWithAccuracy

(a1, a2, accuracy, format…)

Compares two C scalars. It fails if the difference between the objects is
less than or equal to the specified accuracy. This is designed for use with
floating point values, where small differences could be introduced due to
rounding errors—however, it should work for any C scalars.

XCTAssertThrows(expression, format…) Fails if the given expression does not throw an exception.

XCTAssertThrowsSpecific

(expression, specificException, format…)

Fails if the given expression does not throw an exception of the specified
class.

XCTAssertThrowsSpecificNamed

(expression, specificException,

exception_name, format...)

Fails if the given expression does not throw an exception matching both
the specified class and name.

XCTAssertNoThrow(expression, format…) Fails if the given expression throws an exception.

XCTAssertNoThrowSpecific

(expression, specificException, format…)

Fails if the given expression throws an exception of the specified class

XCTAssertNoThrowSpecificNamed

(expression, specificException,

exception_name, format...)

Fails if the given expression throws an exception matching both the speci-
fied class and name.

14 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 14 12/23/13 10:25 AM

saMpLe test suite
Here’s a simple test suite. We’re just running a few sanity checks to determine if our conversion
class methods return the correct answers. Since we’re comparing floating-point values, it’s best
to compare against an accuracy threshold. We’re not trying to get a specific answer—we’re just
trying to see if our answers are close enough. In this case, we define “close enough” to mean
within 0.01 of the value that we calculated using an external unit converter.

Then we check to see if our stringForUnit: method returns the correct unit label.
Notice that we also check failure cases—specifically we make sure an invalid unit value
causes our method to throw an exception.

Finally, we have an unimplemented test case. Here, we use XTCFail() as a TODO: label.
It will fail any time we run the tests, reminding us to come back and implement this test.

Modify Health_BeatTests.m as shown:

#import <XCTest/XCTest.h>

#import “WeightEntry.h”

#import “WeightEntry+addons.h”

#import “WeightUnits.h”

static const CGFloat accuracy = 0.01;

@interface Health_BeatTests : XCTestCase

@end

@implementation Health_BeatTests

-(void)testLbsToKg {

 // correct values according to Wolfram Alpha

 XCTAssertEqualWithAccuracy([WeightEntry convertLbsToKg:0.0f],

 0.0f,

 accuracy,

 @”Incorrect weight for 0 lbs”);

 XCTAssertEqualWithAccuracy([WeightEntry convertLbsToKg:10.0f],

 4.5359f,

 accuracy,

 @”Incorrect weight for 10 lbs”);

TesTing 15

OtherToolsOfTheTrade(p2).indd 15 12/23/13 10:25 AM

 XCTAssertEqualWithAccuracy(

 [WeightEntry convertLbsToKg:145.6f],

 66.043f,

 accuracy,

 @”Incorrect weight for 145.6 lbs”);

}

- (void)testKgToLbs {

 // correct values according to Wolfram Alpha

 XCTAssertEqualWithAccuracy([WeightEntry convertKgToLbs:0.0f],

 0.0f,

 accuracy,

 @”Incorrect weight for 0 kg”);

 XCTAssertEqualWithAccuracy([WeightEntry convertKgToLbs:10.0f],

 22.0462f,

 accuracy,

 @”Incorrect weight for 10 kg”);

 XCTAssertEqualWithAccuracy([WeightEntry

 convertKgToLbs:145.6f],

 320.9931f,

 accuracy,

 @”Incorrect weight for 145.6 kg”);

}

- (void)testStringForUnit {

 XCTAssertEqualObjects([WeightEntry stringForUnit:LBS],

 @”lbs”,

 @”Invalid string returned for LBS”);

 XCTAssertEqualObjects([WeightEntry stringForUnit:KG],

 @”kg”,

 @”Invalid string returned for KG”);

16 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 16 12/23/13 10:25 AM

 XCTAssertThrows([WeightEntry stringForUnit:2],

 @”Any invalid value should throw “

 @”an exception”);

}

- (void)testStringForWeightOfUnit {

 XCTFail(@”TODO: implement the testStringForWeightOfUnit “

 @”test case”);

}

@end

Notice that we’re only testing the class methods. Ideally, we would also want to test
WeightEntry objects as well. Unfortunately, we need to set up an entire Core Data stack
before we can instantiate new WeightEntry objects.

