Cardiac CT using GE Healthcare CT systems

2011

Rodrigo Salgado
Bharati Shivalkar
Paul Van Herck
Bart Op de Beeck
Paul M. Parizel

Department of Radiology & Cardiology
Antwerp University Hospital
Many thanks to...

Annemiek Snoeckx
Maarten Spinhoven
Thijs Van der Zijden
Joachim Maes
Michael Camerlinck
Christoph Kenis
Anatomy of a Cardiac CT

Three primary stages

1. Know your patient
2. Accurate patient selection & preparation
3. Know you scanner
4. Technical strengths & weaknesses
5. Interpret your data
6. Post-processing & reporting
Selecting & preparing the patient
Who do we like to scan?

- Patient with inconclusive clinical & technical results
 - Low pre-test probability of significant coronary stenosis
 - reassurance of patient & cardiologist
 - coronary anatomy variations

- Pre-operative planning
 - TAVI: transcatheater aortic valve implantation
 - Pulmonary vein isolation: atrial fibrillation,

- Stents & bypasses
 - not routine
 - decision on case-by-case basis
 - mentioning of limitations in report
Who we don’t like to scan!

- **Arrhythmia's**
 - atrial fibrillation, very frequent extrasystoles, ...
 - stable & sinusal rhythm is required

- **Patient with extensive atherosclerosis**
 - e.g. 80-year old diabetic patient with chronic hypertension
 - review on a case-by-case basis
 - education of prescribing clinician is critical!
Patient preparation

Patient registration
one hour before examination
always take cardiac medication
(2-3 hour fasting)

ECG & Blood pressure

Risk score parameters
age, BMI & waist-hip ratio, smoking habit, ...

CT Scanner

Evaluation of hearth rhythm

Arrhythmia: STOP

- dedicated nurse for patient preparation
- CT technologist
- engineer
- radiologist & cardiologist
What about heart rate?

• Absolute heart rate is not everything!

 • a stable & sinusal rhythm is as or even more important than a faster heart rate

![Heart Rate Graph](image)

- **BEST**
 - 65

- **AVOID**
 - 70

- **OK**
 - 80
 - 90

try to correct with medication
Medication

• To avoid heart rates between 70-80 and >90 BPM
 • beware of contra-indications*
 • but don’t overestimate complications...
 • preparation by prescribing clinician is critical!

• B-blockers
 • up to 30 % of patients receive medication on-site
 • >9000 scans without complications
 • Patient & blood pressure check 30 minutes after end of scan

* Pannu et al β-Blockers for Cardiac CT: A Primer for the Radiologist AJR 2006 186:S341-S345
What we use

• **B-blockers**
 - Seloken IV 5 mg / 5 ml (metoprolol tartrate) - AstraZeneca
 - increments of 2.5 cc depending on weight & medical history (ECG!)
 - administered while patient on CT table
 - continuous ECG-monitoring
 - rule of thumb: maximum 10 ml !

• **Ca-antagonists**
 - take longer for clinical effect
 - decision on case-by-case basis
Understanding our equipment
Lightspeed VCT - GE Healthcare
2 dedicated AW workstations
Discovery CT750HD
0.23 mm spatial resolution - better contrast resolution - spectral imaging
Relevant technical data

- **Temporal resolution**
 - 350 ms
 - mono-, 2- & 4-segment reconstruction modes
 - Step & Shoot (Snapshot pulse)

- **Spatial resolution**
 - VCT Lightspeed: 0.625 mm - 0.3 mm in plane
 - Discovery HD: 0.23 mm - better contrast resolution

- **Detector coverage**
 - 4 cm / rotation
 - Average scan time: 6 seconds
What we scan & review

- Coronary calcium measurement
 - Agatston-score
 - Equivalent Ca mass
 - Ca volume
 - Not for CABG & stents

- CT angiography
 - cardiac morphology
 - coronary tree

- Extracardiac findings at full FOV
Too much Calcium?

