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Abstract 

 

In this paper we take advantage of a 5-year panel data set from two villages in rural 

India to examine the potential role of spillovers and coordination failures as a source of 

inefficiency due to fragmentation. We first develop a model based on a simple 

characterization of the spatial structure of land fragments that illustrates how spillover 

effects impact input use and productivity. Our results suggest that spillover effects are, 

for the most part negative and that there are significant failures in coordination.  The 

estimates also suggest that, consistent with the model, the surprising absence of a 

diversification effect may be attributed to higher levels of input variance arise in farmers 

with more fragmented holdings.   
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I. Introduction 

 In the last decade concerns about rising food prices and a perceived need to 

transition workers from low productivity work in agriculture to higher value-added 

activities in manufacturing and services has led to renewed interest in the structure of 

production and sales of agricultural commodities. It has been argued, for example, that 

scale economies associated with agricultural mechanization may have changed the 

relative profitability of large and small farms and thus raised the benefits of either actual 

or effective consolidation of landholdings (Foster and Rosenzweig 2011).  While the 

study of land size in part involve an analysis of the relative productivity of farmers with 

different levels of average holdings, it also involves understanding the differences in 

productivity among farmers with more and less fragmented holdings.  Given the 

perception that failures in land, labor and credit markets are an important reason for this 

fragmentation, there is some question as to whether the process of development in rural 

areas may have already altered the relative costs and benefits of managing farms 

compose of multiple non-contiguous fragments.  

From the perspective of an individual farmer, the usual arguments favoring fewer 

land fragments include reduced travel times, less boundary waste, the feasibility of 

larger-scale productive investment, and the ease of labor supervision. In short, when 

operating across multiple land fragments the farm enterprise will have a higher 

proportion of family and hired labor devoted to moving people and inputs across the 

fragments of the farm (Lipton, 2009). It is thus not surprising to find that early empirical 

research such as Bardhan (1973) used land fragmentation as an indicator of productive 
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inefficiency. Others have argued, however, that the persistence of the institution suggests 

that there must also be some benefits to fragmentation of land holdings (McCloskey 

1975). For example, fragmented land may facilitate diversification thereby reducing year-

to-year variation in profitability. In wet years, when lowland fragments are waterlogged 

highland fragments may yield relatively favorable yields, while only lowland fragments 

may receive adequate moisture during dry years (Lipton 2009).  Different fragments also 

might be differentially suited to different types of crops thus leading to protection from 

the consequences of fluctuations in the price of any particular crop.  

Because fragmentation is a farmer-level measure, empirical studies of the 

consequences of fragmentation have typically made use of data aggregated to the level of 

the farmer. The approach pioneered by Bardhan (1973) consideres the consequences of 

total (considering all fragments) area on aggregate yields and on labor input per acre and 

finds differences in returns to scale in different region. The analysis also includes the 

number of fragments as a measure of fragmentation. Bardhan argues, as noted, that 

fragmentation is an index of inefficiency and the empirical results seem to support that 

view, with fragmentation in many cases leading to lower outputs and higher inputs in 

terms of labor. He also notes the need for analysis that uses better measures of 

fragmentation, inclusive of information on fragment distances, which suggests a 

particular interest in the role of travel time between fragments as a source of this 

efficiency.   

A significant limitation of examining fragmentation aggregated to the level of the 

farmer is that, at that level, three potentially important determinants of yields—
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fragmentation, total land area, and average fragment size1--are mutually collinear. That 

is, it is impossible to identify separately the effects of fragmentation given total land area 

from the effects of fragment size given total land area. Thus a world in which there are 

fragment level increasing returns to scale might show evidence of positive effects of total 

area on yields given the total number of fragments (because fragments are larger if total 

area is higher given the number of fragments) and a negative effect of the number of 

fragments given total area (because average fragment size will be smaller). These effects 

can, however, also be generated by a model in which, for example, travel time between 

fragments reduces total output and in which there are positive returns to scale in terms of 

overall cultivated area. To distinguish these different models one needs to make use of 

fragment level data.  

One possible source of both fragment-level returns to scale and overall effects of 

fragmentation given total area that has not been received rigorous empirical or theoretical 

attention is coordination failures across fragment boundaries. 2   The idea here is that 

input use diffuses across space. For example, application of pesticides in a particular 

location of a farm will not only affect that particular location but also other nearby areas. 