This is a very common problem, and we have a few possible solutions. We could set up
a UIManagedDocument instance, and use that to build our test objects. This has a few prob-
lems. First, our document is created asynchronously. We’ll need to make sure the document
is completely initialized before we begin running our tests. Second, the tests will modify the
document’s data. We’ll need to make sure to remove any objects we add—otherwise they
may accumulate over time, eventually creating problems. On the plus side, this would let us
stress test our document and see how it handles adding 100,000 new weight entries.

Alternatively, we could create a Core Data stack specifically for testing. In particular, we
could build a stack with an in-memory persistent store. This would both help our tests run
faster, as well as preventing any lasting side effects. However, building a mock object from
scratch requires a lot of work

Mock objects are a common feature in unit testing. We often use them to isolate sec-
tions of our application, avoiding the need to pull in a large graph of objects just to test a
single class. We can also use them to replace resources like web services or databases. This
both lets us test our code without altering live data, and lets us simulate a wide range of
responses—including both invalid responses and errors.

In fact, mock objects are so common that third-party developers have created a number
of mock libraries. These typically let us instantiate mock objects quickly, further simplifying
our tests. However, they aren’t without their own problems. Whenever we test against mock
objects, we are building a set of assumptions into our tests, and our tests are only as good as
those assumptions.

This issue often crops up when working with complex web services. We may not know
the entire range of possible errors that we might encounter. The best solution often involves
writing tests for the obvious errors, and then logging any unexpected errors. We then need
to periodically review the logs, and write new unit tests for any new errors that we find. Ide-
ally, we would like to continue this even after the app goes into production—however, that
involves setting up some sort of remote logging.

TesTing 17

OtherToolsOfTheTrade(p2).indd 17 12/23/13 10:25 AM

Figure 6 Xcode displaying a failed test case

running unit tests
We can run our tests by simply selecting the Product > Test menu. Alternatively, if you click
and hold on the run button, it will bring up a list of options: Run, Test, Profile or Analyze.
Select Test.

Xcode will compile and run our application, then execute all of our test cases. Once it is
finished, it closes the application. If all the tests succeed, our Issue navigator will be empty,
and we should see summery information at the bottom of the console log.

Test Suite ‘All tests’ finished at 2013-12-12 21:33:19 +0000.

Executed 4 tests, with 0 failures (0 unexpected) in 0.000 (0.002) seconds

Program ended with exit code: 0

You can scroll up through the console log to see more information about the individual
test suites and test cases.

If any tests fail, they will appear on the Issue navigator, and the failing test case will be
flagged within Xcode’s Editor area (Figure 6).

Notice that in each test case, the class and each method has an icon beside it. This is a
green diamond with a check mark for tests that have passed, a red diamond with an X for
tests that failed. Clicking on an icon will rerun that particular test, or in the case of the class
icon, it will rerun the entire test case.

18 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 18 12/23/13 10:25 AM

autoMating testing with Bots
With OS X Mavericks and Xcode 5, Apple has provided a convenient way to automatically
run unit tests, called “bots.” Bots let us periodically build, test and archive our projects.
Bots have one significant advantage over other continuous integration technologies—they
are heavily integrated into Xcode. Once we have a server set up, we can create, manage and
monitor our bots directly from Xcode. We can also monitor our bots using a web browser.

There are three main steps to using a bot. First, we need to set up our server. Second, we
need to set up our remote repository. Finally, we need to set up the bot itself.

Start by making sure both OS X Server and Xcode are installed on the test machine. OS
X Server is an application that can run on any Macintosh running Mavericks. You can buy it
from the Mac App Store for $19.99 in the US; however, members of the developer program
can download a copy for free.