75-year-old man, extensive calcification

⚠ Overall scan & image quality is as important as absolute Ca-score
Sequential CT-A techniques

Work best < 65 BPM
Retrospective Scan modes

<table>
<thead>
<tr>
<th>Heart rate</th>
<th>Rotation time</th>
<th>Recon mode</th>
<th>Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-35</td>
<td></td>
<td></td>
<td>0,16</td>
</tr>
<tr>
<td>36-44</td>
<td>350 ms</td>
<td>2-segment</td>
<td>0,20</td>
</tr>
<tr>
<td>45-52</td>
<td></td>
<td>monosegment</td>
<td>0,22</td>
</tr>
<tr>
<td>53-60</td>
<td>350 ms</td>
<td>2-segment</td>
<td>0,24</td>
</tr>
<tr>
<td>61-74</td>
<td></td>
<td>2-segment</td>
<td>0,24</td>
</tr>
<tr>
<td>75-85</td>
<td></td>
<td></td>
<td>0,20</td>
</tr>
<tr>
<td>86-95</td>
<td>350 ms</td>
<td>2-segment</td>
<td>0,22</td>
</tr>
<tr>
<td>96-113</td>
<td></td>
<td></td>
<td>0,24</td>
</tr>
<tr>
<td>> 114</td>
<td></td>
<td>4-segment</td>
<td>0,20</td>
</tr>
</tbody>
</table>

Avoid heart rates around 75 BPM
What to choose?

- Pre-scan breath-hold
- Indication of heart rate during CT scan examination
- Heart rate during Ca-score measurement also indicative
- But...
 - Heart rate can change for different reasons
 - Physical sensation during IV contrast injection
 - Anxiety, stress, ...
- Heart rate during CT scan is sometimes plain unpredictable!
- Initial chosen scan method was in retrospect not the best
- Attempted dose-reduction may result in suboptimal quality!!
Low dose CT options

• **Sequential CT-technique**
 - Step & Shoot (Snapshot Pulse)
 - <65 BPM
 - achieved doses as low as 3 mSv

• **ASiR**
 - Adaptive Statistical iterative Reconstruction: 30-50% setting
 - average 30-40% dose reduction without loss of image quality

• **Optimal scan protocol design**
 - kV, mA and contrast volume adapted to weight
Scan protocol

- IV contrast
 - Iomeprol 400 mg I/ml (Iomeron, Bracco)
 - 3-phase injection protocol

<table>
<thead>
<tr>
<th>Weight</th>
<th>kV</th>
<th>mA</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td><60 kg</td>
<td>80</td>
<td>500</td>
<td>60 cc - 5 cc/sec</td>
<td>30 cc contrast - 2,5 cc/sec</td>
<td>30 cc fys - 5 cc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 cc fys. - 2,5 cc/sec</td>
<td></td>
</tr>
<tr>
<td>60-85 kg</td>
<td>100</td>
<td>600</td>
<td>80 cc - 5 cc/sec</td>
<td>30 cc contrast - 2,5 cc/sec</td>
<td>30 cc fys - 5 cc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 cc fys. - 2,5 cc/sec</td>
<td></td>
</tr>
<tr>
<td>> 85 kg</td>
<td>120</td>
<td>650</td>
<td>100 cc - 5 cc/sec</td>
<td>30 cc contrast - 2,5 cc/sec</td>
<td>30 cc fys - 5 cc/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 cc fys. - 2,5 cc/sec</td>
<td></td>
</tr>
</tbody>
</table>
In practice
always manual start
Interpreting the Data
Post-processing

• **Value of post-processing is often underestimated**
 - significantly determines speed of patient throughput
 - can increase your diagnostic confidence
 - presentation of relevant images to referring clinician

• **Always one dedicated engineer present**
 - specially trained engineers
 - cardiac chambers reformating & tracking of coronary tree
 - post-processing work saved for second-view review if necessary