These spillovers might be positive if the pesticide diffuses or, conversely, negative if the 

pesticide stays in one place and the pests look for unprotected crops.  Similarly, water 

applied in one area may literally “spill over” into other nearby areas. If these spillovers 

                                                 
1 As discussed in detail below, it is helpful to distinguish two uses of the word plot--subdivisions—parcels 
of land that are registered, bought, rented and sold--and fragments—contiguous sets of subdivisions that are 
farmed as a single unit. We will use the word plot interchangeably with fragment and specifically refer to a 
subdivision when the alternate meeting is needed.   
2 The notion that coordination failures between proximate fragments may be a significant source of 
fragmentation inefficiency is not itself new. Heston and Kumar (1983), in their class article discussing the 
persistence of land fragmentation in South Asia, citing McCloskey (1975), note that “costs of travel and 
enforced coordination” with neighbors could amount to about 7% of output.  
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occur within a particular farm they present no particular problem as a single farmer can 

internalize these effects. However, in the absence of a mechanism for coordination 

among farmers with proximate fragments, applications of inputs will generally be 

inefficient and this inefficiency will be greater when fragments are small for a given rate 

of input diffusion. There is also qualitative evidence from the farmers in our study area 

that suggests that coordination among neighbors may be an important issue. One farmer 

with 6.5 acres, for example, argues “There is much benefit [to land consolidation]. For 

drainage and irrigation. One applies fertilizer in one's field and water must be held there 

for a time. If there is another person's land adjacent your field will be drained. There are 

problems. For instance my younger brother's land was adjacent to mine and he sold it to 

someone else. And he drains my freshly fertilized field.”  

While this is the first analysis, of which we are aware, to test directly for spillover 

effects that arise from the diffusion of agricultural inputs among neighboring farmers, 

there is a related body of work that focuses on learning about new technologies as a 

source of spillovers.  There is, in particular, a significant and growing literature, reviewed 

by Foster and Rosenzweig (2011) on the adoption of agricultural technologies (and other 

technologies in rural areas) showing that experience by some households influences the 

behavior of other households through the acquisition of knowledge.  A subset of this 

literature also examines the questions of whether these external effects are internalized by 

the community (e.g., Foster and Rosenzweig 1996). In contrast, however, to the learning 

literature in which spillover effects diminish as experience with the new technology 

accumulates, input spillovers, if present, are likely to persist.  As a result input spillovers 

that are not internalized may create not only short but long term returns to scale. 
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Moreover, in contrast to learning externalities, which are always non-negative, it is 

possible that input spillovers can create negative externalities.  

Perhaps even more so than in the learning literature, the empirical analysis of 

spillover effects and coordination failures in inputs is especially challenging from the 

perspective of demands on the data. Not only must one observe fragment level 

information for each farmer, but one must have fragment level information on the farmers 

with fragments that are proximate to the his fragments. This requirement is unlikely to be 

met by data sets with only a sample of village households. Instead one either needs to 

purposively sample households with adjacent fragments or, perhaps more 

straightforwardly, have a census of all farmers in particular region. 

In this paper we take advantage of a 5-year panel data set from two villages in 

rural India to examine the potential role of spillovers and coordination failures as a source 

of inefficiency due to fragmentation. We first develop a model based on a simple 

characterization of the spatial structure of fragment that illustrates how spillover effects 

impact input use and productivity. We then test the implications of the model using a 

series of reduced form and structural input and yield equations. Identification for the 

structural equations comes from the fact that, given the structure and equilibrium concept 

used in the model, the characteristics of the non-adjacent fragments of the owner of an 

adjacent fragment only affect input use on a given fragment through the inputs on the 

adjacent fragment. Our results suggest that spillover effects are present. The estimates 

also suggest that the surprising absence of a diversification effect (fragmented holding 

exhibit greater total variance than unfragmented holdings given total area) may be 

attributed in part to a spillover effect.  
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II. Theory 

 In order to incorporate the effects of input and, in particular, to capture the 

impacts of spillover effects from the input use on proximate fragments it is helpful to 

construct an explicitly spatial model that distinguishes between the actual amount of a 

given input applied at a particular point and the effective input at that point, which adjusts 

for the spillover effects caused by inputs from neighboring points. The model as 

constructed yields a series of testable predictions about the relationships between 

fragment size, inputs of neighboring fragments, and the degree of fragmentation of the 

holdings of the farmer of a given fragment and of the those farming fragments that abut 

that given fragment.  

 We assume that output per acre at a point ( , )x z  depends not on actual inputs at 

that point but on the effective input *I  according to a concave quadratic production 

function 

(1) 2
1 2

1
( *) * ( *)

2
g I g I g I  . 

The effective input on any given fragment of land, in turn, depends on the amount of that 

input applied to a particular point (the direct effect) as well as the weighted (by 

proximity) average amount of input applied to neighboring points (the spillover effect). 