When you run the Server app, it asks to set up OS X Server on this Mac (Figure 7). Click
Continue to install. You will have to agree to the terms of service and log in with administra-
tor access. It will then take a few minutes to set everything up.

Once complete, you should see two separate windows. One is the Server app itself. This
lets you start, stop, configure and monitor any of the provided services. The other window is
the Server Tutorial.

OS X Server provides a wide range of possible services, including caching downloads
from iTunes or the App Store; running your own calendar, contacts, mail, message, Time
Machine or web server; or setting up a Profile Manager, VPN, or wiki. However, for our
purposes, the most important service is the Xcode service. This lets us both host remote Git
repositories, and setup Bots for automatic testing.

Figure 7 Launching OS X Server

TesTing 19

OtherToolsOfTheTrade(p2).indd 19 12/23/13 10:25 AM

Close the tutorial window (you can always open it again by selecting the Help > Server
Tutorials menu). And, in the Server window, select the Xcode service (Figure 8).

Click on the Choose Xcode… button and select the Xcode app you wish to use, and then
tap on the switch in the upper right corner to turn the service on (Figure 9). You will need to
add a developer team and the test devices if you want to run the unit tests on actual, teth-
ered devices. A development team is also required to archive your project as part of the tests,
and to remove some of the warnings that will appear when the tests are built. Still, if you
haven’t joined the developer program yet, the default settings will at least let us run tests in
the simulator.

Next, we need to create a remote repository that the Xcode service can access. This could
be a repository on the test machine itself, or a remotely hosted repository—for example a
repository on GitHub.

There are a couple of ways we can create the remote repository from within Xcode. We’ve
already seen how to set up repositories when creating a new project. In the Save sheet, click
on the “Create git repository on” chooser. If you’ve already used the desired server, it will
automatically appear on the list. If not, select “Add To New Server…” (Figure 10).

Figure 8 Setting up
the Xcode service.

20 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 20 12/23/13 10:25 AM

Figure 9 Running the
Xcode service

Figure 10 Creating a repository on
a remote server

TesTing 21

OtherToolsOfTheTrade(p2).indd 21 12/23/13 10:25 AM

Figure 11 Adding a new server Figure 12 Creating a new remote repository

All local machines running the Xcode service will appear in the server list. Alternatively,
we can provide the URL for a different remote server (Figure 11). You will then be prompted
to log into the remote server.

Now, when you create the project, it will create both the local and remote repository and
sync the two.

For an existing app, if it already has a local Git repository, we simply need to add the
remote server, and push our project to that server. Let’s do that for our Health Beat app.

Unfortunately, as I’m writing this, Xcode seems to have a problem combining Git reposi-
tories and workspaces. This is a shame, since the 2013 WWDC Video “Understanding Source
Control in Xcode” shows some of the cool things you can do with multiple working copies
inside a workspace. However, until it is working properly, it is easier to work with single
projects.

Open the Health Beat project directly by clicking on Health Beat.xcodeproj, and then
select Source Control > Health Beat – Master > Configure Health Beat…. In the configura-
tion sheet, select the Remotes tab and then click the “+” button and select “Create New
Remote…” (Figure 12).

Xcode will then prompt you for the server and the remote’s name. Select the server, just
as we did in the previous example, and leave the repository’s name set to origin. This is the
default name that Git uses when cloning a repository from a remote server. That means,
when this is done, it will look like the remote repository is the original source code and our
local repository is the copy. That’s exactly what we want.

Click Create. Once you’ve created the repository, you can use Source Control > Push…
to push our project out to the remote repository.

Note: if possible, your test server and your development computer should be
different machines. among other things, this helps protect your source code.

if anything bad happens to your development machine, you can always
check out the most recent version of the project from the test server.