• **Workload**
 - average of 8 patients/day
 - > 9000 scans on GE LightSpeed 64-slice
<table>
<thead>
<tr>
<th>State</th>
<th>Name</th>
<th>Modalities</th>
<th>Description</th>
<th>Date</th>
<th>Priors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CT-750-HD ear ultra, 6112</td>
<td>CT</td>
<td>SCAN SCHE...</td>
<td>January 11, 2010</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD ear ultra, 6182</td>
<td>CT</td>
<td>SCAN SCHE...</td>
<td>January 13, 2010</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD ear ultra, 6363</td>
<td>CT</td>
<td>SCAN SCHE...</td>
<td>January 19, 2010</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD ECG Editor High HR 1,</td>
<td>CTKO</td>
<td>CORO SCAN...</td>
<td>May 21, 2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750HD - Elbow,</td>
<td>CTKO</td>
<td>CT coude ga...</td>
<td>September 1, 2009</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Enteroscan, 3.2 mSv</td>
<td>CT</td>
<td>ENTERO SC...</td>
<td>March 23, 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD foot, 31982</td>
<td>CT</td>
<td>CT cheville et...</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD hand,</td>
<td>CTKO</td>
<td>CT LI. HAND...</td>
<td>January 18, 2009</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD head hema, 31970</td>
<td>CT</td>
<td>CT cérébral</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD head k, 31964</td>
<td>CT</td>
<td>CT cérébral</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Heart 0.27 mSv,</td>
<td>CT</td>
<td>CT Heart 0.27 mSv...</td>
<td>September 2, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Heart 0.64 mSv</td>
<td>CT</td>
<td>CT Heart 0.64 mSv...</td>
<td>September 2, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Heart 1.87mSv</td>
<td>CT</td>
<td>CT Heart 1.87mSv...</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Heart 1.8mSv BMI 35,</td>
<td>CT</td>
<td>CT CORONARO</td>
<td>June 8, 2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Heart 895</td>
<td>CT</td>
<td>COEUR</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Heart Multi Phase, Tr 70%</td>
<td>CT</td>
<td>COEUR</td>
<td>October 1, 2010</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Heart Multi Phase 1368, eld</td>
<td>CT</td>
<td>COEUR</td>
<td>March 17, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Heart Multiphase 1368,</td>
<td>CT</td>
<td>COEUR</td>
<td>January 21, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD heart plaques,</td>
<td>CT</td>
<td>CT cérébral</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Heart SSP 1249, eld</td>
<td>CT</td>
<td>e+1 COEUR</td>
<td>September 2, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT-750-HD Heart Stent RCA,</td>
<td>CT</td>
<td>CORO SCAN...</td>
<td>June 2, 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT-750-HD High HR 90,</td>
<td>CT</td>
<td>CORO SCAN...</td>
<td>October 1, 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Knee Fracture,</td>
<td>CT</td>
<td>CT genou et...</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Lithiasse</td>
<td>CT</td>
<td>CT abdominal</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Liver 4 phases Liege,</td>
<td>CT</td>
<td>CT Pelvis Fé...</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Liver Perf 14cm,</td>
<td>CT</td>
<td>CT Pelvis Fé...</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Liver VHS,</td>
<td>CT</td>
<td>CT2 cérébral</td>
<td>August 11, 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - L-Spine Liege,</td>
<td>CT</td>
<td>CT 2 n Colon...</td>
<td>October 17, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Lumbar Spine HW, eld</td>
<td>CT</td>
<td>RACHIS DOR...</td>
<td>March 9, 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - PE,</td>
<td>CT</td>
<td>TH EP</td>
<td>March 17, 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - PerfVS HUG,</td>
<td>CT</td>
<td>CT2 cérébral</td>
<td>August 11, 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Renal Art,</td>
<td>CT</td>
<td>RENALES</td>
<td>October 17, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD Runoff 1760, eld</td>
<td>CT</td>
<td>CT cérébral</td>
<td>August 11, 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Run-Off HUG,</td>
<td>CT</td>
<td>CT membres...</td>
<td>September 2, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD Runoff Left Ocll. 750,</td>
<td>CT</td>
<td>CT members...</td>
<td>September 2, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD Runoff Stent +,</td>
<td>CT</td>
<td>CT sinus</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Sinus, 31981</td>
<td>CT</td>
<td>CT sinus</td>
<td>September 1, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750 HD - Spine fracture, 2571</td>
<td>CT</td>
<td>CT RL</td>
<td>January 10, 2009</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT 750-HD - Spinal Runoff HR,</td>
<td>CT</td>
<td>CT MEMBRANE</td>
<td>October 12, 2009</td>
<td>1</td>
</tr>
</tbody>
</table>
Difference with HD Discovery

Images courtesy of Dr. Olivier Ghekiere
Difference of HD Discovery

Images courtesy of Dr. Olivier Ghekiere
Reporting

- Joint Venture Cardiology - radiology
 - Structured reporting in consensus with pre-defined template
 - uniform reporting with Cardiology Cath Lab
 - integrated in hospital electronic patient medical files

- Database
 - Filemaker Pro (Windows & Mac environments)
 - inclusion of all patient data (BMI,...) and CT data
 - cross-linking with consultation & cath lab data

- Overall post-processing & reporting time
 - 5 minutes to 25 minutes!
 - multiphase examinations, amount of post-processing
no stenosis
wall irregularities
30%
50%
>50%

no plaque
calcified plaque
non-calcified plaque
mixed plaque
In conclusion
Careful patient selection means education of prescribing clinician
Key Point II

An inadequate heart rate often remains an issue
We like image quality, flexible & fast software
Key Point IV

Dose reduction from different angles
Structured reporting
Thank you for your attention!