In particular, consider a map in the form of a Cartesian plane placed on a wall and 

let fragments be rectangles of varying area iA  arrayed along an infinitely wide ribbon of 

fixed height h on the map (say bounded at top and bottom by roads) 3 so that each 

fragment has two proximate fragments managed by other farmers.  Thus on the map, the 

                                                 
3 Describing this as a map on the wall rather than an actual representation of the land viewed from above 
facilitates discussion of the different dimensions as height and width rather than the more ambiguous length 
and width. .  
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left and right boundaries of fragment i can be denoted L
ix and /R L

i i ix x A h  , 

respectively, and the top and bottom boundaries can be denoted T
iz h and 0B

iz  .   

Now suppose that input use does not vary in the vertical direction so that for any 

point (x,z) it can be characterized by some function ( )I x .  Further, suppose that the 

relative spillover impact of applying input use at a point x on different neighboring points 

can be described by a function ( )f u   that is symmetric about zero.4 Then the effective 

input at a point (x,z) is 

(3) 1 2

'

*( , ) ( ) ( ') ( ( ' )) '
x

I x y I x I x f x x dx   




       

where 1  and 2  with 1 2 1    may be thought of, for positive spillovers, as relative 

weights of direct and spillover effects on effective inputs. That the weights sum to one 

ensures that effective spillovers equal actual inputs if inputs do vary across neighboring 

fragments—that is if ( )I x I  then *( , )I x y I  .  We assume 1  . That is inputs are 

defined such that the direct effect must be nonnegative but to capture moderate negative 

spillovers we allow 21 0   .  In terms of pesticides, for example, 2 0   implies that 

pesticides diffuse from one location to another but 2 0   implies pesticide use in one 

fragment moves pests to a neighboring fragment. 

                                                 
4 The function ( )f u   is essentially a density function with mean zero and f(0)=1. For positive 

spillovers it thus may be thought of as the probability that a molecule of input deposited at point x jumps 
horizontally to point x u .  We disregard the possibility of diffusion in the vertical direction given that 
the strategic effects of interest only arise from interactions with neighbors who are, by assumption, only to 
the left and right.   
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Now suppose that each farmer applies informally uniformly on his fragment5. Let 

iI  denote inputs per unit land on fragment i and let the input use of all farmers on the 

fragments to the left and all farmers to the right of him be denoted by L
iJ  and R

iJ , 

respectively.   Then the effective input on fragment i on points within the range 

[ , ]L R
i ix x x  and [0, ]z h  is as 

(4) *
1 2( , ) ( ( ) ( ( )) ( ) ( ( )))L L R R

i i i i i i i iI x z I I J I F x x J I F x x              

where ( ) ( ') '
u

u

F u f u du


  .  For small  diffusion is high and even large differences in 

input use result in only small differences in the spillover effect across neighboring 

fragments;  however, even if 0   effective input use will jump at the boundary as long 

as 1 0  . As   gets larger diffusion decreases.  As    , ( )F x  becomes a step 

function and thus effective input use is equal to actual input use regardless of whether 

spillovers are positive or negative. 

Intuition for equation (4) may be gained through the examination of Figures 1 and 

2. These figures plot effective inputs for a particular set of parameter values and inputs.  

In this case it is assumed that the fragment located in the interval [0,2] on the horizontal 

axes  has a per-acre input level of 3. For Figure 1 the input use of the left and right 

proximate fragments are 1 and 2, respectively, and for Figure 2 the inputs uses are 4 and 

5, respectively.  Three alternatives are considered for each figure: negative 

spillovers 1 2( 3 / 2, 1/ 2)    , positive spillovers 1 2( 1/ 2, 1/ 2)   , and zero 

                                                 
5 In principle a farmer could do better by allowing his input to vary so that effective input does not vary 
within a fragment.  Such variation would be hard for a farmer to implement in practice and, in the context, 
of our model would be a second order effect in the parameter  and thus would not change the main 
implications derived.  
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spillovers 1 2( 1, 0)   . We set 4  and use a logistic function for F (u).  In Figure 1 it 

is evident that when one’s neighbors use lower levels of inputs and there are positive 

spillovers, effective input use is low, relative to no spillovers given input use. The 

opposite is true when there are negative spillovers. In Figure 2 we examine the alternate 

case in which neighbors are using higher input levels that the individual of interest. In 

this case, for example, negative spillovers reduce effective inputs. 

Estimation of (4), if possible, would say a great deal about the importance of 

spillover effects and thus of the possibility that fragmentation affects profitability due to 

the lack of coordination across farms. In practice, of course, one does not generally 

observe levels of input, effective inputs, or yields at a particular point in space. Instead 

one observes aggregates at the level of the fragment.  One thus must relate inputs for a 

fragment, iI , as well as for that of neighboring fragments L
iJ  and  R

iJ , to average yields 

for that fragment   

(5) 
0

1
* ( *( , ))

R
i

L
i

x h

i
i zx x

y g I x z dx dz
A 

   . 