22 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 22 12/23/13 10:25 AM

If your project doesn’t have a local Git repository—you will have to find a way to either set
one up remotely or locally. Unfortunately, there is no way to do this from within Xcode—so
you will probably need to either use raw Git commands from the command line, or look into a
third-party Git app. The “Xcode Continuous Integration Guide” has instructions for doing this
from the command line. Look for the “Enable Access to Your Source Code Repositories, Use Git
to Manage an Unmanaged Workspace Directory on a Development Mac” section.

If your remote repository is not hosted by the Xcode service, you will need to give it
access to the repository. In the Server app, make sure the Xcode Service is selected, and
then switch to the Repositories tab. Click the “+” button. In the New Repository form, select
“Connect to a Git Repository” and then fill in the repository’s name, URL and authentication
information (Figure 13).

Once we have our remote server set up, we can create our bot. Select Project > Create Bot.
In the “Create a new bot” sheet, we need to select the scheme we wish to use to build

and run our tests. This needs to be a shared scheme. If it’s not shared already, make sure
the Share scheme box is checked. That will add the scheme to our repository and commit
it automatically.

We also need to give the bot a name and select the server. You also probably want to
leave “Commit changes and integrate immediately” checked. This will force the server to
immediately run our unit tests—giving us a chance to see the tests in action (Figure 14).

Click Next. We may be prompted to log into the server. If so, use your user name and
password on the test computer.

Once we’ve logged in, we get to configure when and how our tests are run (Figure 15).
Tests can be run either periodically (weekly, daily or hourly), they can be performed after
each commit, or they can be performed manually. By default, the bot will analyze our code,
run our unit tests and build an archive of our app. We can turn any of these steps off.

Figure 13 Connecting to a third-
party repository

TesTing 23

OtherToolsOfTheTrade(p2).indd 23 12/23/13 10:25 AM

Figure 15 Configuring the botFigure 14 Creating a new bot

Figure 16 setting the test devices Figure 17 Setting email notifications

We can also force the bot to do a complete clean and build before running the tests.
When I say complete, I mean complete. It will delete all the build products, intermediate
products and even the source code. It will then re-download everything from the remote
repository. Obviously, this can use up a lot of bandwidth, particularly if you are performing
hourly tests on a large project. So, enable this feature with care.

On the next sheet, we get to set the test devices (Figure 16). We can either select all con-
nected iOS devices, all simulators or select a particular mixture of devices and simulators.
For Health Beat, let’s test on all the simulators.

Finally, on the last sheet, we get to specify who gets notified both on success and on
failure (Figure 17). By default, just the committer is notified when there is a failure. However,
we can add any email addresses we wish to either list.

Note: ou must set up your team on the Xcode service before you can per-
form any archive actions. if you haven’t joined the developer program yet,

be sure to uncheck the archive action before proceeding.

24 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 24 12/23/13 10:25 AM

Once the bot is created, we will be asked to commit and push our changes to the repository.
Then our bot will run; however, it can take several minutes before the results to show up.

We can monitor our bots using the Log navigator. Clicking on the Bot icon in the naviga-
tor will display both our build and test history (Figure 18). We can also click on the individ-
ual integrations, and dig into the details (Figure 19).

Figure 18 Viewing our
bots history

Figure 19 Viewing the
test details

TesTing 25

OtherToolsOfTheTrade(p2).indd 25 12/23/13 10:25 AM

As you can see, there were some linking errors (our unit tests were not being built with
64-bit support, so they could not link with the application on the 64-bit simulators). Once
those were fixed, we still had a single warning, caused by the fact that we don’t have a valid
signing identity. That went away as soon as we set up our team and updated Xcode’s provi-
sioning profiles.

That just leaves our four tests. Three of them pass. However, since we never finished
writing the fourth test, it continues to fail.

As you can see, bots are a powerful addition to our developer toolkit. This is a 1.0 devel-
oper product, so we should expect a few rough patches. For example, we are somewhat
limited in the amount of data we receive. The bots tell us which tests passed and which ones
failed (and on which devices). The information is easy to find and easy to read. Still, many
useful statistics, like code coverage, are simply not available.

