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Sugarcane improvement: how far can we go?
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In recent years, efforts to improve sugarcane have focused on

the development of biotechnology for this crop. It has become

clear that sugarcane lacks tools for the biotechnological route

of improvement and that the initial efforts in sequencing ESTs

had limited impact for breeding. Until recently, the models used

by breeders in statistical genetics approaches have been

developed for diploid organisms, which are not ideal for a

polyploid genome such as that of sugarcane. Breeding

programs are dealing with decreasing yield gains. The

contribution of multiple alleles to complex traits such as yield is

a basic question underlining the breeding efforts that could only

be addressed by the development of specific tools for this

grass. However, functional genomics has progressed and gene

expression profiling is leading to the definition of gene

networks. The sequencing of the sugarcane genome, which is

underway, will greatly contribute to numerous aspects of

research on grasses. We expect that both the transgenic and

the marker-assisted route for sugarcane improvement will

contribute to increased sugar, stress tolerance, and higher

yield and that the industry for years to come will be able to rely

on sugarcane as the most productive energy crop.
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Introduction
Sugarcane is an important crop for food and energy

production. Among the main traits that make it a unique
www.sciencedirect.com 
crop, we note its capacity to accumulate high levels of

sucrose in its stems and its characteristic high yield,

making it the highest tonnage crop among cultivated

plants.

Sugar production for the 2011/12 marketing year is fore-

cast at 168 million metric tons (MMT), in raw value, up

8 MMT over the previous year. In the 2010/11 crop,

Brazil harvested about 625 million tons of sugarcane, in

a cultivated area of just over eight million hectares. The

average yield was 77 tons/ha [1]; higher than the corn

yield in United States (9.3 tons/ha) [2] and sweet sorghum

in China (60 tons/ha) [3]. Of the total of industrialized

sugarcane, 53.8% (336 million tons) was destined for

ethanol production, which generated a volume of

27.67 billion liters (82 l/ton of sugarcane).

The importance of sugarcane as a bioenergy feedstock

has increased interest in the generation of new cultivars

optimized for energy production. Breeding programs are

introducing new ancestral genotypes into crosses in a

quest to alter fiber content and yield. It is noteworthy

that sugarcane has always been bred with the aim of

improving sugar content but an evolving industry of

biofuel and bio-based chemicals may require vast

amounts of biomass and, therefore, higher yield. We have

seen recently a desire to breed the Energy-Cane, a crop

with a high yield and fiber. The world yield average is

80 tons/ha but the calculated theoretical yield potential of

sugarcane has been noted to be over 380 tons/ha [4��], so

there are still gains to be expected. This review will

outline some of the most pressing aspects of a biotech-

nological route for sugarcane improvement including

technological data available and the use of marker-

assisted breeding, genome sequencing, transgenics, and

gene discovery for traits of interest.

Classical breeding: where are we?
Brazilian sugarcane productivity increased 66% in tons of

sugarcane per hectare and increased 34% in sugar content

per tons of sugarcane from 1975 to 2010 (Figure 1) [1,5].

This increase in yield was due to breeding and better

agronomical practices [6��]. The introduction of a new

variety does not imply large changes in the production

system and is always a hope in the search of productivity

gains. The selection of the superior genotypes within a

population obtained by crossing two individuals is a long

duration work, which lasts no less than ten years to
Current Opinion in Biotechnology 2012, 23:265–270
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Figure 1
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Evolution of sugarcane productivity and sugar content from 1975 to

2010 in Brazil. The productivity and sugar content increased 1.89% and

0.98% (average per year), respectively. If we consider only the last 10

years, the increase was 1.2% and 0.2% (average per year), respectively.

Source: [1,5].
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Decreasing productivity gains of varieties. Sugar yield of three cultivars

released in 1985 (RB855453), 1992 (RB925345) and 1996 (RB966928)

compared to the most important cultivars at the time. The data are from

São Carlos Federal University’s Breeding Program in Brazil.
generate results. On average, one variety can be obtained

for each 250 thousand seedlings evaluated in the first

stage of the breeding program [6��].

A recent evaluation of breeding programs indicates that

increases in sugar yield are becoming less pronounced

(Figure 2) [7]. The productivity gains of sugarcane crop

have been in the order of 1.0–1.5% a year in recent years

[4��]. In the future, it is believed that the productivity

increases will be even lower. We have observed an

increasing number of varieties in use in Brazil, probably

due to the exploration of new environments by breeders

(Figure 3). In 1995, five cultivars occupied 70% of the

cultivated areas. In 2010, this number has doubled. The

number of cultivars in use is larger and their genetic

similarity has been decreasing over the years (evaluated

by the coefficient of parentage [8]). Breeding programs

still need though to broaden the genetic basis of sugar-

cane, since many common ancestors are present in their

pedigrees. The lack of diversification in the genotypes

may be the underlying difficulty in increasing sugar

content. Biotechnology may become crucial to face the

limitations of classical breeding.