 We now consider a maximization problem across the Nk fragments of farmer k: 

(7) 
1 0

max ( *( , ))

R
ikk

L
ik

x hN

i zx x

g I x z dxdz
 

    

subject to the constraint  

(8) 
1

kN

ik k i k k
i

s I


     

Where  k  denotes total inputs available to farmer k per unit cultivated area. Initially we 

consider choices condition on the shadow price of inputs (the Lagrange multiplier on the 
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constraint) k , and thus the analysis applies equally to the case where inputs may be 

purchased in any quantity that is desired at a market price k . Differentiating, solving, 

and allowing for possible other fragment characteristics ikd  (such as distance of the plot 

from the home) that may enter the problem, for example, through heterogeneity in the 

production function parameters as in 1( )ikg d  and 2( )ikg d , we obtain equations for inputs 

and yields by farmer k on fragment i that condition on neighboring farmer inputs and the 

shadow price of inputs for k.  

(8) 1( , , , , )ik ik ik ik k kI f s J d    

(9) 2( , , , , )ik ik ik ik k ky f s J d    

where ( ) / 2L R
ik ik ikJ J J  6 and /ik ik ks A   is the share fragment i is of total land 

1

kN

k ik
i

A


  of farmer k . 

To maintain analytic tractability it is convenient to construct linear 

approximations to (8) and (9) around 0  7. Thus, for example, 

(10) 
 

 
  

 

2
1 1 2 2 2 2 2

2

2 2

1 2 2 2 2 1 2 2
2

2 2 2

( ) ( ) ( ) ( )
(

( ) 1

( ) ( ) ( ) ( ) 2
)

( ) 1 1

ik ik ik ik ik ik k
ik

ik

ik ik ik ik ik ik k ik k

ik

g d g d g d J g d J
I

g d

g d g d J g d J g d s
O

hg d

   


   
 

 

   




     
 

  

 

The order- 2 comparative statics (we omit the 2( )O   term) of interest for (10) are thus:  

                                                 
6 We will employ throughout the assumption that only average neighborhood characteristics enter the 
decision rules rather than entering them as separate arguments. This assumption is, of course, quite useful 
empirically and may be justified to the extent that these expressions are approximately linear in inputs.    
7 The expansion around a small value may seem a bit unrealistic given the effects of many inputs is likely 
to be quite local.  However, it provides a substantial advantage in terms of tractability and seems to capture 
the main forces we wish to illuminate. Moreover, a high rate of diffusion does not necessarily imply 

anything about whether there are spillovers; that is governed by the parameter 2 . 
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(11) 2
2 3

2 1 1 2

1
2ik ik k

k

dI s

d g hg

 
  


     

(12) 
 2 2 1 1 1

3
1 2

2k ikik

ik

g J gdI

ds hg

   



 

  

and 

(13) 2 2
2

1 1

ik ik k

ik

dI s

dJ h

  
 


    

, 

where we have dropped the dependence of the ig  on ikd  for notational convenience. 

Assuming  is sufficiently small, (11)  provides  the expected result that an 

increase in the shadow price of inputs results in lower input use. Expression (12) shows 

that the effect of an increase in fragment size on inputs per acre is zero in the absence of a 

spillover effect ( 2 0  ). Otherwise, if input levels across neighbors are sufficiently close 

then the term in parenthesis will be positive for negative spillovers and negative for 

positive spillovers. 8 Thus an increase in fragment size will generally increase input use if 

spillovers are negative.  Finally the effects of neighbors’ inputs on own inputs to 

fragment i will be positive for small  if spillovers are negative and negative if spillovers 

are positive. In short negative spillovers create a kind of arms race—with coordination 

both farmers could lower input costs with relatively minor consequences for effective 

inputs and thus output. Conversely, with positive spillovers, farmers free ride on the 

inputs of their neighbors leading overall to under provision of inputs.   

 Similarly one can obtain approximate (to order 2 ) estimates of comparative 

statics for (9): 
                                                 
8 If ik ikJ I  then the first order condition dictates 1 2 ik kJg g    so 1 1 1 2 2ik kg Jg     for 

1 2  .   
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(12)  
*

2
2 3

2 1 1 2

2ik ik k k

k

dy s

d g hg

   
  


    

(13) 
* 2

2
3

1 2

ik k k

ik

dy

ds hg

  



  

 (14) 
*

0ik

ik

dy

dJ
  

 

Not unexpectedly an increase in the shadow price of inputs lowers yields.  Consistent 

with the effects on inputs, an increase in fragment size in (13) has no effect on yield in 

the absence of spillovers. With negative spillovers an increase in size decreases yields 

and with positive spillovers an increase in size increases yields. Finally, we see that to 

order 2  there is no effect of neighbors’ inputs on yields.  In the case of negative 

spillovers one raises one’s own inputs sufficiently to offset the negative consequences of 

the neighbors’ input use on yields. With positive spillovers one reduces ones inputs to 

fully offsets the benefits received from one’s neighbors. Of course the offset effect does 

influence profitability because one pays for one’s inputs but not for one’s neighbors 

inputs so profits will be increasing in neighbors’ inputs with positive spillovers and 

decreasing in neighbors’ inputs with negative spillovers. 