The bottom line, between Xcode server and bots, there’s no reason that even small one-
and two-man development teams cannot set up remote repositories and automatic testing.
More testing means fewer bugs, and that means better programs for everyone.

perForMance teSting
For iOS, performance testing really means running Instruments. Instruments provides tools
for dynamically tracing and profiling code running either in the simulator or on an iOS
device. It comes with a number of different profiling tools (somewhat confusingly also called
instruments), that let us track and record data on everything from object allocations and
timer-based sampling to file access and energy use.

Given Instrument’s breadth, we’re only going to cover the basics here, focusing on ana-
lyzing both the application’s CPU performance and its memory usage. More information can
be found in Apple’s Instruments User Guide.

Note: the fact that we can create multipel bots, using different schemes
and build schedules gives us a lot of flexibility when it comes to designing

our automated tests. we might have one bot that automatically ana-
lyzes and tests the code whenever there’s a commit. we might have

another that does nightly tests and creates an archive of our nightly build.
still other bots may use specially-created schemes to run different test tar-
gets, letting us run a different set of tests on different devices. the possible
combinations are nearly endless.

Note: with previous verisons of Xcode, it was difficult, if not impossible, to
run unit tests from the command line. Fortunately, the command line tools

in Xcode 5 are considerably better than those provided with previous
versions. we can now use xcodetool to build and test our apps, opening

up the possibility of rolling our own continuous integration server. it won’t
be as simple as Bots—but it may be necessary, either if we want services
that Bots do not provide, or if we need to mesh with an existing Ci server.

26 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 26 12/23/13 10:25 AM

The easiest way to start using instruments is to simply profile our application. Either
select Product > Profile from the main menu, or click and hold on the Run button, and then
select Profile from the drop-down list.

This will build our application for profiling, and launch Instruments. A window will pop
up listing all the available trace templates (Figure 20). Select the Timer Profile template and
click the Profile button.

Figure 20 Selecting a
trace template

Note: not all instruments are available on both the simulator and the
device. For example, most of the instruments that deal with file access or
Core Data performance are only available on the simulator. on the
other hand, most hardware-based instruments are only available on the
device itself. this includes a number of instruments to test graphics perfor-
mance, since these depend heavily the device’s graphics accelerator.

Note: the templates do not cover all the possible tools in our instruments
library. rather, they offer a quick way to jump into many common profiling
tasks. Most of the templates load multiple tools at once, and we can
further add or remove tools once instruments is running. we can even
save our own collection of tools as a custom template, making it easier to
reuse those tools in the future.

TesTing 27

OtherToolsOfTheTrade(p2).indd 27 12/23/13 10:25 AM

Figure 21 Analyzing the Time Profiler

Instruments starts and automatically launches our app. Depending on the template we
chose, it will have one or more tool tracks open, each of these recording data. We should
then use the app for a bit, performing any actions we wish to test. Then press the Stop but-
ton (Figure 21).

As you can see, we are running a single instrument, the Time Profiler. At the top, we have
a graphical representation of our application’s CPU usage. There is brief spike when the app
first launches. Then we have a number of smaller spikes as we’re actually using the device.

On the bottom half of the screen, we have detailed information about the selected
instrument. When I am using the Time Profiler, I always start by checking Separate by
Thread, Hide Missing Symbols and Hide System Libraries. This helps focus my attention on
just my own code. We can always add the other information back later, once we’ve started
digging into the data.

I also prefer to drill down through my method calls from the top down. However, if you
prefer a bottom-up view, you might want to select Invert Call Tree. In fact, moving between
the regular and inverted call trees can sometimes reveal problems that wouldn’t be obvious
when working in just one view.

As you can see, we have a lot of information about our call tree. As a first pass, I tend to
look at the percentages. We’re looking for bottlenecks—any method that is taking up an
unexpectedly large percentage of our time. We can then try to optimize that code to improve
our performance.