Biotechnological tools for the improvement of
sugarcane
Sequencing the sugarcane genome

A sugarcane modern cultivar is a hybrid of Saccharum
officinarum and Saccharum spontaneum. Sequencing the

sugarcane genome poses new challenges due to its

highly polyploid and aneuploid structure with a com-

plete set of homeologous genes predicted to range from

10 to 12 copies (alleles). The monoploid genome is

estimated to be around 1 Gb but the high level of
Current Opinion in Biotechnology 2012, 23:265–270 
polymorphism requires new assembly algorithms

that can take into account allelic variation and a high

content of repetitive regions. Obtaining a reference

assembled monoploid genome for this crop is one of

the greatest challenges in genomics at this time. There

are 1585 nucleotide sequences (including 491 mRNA

sequences), 283 158 ESTs and 10 728 genome survey

sequences (GSSs) of Saccharum species at NCBI [9�].
Efforts underway include BAC-by-BAC and whole gen-

ome shot-gun sequencing (WGS) [9�]. The most com-

prehensive effort so far is devoted to sequencing BACs

corresponding to regions of interest of the cultivar R570.

A BAC library of 103 296 clones representing 14� the

monoploid genome and 1.3� the total genome and 3D-

pools of BAC clones are available. Moreover, a total of

6021 overgo probes were analyzed on the library to

provide links with sorghum and there is ongoing effort

to obtain R570 BAC-end sequences [9�]. Sequencing of

R570 using the BAC library is being pursued by groups

in Australia, France, South Africa, USA, and Brazil

(http://sugarcanegenome.org). It is also worth mention-

ing that BAC and WGS sequencing are underway for

SP80-3280, the Brazilian cultivar that most contributed

to the available ESTs, and S. officinarum and S. sponta-
neum genotypes (LA Purple and SES208) (G. Souza, Ray

Ming; personal communication).

The transgenic route

No commercial transgenic sugarcane cultivar exists, even

though field trials are being conducted in several

countries [6��,10]. The first sugarcane transgenics were

transformed with traditional agronomical traits [10] but

alternative approaches seek to change source and sink
www.sciencedirect.com
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Figure 3
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Increasing number of sugarcane varieties in use in Brazil. Numbers in parenthesis are the average of the coefficient of parentage among the top 10

varieties of a given year [8].
relations [11] or to use sugarcane to synthesize value-

adding products such as polyhydroxyalkanoates (PHAs)

[12]. The incorporation of new metabolic pathways

through systems biology and synthetic biology may allow

sugarcane to be a source of new carbon compounds to

replace petrochemistry. However, the potential of sugar-

cane as a biofactory has not been fully explored.

Sugarcane transformation is hindered by low transform-

ation efficiency, transgene inactivation, somaclonal vari-

ation and difficulties in backcrossing [10]. Transformation

methods must be optimized. Transgene expression must

be better controlled and stability must be achieved. The

difficulties of sugarcane transformation reduce the speed

in which candidate genes can be tested.
www.sciencedirect.com 
Candidate genes for sugarcane improvement have been

selected using the large number of gene expression data

accumulated for this crop [4��,13�,14�]. Transcriptome

analysis of culm maturation of sugarcane cultivars con-

trasting for sucrose content showed differential expres-

sion of genes related to cell wall metabolism, which

suggests that accumulation of sucrose leads to alterations

in cell wall synthesis [14�,15]. Downregulation of

enzymes in lignin synthesis, such as COMT, or mono-

lignol changes in lignin could improve ethanol production

by increasing fermentable sugar release from lignocellu-

lose [16].

Sugarcane’s tolerance to drought is another important

trait to be incorporated as cultivation is expanding
Current Opinion in Biotechnology 2012, 23:265–270
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into water-limited  regions [17��]. Transcriptome studies

of sugarcane submitted to drought or treated with

stress-related phytohormones identified genes associ-

ated with stress [13�,18,19]. These genes must be

tested to determine whether they can confer sugarcane

with enhanced stress tolerance. One solution is to use

systems biology to target regulatory networks. An

alternative is to use different model systems, such as

Brachypodium distachyon [20], Setaria italica and Setaria
viridis [21], as they have shorter life cycles and simpler

genomes.

The long time required to transform a new transgenic

sugarcane cultivar also makes yield lag a potential pro-

blem [10]. A transgenic cultivar has to be re-introduced in

a breeding program and re-evaluated for traits of the

original variety. Trials are expensive and regulatory

aspects slow down its commercial release. When the

new transgenic cultivar is eventually released, its benefits

may have been overcome by a cultivar developed using

classical methods. Thus, the added traits will have to

outweigh considerably the yield of the original cultivar. In

contrast, when sugarcane reaches its yield plateau, further

increases in productivity may have to rely on the trans-

genic strategy. In this scenario, yield lag ceases to be a

problem, and the importance of candidate genes will

increase.