 At this point it is helpful to consider the implications of the model for the debate 

about returns to scale in agriculture.  Intuition would suggest that with spillovers larger 

farmers will be more efficient because they can better internalize spillover effects. This 

will be true regardless of whether there are positive or negative spillovers. But in fact 

larger famers have higher yields with positive spillovers and lower yields with negative 

spillovers. Thus the relationship between yields and land sizes is not necessarily a good 

gauge of efficiency. Nor, in a sense, is individual profitability. In the presence of positive 
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spillovers a small farmer with large neighbors will be extremely profitable because his 

inputs are in effect being financed by his neighbors. To evaluate efficiency one needs to 

think about input use from the perspective of the economy as a whole.   

 In particular, consider a symmetric Nash equilibrium of a large group of farmers 

with interlaced fragments where all fragments are of identical size who face an identical 

input price.  Determining optimal iI given iJ  and then substituting i iJ I , solving and 

substituting back into profits yields profits per unit area as a function of area, i , for 

which 

(15) 
 

2 2
2

3

2 2

2
2

ki k

i

d

ds g

   



     

Thus, there are positive scale economies as long as there are spillovers and regardless of 

whether spillovers are positive or negative.  

 As noted, the analysis to this point has conditioned on the shadow price of inputs. 

As should be clear from the maximization problem defined by (6), (7) and (8), the first 

order condition for inputs conditional on the input price and the inputs of neighboring 

fragments does not depend on the size of other fragments. But it is also instructive to 

consider the case in which inputs are constrained so that k  is endogenous.  The shadow 

price of inputs in that case will be determined in particular by the distribution of 

fragments owned by a particular farmer as well as the distribution of input use of 

neighbors of those fragments, which itself is determined by the distribution of fragments 

of those neighbors, ad infinitum.  In particular, to order 2  we can solve for k , yielding 

an equation of the form 

(16) 3( , , , )k kk k kf d J     
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 ( kJ denotes the average neighbors’ inputs across all the fragments of farmer k and so 

forth) where: 

(17) 2

1

kN

k i
i

s


 , 

which is the Herfindahl-Hirschman Index (HHI) typically used to measure market 

concentration.  In particular, 

(18) 
 2 1 2 2 2 2

2

(2 ) (1 )

2
kk

k

k g Jd

d

gg

h

 


    



. 

Intuition for this result may be obtained by considering a thought experiment for a farmer 

with two fragments of different sizes. Now suppose the larger fragment is made larger 

and smaller fragment in such a way that total area is the same. Then to first order (12) 

tells us that input use per area on the large fragment, given negative spillovers, will 

decrease as much as the input use per area on the small fragment rises. But this same 

absolute change in input use per area is multiplied by area so total input use and thus total 

input use per total area at given price declines.  To satisfy the constraint (8) given fixed 

inputs the shadow price of inputs must fall. 

 Substitution of (16) into (9) and (10) provides input decision rules that depend on 

neighbors’ inputs and the set of characteristics of farmer k 

(19) 4( , , , , , , )k kik ik ik ik k kI f s J d d J     

(20) 5( , , , , , , )k kik ik ik ik k ky f s J d d J   

The shadow price of inputs is also increasing in average (across k’s farmers) 

neighbors’ inputs given negative spillovers: 

(18) 
 2 2 2 2

2

2(1 (2 ))

4
k kk

k

hgd

hd J

        
  . 
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As neighbors’ input use goes up one must compensate by increasing one’s own input for 

a given price. Thus if input supply is fixed the shadow price must rise. Consequently an 

increase in the average (across k’s plots) of neighbors’ average input use ( †
kJ ), should 

decrease input use on fragment i net of neighbor’s (of i) average input use, given negative 

spillovers. This result arises because the higher average input use by neighbors of the 

other fragments of farmer k increases input use on those fragments and this in turn raises 

the shadow price of inputs for farmer k. 