28 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 28 12/23/13 10:25 AM

Figure 22 Examining data over a specific range

We can also zoom in on a particular part of the trace. We can use the Three clock-icon
buttons in the toolbar to set a specific range. For example, to examine the startup perfor-
mance, click the mouse over the timeline to position the cursor just before our initial peak.
Click the left clock icon. This will filter out everything before the cursor. Now, move the cur-
sor to the other side of the startup peak. Click the right clock icon. This will filter out every-
thing after the cursor. Clicking the center clock icon then clears the selected range.

The detail view now only shows information about the selected range (Figure 22).
As you can see, we spent 8.0% of our startup time in our [HistoryTableViewController
tableView:cellForRowAtIndexPath:] method. That’s actually pretty good. Still, if we need
to optimize our startup code that might be a good palace to look.

Note: the time profiler uses timer-based sampling to calculate the usage
values. it periodically examines the application and records the stack trace at
that point in time. as a result, methods that execute very quickly may
occasionally not show up on the list. normally, this isn’t a problem since
we’re only interseted in large bottlenecks.

Note: You could do the same thing by option-clicking and dragging on the
instrument graph (the graph itself, not the timeline). this will select the
highlighted time range.

TesTing 29

OtherToolsOfTheTrade(p2).indd 29 12/23/13 10:25 AM

Figure 24 Profiling with multiple instruments

After changing our code, we can execute the test again. Simply click the Record button in
Instruments. This will re-launch our application. After performing the second test, we can
click our Time Profiler’s disclosure arrow to view our two tests side-by-side (Figure 23).

As you can see, performance can vary from run to run. Sometimes it can very consider-
ably—especially if one of the frameworks ends up doing extra cleanup or maintenance in
the background.

Typically, we will also want to monitor our device’s memory usage and look for potential
problems. We could simply close Instruments, and profile our app again, selecting the Allo-
cations template. However, it’s nice to run these tests together. Let’s add a few more instru-
ments to our existing test.

Click on the Library button in Instrument’s toolbar. Scroll through the list of instruments
until you find Allocations and Leaks. Double click on each of these to add them. Now click
the record button and run our test again (Figure 24).

Figure 23 Side-by-side
comparisons.

30 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 30 12/23/13 10:25 AM

We shouldn’t get any memory leaks, since we’re using ARC. Still, a single leak shows up.
Examining this further, we see that the system is mallocing 64 bytes of memory somewhere
deep in the PhysicsKit framework. This is presumably a private framework used by UIKit
Dynamics. Since it’s not in code that we can control, there’s really nothing that we can do
about that. It’s either a bug in the system or a false positive. Either way, it’s small. We can
safely ignore it.

The Allocations track is much more interesting. By default the graph shows all alloca-
tions. As you can see, our memory usage is, in general, increasing over time, using a total
of 7.4 MB.

In the detail view, we have a large number of statistics about our memory usage (Fig-
ure 25). We see a list of all the different objects and C-code mallocs that our application has
performed. We can list the number of bytes currently used by that data type, the number
of instances that are currently live, or the overall number of instances that we have created
(including instances that have since been deallocated). We can also sort by all these values.
For example, sort by Live Bytes to see which objects are taking up the most memory. Or sort
by the overall number of allocations, and look for any places where we are allocating a large
number of objects but never deallocating them. It’s also good to sort by category and search
for our own classes, just to make sure nothing’s misbehaving.

Let’s save our tests. File > Save and File > Save As… will let us save all the data from our
current session. This lets us reload the data and compare it against future tests. File > Save
As Template… will save our current set of instruments as a template, letting us run the same
set of tests again in the future. For example, I have saved the session data as HealthBeat1,
and saved the tests as a template named My Basic Performance Tests.

Figure 25 The alloca-
tion instrument’s
detail view

TesTing 31

OtherToolsOfTheTrade(p2).indd 31 12/23/13 10:25 AM

Now, if I quit Instruments, and then profile again from Xcode, my template shows up
under User > All (Figure 26). I can also reopen the old session under Document > Recent.