Marker-assisted breeding and statistical genetics for

polyploids

Given the complexity of the genome of modern sugar-

cane varieties, information from molecular markers is

crucial for genetic studies. Reliable linkage maps based

on molecular markers are required to increase sequence

assembly precision [22�] and to find genomic regions

associated with variation on quantitative traits, or QTL

[23��]. There are 19 linkage maps constructed from 13

mapping populations [23��] based on 1500–2000 markers.

There are no saturated genetic maps covering all sugar-

cane chromosomes [24].

Several types of molecular markers have been used to

construct genetic maps in sugarcane, for example

RFLPs, AFLPs, TRAP [25,26], EST-SSRs [27,28],

and DARTs [29]. Most sugarcane maps are based on

dominant marker loci that have only one copy in a given

parent (single dose loci), segregating in a 1:1 ratio for

presence or absence of bands on the F1 progeny of a

biparental cross [30�]. Mapping uses statistical methods

and software already available for diploids, but there are

reports using statistical methods to simultaneously esti-

mate recombinant fraction and linkage phases for a

number of different segregation ratios [31,32�]. These

methods were successfully used to estimate integrated

linkage maps on sugarcane, using 1:1 and 3:1 markers

[25,27,33]. However, this is only an approximation, since

sugarcane is polyploid.
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Although there is some evidence that single dose loci

correspond to about 70% of the detectable polymorphic

loci [30�], more saturated maps will only be available if

the whole genome is analyzed and included on the maps.

The abundance of Single Nucleotide Polymorphisms

(SNPs) in plant genomes has prompted interest to

develop panels of SNP markers to expand resolution of

maps [34]. SNPs behave like codominant markers for

polyploids and allow dose estimation. Statistical methods

for automated genotype calling for biallelic markers were

recently proposed for autotetraploids [35], but these are

not necessarily suitable for sugarcane.

In contrast to the widely used linkage analysis, association

mapping identifies QTLs by examining the marker–trait

associations that can be attributed to the strength of

linkage disequilibrium between markers and functional

polymorphisms across a set of diverse germplasm [36,37].

The breeding history of sugarcane, consisting of a strong

foundation bottleneck, followed by a small number of

cycles of intercrossing and vegetative propagation

suggests that linkage disequilibrium should be extensive

[38,39]. Nevertheless, in sugarcane, due to low-density

markers and nonrefined statistical methods, the associ-

ation studies are only just beginning.

The use of Marker Assisted Selection (MAS) in sugarcane

breeding programs is a challenging task. Most important

traits, such as yield, are explained by multiple quantitat-

ive trait loci, each only contributing a small proportion of

the overall phenotypic effect [40�,41]. Sugarcane QTL

mapping is mostly based on single marker analysis or

(composite) interval mapping [23��]. In order to provide

useful results for genetic studies and breeding purposes,

new models need to be developed, taking into consider-

ation QTL versus environment interaction and epistasis.

Although, no MAS has been reported in sugarcane, the

Bru-1 and Bru-2 haplotypes have potential use in the

identification of durable rust resistance gene in sugarcane

germplasm [42�].

SUCEST-FUN, an integrated sugarcane database

The development of biotechnological tools for sugarcane

requires an effort to manage the increasing amount of

data related to sugarcane genomics and functional geno-

mics. In this regard, the SUCEST-FUN database is an

important resource to manage sugarcane genome data

and to provide tools for geneticists and breeders. The

SUCEST-FUN database integrates the Sugarcane EST

Project (SUCEST) [43], the Sugarcane Gene Index

(SGI), gene expression data [4��,13�,14�,44], the GRASS-

IUS database [45] and records of the agronomic, phys-

iological, and biochemical characteristics of sugarcane

cultivars (http://sucest-fun.org). The database contains

237 954 ESTs clustered into 43 141 assembled tran-

scripts, 32 848 predicted proteins and 68 383 differential
www.sciencedirect.com
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gene expression data points [46]. The database is being

modeled to include proteomics and metabolomics data as

well as molecular markers and genomic sequences and

promoters.

Conclusions
Sugarcane biotechnology has been receiving considerable

attention over the last few years. New breeding programs

and germplasm collections are being established and we

expect to see an increasing arsenal of tools to improve this

crop. Commercial transgenic plants may yet take years to

come to commercialization and will probably be targeted

at insect and drought resistance. The assembly of a

reference genome sequence for this crop is paramount

to aid both the development of transgenics and the

marker-assisted improvement of this crop. A reference

sequence will be important to define gene promoter

sequences that may allow gene networks to be defined

as well as speed up gene discovery projects and the

development of tools for transgenic plant generation.

SNP discovery and QTL determination will also profit

from a reference genome. With the aid of statistical

genetics for polyploids and the introduction of new gen-

otypes, we expect breeding to progress much further

toward achieving higher levels of productivity.
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