Further, noting that the inputs of neighbors’ farmers are themselves a result of 

input decisions made by that neighbor, which themselves are affected by the input 

decisions on i, we can in principle solve simultaneously to obtain reduced form input 

demand equations that depend on both own and neighbors’ attributes. E.g., if †
iks  denotes 

the average of the fraction of the land of neighbors to i that is in the respective adjacent 

plots and so forth then  

(21) 
† † † †6 † † † †( , , , , , , , , , , , , )kk k k kik ik ik k k ik ik ik ikI f s d d s d s d       

and 

(22) 
† † † †7 † † † †( , , , , , , , , , , , , )kk k k kik ik ik k k ik ik ik iky f s d d s d s d         

That is input use and yield per acre on fragment i by farmer k depend on the 

characteristics of that fragment and farmer, the characteristics of the fragments and 

farmers that are adjacent to i, and the characteristics of the fragments and farmers that are 

adjacent to all of k’s other plots.  The true reduced form, of course, should in principle 

also include information on the neighbors of the neighbors and so forth; however in the 

empirical analysis below we limit to this first level of recursion.    
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The previous comparative statics yield predictions about how a change in the HHI 

controlling for fragment area on a particular fragment affects input use on that fragment 

from (21) and (22). In particular for fixed inputs, total area, and area on a particular 

fragment, an increase in k’s HHI with negative spillovers increases input use on that 

fragment. Moreover given negative spillovers an increase in the HHI of neighbors to k’s 

ith fragment will increase use on the neighbors’ fragments ( ikJ ) and this will in turn 

increase input use ( ikI ) on fragment i through (13). Thus both the own ( k ) and average 

neighbors’ HHI ( †
ik ) will lead to an increase in input use on a given fragment in the 

presence of negative spillovers, and conversely for positive spillovers.   

 III. Data 

 The data requirements for an analysis of this type are, as noted, extensive. One 

must have access to longitudinal data on all the fragments of each farmer in the sample, 

as well as all the fragments of those farmers who have land proximate to the fragments of 

farmer i. The data for this study were collected over a 5-year period beginning 1995 in 2 

contiguous villages situated in Tamil Nadu, India that we denote as N and T. For 

measuring spillovers or attributing efficiency losses or gains to spillovers one must have 

space covering data. That is, there must be input and output information for contiguous 

fragments and preferably for all farmers within a village.  Such data were collected from 

137 farmers (cultivators) in N and 83 farmers (cultivators) in T, for the period 1995-6 to 

1999-2000. The survey included detailed questions on inputs, outputs, land quality, 

irrigation management, apart from those that related to household welfare such as 

demographics, incomes, consumption,  and, asset ownership.  The summary statistics are 

given in Tables 1 and 2. Table 1 provides means and standard deviations of the key 
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variables in the data set. The average farmer has 4.3 fragments with a standard deviation 

of 4.03. The HHI averages .58. Thus there is variation in fragment size within farmer as 

well as the number of fragments that is critical for assessing the difference between 

fragment and scale effects.  There is also substantial variation in the number of fragment 

neighbors, with the average number of neighbors being 1.8 and the standard deviation 

being 2.0. The characteristics of households and details of input use in a more 

disaggregated manner are provided in Table 2. Yield per acre turns out to be higher for 

larger farmers compared to small and marginal farmers and input varies across farm 

sizes. There is evidence of increased mechanization by the large farmers as shown by 

significantly less use of labor especially during harvesting. Small and marginal farmers as 

expected use labor intensive methods of cultivation.  

 One of the innovations of this paper is the structure of the data. Because testing of 

the hypothesis necessitates that the input and output data be collected for the entire space, 

we first identify the subdivisions owned or leased in. These subdivisions are revenue 

units and not necessarily units of cultivation. The next step is to use the information on 

subdivisions to identify the cultivating units. Such cultivating units are referred to as 

fragments and all of the input and output data are collected at the fragment level. In 

Figure 3 we present details of a particular set of subdivisions and fragments. This graph is 

a representation of one part (section 168) from N village. It is further divided into 

subdivision such as 168-1, 168-2, 168-4A, 168-5E etc. If a farmer, for example, owned 

168-1, 168-2, and, 168-5E, then the most likely method of cultivation is to treat 168-1 

and 168-2 as a single unit for farming purposes. Hence this farmer own three 
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subdivisions but cultivates two fragments. The input and output data in this study are 

collected at the fragment rather than the subdivision level.  

 The spatial distribution of the data for one of the villages is shown in Figures 4 

and 5.  Figure 4 shows the overall coverage and how the different fragments are divided 

up into cultivating units. Shade differences among neighboring cultivating units indicate 

they are managed by different farmers but each shade may represent multiple farmers.  It 

is evident that although the survey includes all fragments that are farmed by members of 

the village, not all fragments were surveyed due to the fact that some farms are farmed by 

people not in the village and others were left fallow. Figure 5 provides an illustration of a 

subset of the multiple-fragment farmers in N. Fragments are evidently quite dispersed 

and it is evident that the different fragments of a given farmer have different neighbors. It 

is also notable that there is substantial variation within farmer in the size of fragments 

and that the relatively large fragments tend to be cultivated in one area. Table 2 provides 

a largely descriptive evidence of the fact that larger farmers benefit from greater yields 

but at the level of fragments, size has an adverse impact on yield. Farmers with larger 

fragments also tend to use more family labor.  