In many ways, profiling is more an art than a science. I highly recommend that you spend
some time playing with the tools. The more familiar you become with them, and the more
you explore their features and options, the better you will be at finding and fixing potential
problems.

uSing The debugger
The debugger lets us examine running programs, halt execution, check values and step
through the code one operation at a time. We typically interact with the debugger by setting
breakpoints.

We can set a breakpoint at a line of code by simply clicking in the margin beside our code
(just to the left of the line numbers, if you have line numbering turned on). A blue arrow will
appear where we clicked (Figure 27).

Figure 26 Opening a
custom test template.

32 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 32 12/23/13 10:25 AM

Now, if I quit Instruments, and then profile again from Xcode, my template shows up
under User > All (Figure 26). I can also reopen the old session under Document > Recent.

In many ways, profiling is more an art than a science. I highly recommend that you spend
some time playing with the tools. The more familiar you become with them, and the more
you explore their features and options, the better you will be at finding and fixing potential
problems.

uSing The debugger
The debugger lets us examine running programs, halt execution, check values and step
through the code one operation at a time. We typically interact with the debugger by setting
breakpoints.

We can set a breakpoint at a line of code by simply clicking in the margin beside our code
(just to the left of the line numbers, if you have line numbering turned on). A blue arrow will
appear where we clicked (Figure 27).

Figure 27 Setting a breakpoint Figure 28 Adding Special
Breakpoints

Additionally, we can add a few special breakpoints. Switch to the Breakpoint naviga-
tor. Now press the “+” icon in the bottom right corner. This gives us the option to add an
exception breakpoint, a symbolic breakpoint, an OpenGL ES breakpoint or a unit test failure
breakpoint (Figure 28).

If we add an exception breakpoint, we can configure it to break on either Objective-C
exceptions, on C++ exceptions or on all exceptions. We can also select whether we break
when the exception is thrown or when it is caught. By default they break whenever any type
of exception is thrown.

Adding a breakpoint when exceptions are thrown can be very helpful when developing
code. If an exception occurs, this will let us explore the stack trace and figure out exactly
what went wrong. Unfortunately, it can also be misleading—especially if you’re using
third-party libraries. The breakpoint will be triggered, even if the code eventually catches
and handles the exception. Apple tends to only use exceptions in truly exceptional circum-
stances, so these breakpoints generally work fine. Unfortunately, a few third party develop-
ers use exceptions where they really should be using conditional statements—causing a few
false positives.

Symbolic breakpoints let us specify a method name, the method from a particular class,
or a function name. Whenever the system encounters that symbol, it triggers our break-
point. This is great for placing breakpoints when we don’t have access to the source code.
For example, we could place a breakpoint on –[UIManagedDocument readFromURL:error:].
This breakpoint will be triggered whenever our UIManagedDocument tries to read new data.

using The debugger 33

OtherToolsOfTheTrade(p2).indd 33 12/23/13 10:25 AM

Debug vs. Release builDs

By default Xcode defines two different build types for our application: debug and release.
The default scheme always runs our code in debug mode, but profiles it in release mode.
Xcode will trigger breakpoints regardless of the mode; however, debug mode provides us
with a little more information. In release mode, all debugging symbols are stripped from
the application, and the final code is optimized. In some cases, this can make it harder to
analyze our application’s state or to step through our code.

The other two types of breakpoints are used less frequently. The OpenGL ES breakpoints
are typically only used by developers working directly with OpenGL ES. While the Test Fail-
ure Breakpoints will halt our unit tests whenever a test fails.

By default, breakpoints cause our application to halt. We can then examine the current
state, explore the stack trace, and step through our application. However, we can change this
default behavior. Right click on the breakpoint (either in the margin or in the Breakpoint
navigator) and select Edit Breakpoint….