IV. Estimates  

 We proceed by first by examining simple descriptive regressions of input use per 

acre by type and yields at the level of the fragment as a function of the HHI, fragment 

area and total area. Standards errors are grouped at the farmer level.  When not 

controlling for land areas, greater concentration appears to result in a lower per acre non-

labor  and labor inputs. Controlling for fragment and total area, however, provides a ore 

mixed picture.  A one standard deviation increase in the HHI, for example, controlling for 
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total and fragment area results in a .18 standard deviation increase in inputs per acre.  

Conversely measures of labor are negatively and significantly related to the HHI, with 

substantial negative effects. On net there is no significant effect on yield. Fragment sizes 

operate in the reverse with larger fragments being correlated with lower non-labor inputs 

and yield and higher family and hired labor inputs.  Total area on the other hand is 

associated with higher non-labor inputs and labor but lower family inputs. At the very 

least these results suggest that returns to scale are not simple at either the fragment or 

farm level. Not only are there distinct effects of different measures of plot area but 

different inputs are differentially affected by these measures.  

 Table 4 provides random and fixed effects estimates of the reduced form 

equations  () and ().Note that averages across the different plots are constant for a given 

farmer and are thus excluded from the fixed effects specifications.  Results are overall 

quite consistent across specifications and suggest the presence on net of negative 

spillovers. First, in column (1) of the estimates an increase in area substantially lowers 

input use per acre, with an elasticity of -.787.  Given an elasticity of negative one would 

suggest that total inputs per plot are fixed and this magnitude seems overly high and 

suggests the possible presence of measurement error in area or, more plausibly, an 

underreporting of differences in total input use across small and large plots. However, 

taken literally, this figure suggests given (11) that spillovers are negative.  Small farmers 

must compensate for the input use of their neighbors by using more input use themselves 

but larger farmers are largely protected from effects that only operate at the boundary.   

There is a negative effect on input use on the maximum distance of a particular plot from 

other plots but a compensating positive effect of average distance. These distance effects, 
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which are not primarily related to scale economies, may reflect either differences in the 

cost of transportation or differences in the relative returns to inputs on more distant plots.  

The former seems relatively transparent. With regard to the latter if, for example, more 

distant plots are less likely to be depleted one may use less fertilizer on those plots. In 

either case the fact that the compensating effect works in the other direction is also 

plausible in the presence of input constraints. That is the fewer inputs one uses on other 

plots the more inputs one can use on a particular plot.  

The HHI effect is positive, with an increase in consolidation of .1 yielding a 7.3 

percent increase in inputs in the  RE specification. Given () and (), this result is again 

consistent with negative spillovers. Given total area, if other plots are more concentrated 

there is less need for inputs to compensate for neighboring effects on other plots and thus 

there is an increase in available inputs for the fragment of interest.  

The effects of characteristics of adjacent fragments operate in principle through 

the inputs of neighbors.  In general one would expect to see, for negative spillovers, that 

the coefficients on adjacent plots  (the second panel of 4) for input equations have the 

same sign for fragments adjacent to the fragment of interest as those for that fragment 

itself (the first panel)  due to the “arms race” effect.  The  characteristics of fragments 

adjacent to the farmers other fragments (the third panel) should have the opposite effect 

due to the effect on constrained inputs.  For positive spillovers the opposite would be 

true.  While adjacent area and HHI are not significantly different from zero in the random 

effects specifications the distance and average distance effects are significant and indeed 

of the same sign as their respective coefficients in the first panel. The distance results also 

holds for the fixed effects specification but in this case adjacent area is positively related 
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to input use, which is not expected in the presence of negative spillovers. The third panel, 

for which only random effects estimates are possible, matches up well with the negative 

spillovers model. For example, if farmer k’s plots other than i are adjacent to larger plots 

then input use on plot i by farmer k increases.  

 The negative effects of fragment i area in Table 4 are also consistent with 

negative spillovers as are the positive effects of the HHI. As there are no direct scale 

economies greater input use driven by scale or by that shadow price of inputs generates 

greater yields.  The distance effects, however, operate in the opposite direction 

suggesting that these effects are having direct effects on the production parameters. This 

result suggests, for example, that more distance fragments are getting fewer inputs at 

least in part because they are more productive. 