This lets us modify our breakpoints in a number of ways. We can add a condition, which
must be true for our breakpoint to be triggered. We can also set the number of times our
breakpoint will be ignored before it’s finally triggered. The most interesting option, however,
is the ability to add actions to our breakpoints.

Actions include running an Applescript, capturing an OpenGL frame, executing a debug-
ger command, logging a message to the console, running a shell script or playing a sound.
We can also decide whether or not execution halts once the breakpoint is triggered.

For example, say we just want to be notified whenever our application loads new data.
We don’t actually want the application to stop—we just need some sort of notification. Let’s
edit the UIManagedDocument breakpoint we set earlier. Add two actions. In the first, log the
following message to the console: UIManagedDocument reading new data %H. In the
second, have it play a sound. Now, check the Automatically continue after evaluating actions
option (Figure 29). This will cause Xcode to beep and print our the message (including the
number of times the breakpoint has been triggered), but it won’t stop the application.

Figure 29 Breakpoint
actions

34 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 34 12/23/13 10:25 AM

Console

Step Out Button

Step Into ButtonStep Over Button

Continue Execution Button

Stack Trace Variables View

Current Method

Figure 30
The debugger in action

If our application halts, Xcode should automatically move us to the Debug navigator and
open the Debug area. This places a lot of information at our fingertips (Figure 30). In the
Debug navigator, we can see the current state of our stack traces. The thread that triggered
the breakpoint should be open, with the current method highlighted. We can click on other
methods in the stack trace to move back through our program’s history. This can be more or
less useful depending on the depth of the stack trace, and whether the stack trace is filled
with our own methods, or with calls to private frameworks. Typically, we can’t get many use-
ful details from calls to Apple’s frameworks or third-party libraries.

The debug area is divided into two sections. On the left, we have our variables view. It
lists the current state of all the variables in scope. On the right we have the console. We can
also hide either of these sections, letting the other use the entire space.

On the mini-bar above the debug area, we have a number of buttons. We can use these to
navigate through our code. In order, the buttons let us continue execution, step over the next
method, step into the next method, or step out of the current method (returning back to the
calling method).

The console contains all the output from our NSLog() calls, as well as any system log
messages. It is also an active control. We can type debugger commands directly into the
console. For example, po self will print out the current self object. We can even make
Objective-C method calls—though the console sometimes doesn’t understand the dot-syn-
tax. Still, to view our current document we could type po [self document].

using The debugger 35

OtherToolsOfTheTrade(p2).indd 35 12/23/13 10:25 AM

I often find it easier to print information in the console than to search for it in the variables
window. This is particularly true when it comes to digging through multiple layers of instance
variables, exploring the contents of collections, or any dynamically calculated values.

Debugging is another broad topic, with a number of fascinating nooks and crannies. The
information here will get you started, but you will probably need to do some additional read-
ing and some experimentation before you really master it.

Wrapping up
This chapter covered three major topics in software engineering—source control, testing
and debugging. Each of these topics represents a vital skill for the professional developer.
They won’t help you build your app directly—but they will help you manage your projects
and produce bug-free, high-performance code.

oTher reSourceS
For more information, check out the following resources:

1. Understanding Source Control in Xcode

WWDC 2013 Videos

An in-depth exploration of the source control features found in Xcode 5.

2. Xcode Continuous Integration Guide

iOS Developer’s Library

This contains a wide range of information on setting up an OS X Server and Bots for
continuous integration.

3. Instruments Users Guide

iOS Developer’s Library

This guide provides a detailed overview on using Instruments to profile and analyze our
applications. This includes a complete description of all the tools included in Instru-
ments, and a list of the different settings we can use to configure those tools.

4. iOS Debugging Magic

iOS Developer’s Library

While this is somewhat out of date, it still contains a wealth of outstanding hints,
tricks and tips for effective debugging. This includes a number of more-advanced
debugging techniques.

36 Bonus The LasT MiLe

OtherToolsOfTheTrade(p2).indd 36 12/23/13 10:25 AM