 The effects of the adjacent fragment’s HHI in the second panel also supports 

negative spillovers. Greater concentration of HHI for farmers of adjacent plots should 

reduce inputs on those plots and this in turn should reduce inputs on those plots and  

[to be completed] 

 

 Table 5 and 6 provide estimates of Equations (19) and (20) equations. In 

particular, we note that these expressions condition on the inputs of both the plots that are 

adjacent to fragment i of farmer k and the inputs of fragments that are adjacent to k’s 

other fragments. Given that these inputs are determined simultaneously with own inputs 

one needs in principle to find a source of variation in neighbors’ inputs. But neighbors 

fragment characteristics are excluded from (19) and (20) and are likely to be correlated 

instruments and thus may serve as appropriate instruments.  
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 The effect of the inputs on neighboring plots are also positive. Controlling for 

own area, a 10 percent increase in neighbor’s inputs results in a 1.7 percent increase in 

own inputs in all four specifications.  This positive effect is exactly what is predicted by 

() in the presence of negative spillovers—one needs to compensate for the neighbors’ 

activities by using more inputs on one’s own fragments.  The average inputs across other 

plots should in principle be negative because greater demand for inputs on other plots 

should raise the cost of inputs on a particular plot but the effect is essentially zero. This 

result in itself might fit with the idea that inputs are freely available at a given price, but it 

is hard to square that conclusion with the HHI effect noted above.  

 We now turn to Table 6, which carries out the same set of analyses for yields. As 

shown in equations () through () the signs on yields correspond with the signs on yields 

(because greater inputs per unit area, all else being equal, produce greater yields). The 

one exception is neighbors’ inputs because, to a linear approximation, farmers fully offset 

the consequences of neighbors’ inputs by increasing own inputs. As anticipated, the area 

and HHI effects in Table 6 correspond to those in Table 5, as should be expected under 

negative spillvoers. Larger farms have lower yields and farmers with more concentrated 

holdings have higher yields.  The distance effects, however, work in the opposite 

direction from those in the inputs. The positive own distant effect seems consistent with 

the idea that the distance effects reflect differences in productivity of more distant plots 

rather than the idea than differences in the cost of transporting inputs. However, it is not 

clear that this should yield positive average distance effects.  
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 The effects of neighbors’ inputs on yields are of more direct interest and, 

interestingly, differ between the random and fixed effects specifications. In the random 

effects specifications neighbors’ (to i) inputs have a significant positive effect on yields 

which offsets the negative effects of neighbors’ across all plots. The latter effect is 

consistent with negative spillovers in the sense that an increase in neighbors’ inputs on 

other plots but this is puzzling given that there was no evidence of such an effect in terms 

of measured inputs use. The former, however, is not consistent with the linear model. 

Interestingly, however, in the fixed effects specification the effect of inputs of neighbors 

to i is indeed zero as predicted by ().  Overall, then, the yield equation seems to further 

support the idea of negative spillovers..  

 The final column in Table 6, incorporates further structure. In particular, it 

conditions on both own and neighbors inputs using a random effects specification and 

using the HHI to instrument own inputs (recall from () that HHI only enters through the 

input price.  While as expected, own inputs increase yields and consistent with the idea 

that the negative effects of area on inputs is a consequence of the  

  

V. Conclusion 

 This paper has shown that negative spillovers in input use are sufficiently 

important to lead to significant negative returns to scale in land. On its face this suggests 

that further consolidation of land would be unwarranted. But this conclusion would be 

misleading because decreasing returns in terms of input use generate positive effects of 

consolidation on a per fragment basis. On net it appears that consolidation would tend to 

not only increase average yields but also decrease yield variance. 
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Table 1:Means and Standard Deviations 
 

Variable Mean Std. Dev. 

HHI Index 0.576 0.324 

Number of Fragments 4.294 4.030 

Distance to Largest Fragment 2.220 3.702 

Avg. Distance to Largest Fragment 2.220 2.542 

Ln Cultivated Area (Fragment) -0.316 1.089 

Ln Cultivated Area (all Fragments) 0.975 1.132 

Head Yrs Schooling 7.271 4.199 

Head Female 0.168 0.374 

Mean Height of Adults 5.241 0.301 

Number of Adults 3.374 1.483 

Mean Number of Kids 0.640 0.862 

Number Neighbors 1.794 2.018 

Log Value Family Labor 6.073 2.314 

Log Value Hired Labor 8.208 0.874 

Log Value of Inputs 7.194 1.030 

Log Quantity Pesticide 3.817 1.056 

Log Quantity Fertilizer 3.218 2.219 

Log Yield 7.288 0.440 
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Table 2: Household Characteristics 

 

Variable 
Nelpathur Thirunagari 

Small 
farmers 

Marginal 
farmers 

Medium 
farmers 

Large 
farmers 

Mean (Std. Dev.) 

Male headed 
households 

0.78 
(0.41) 

0.89 
(0.31) 

0.81 
(0.39) 

0.87 
(0.34) 

0.80 
(0.40) 

0.88 
(0.33) 

Head age 
56.66 

(11.86) 
49.00 
(8.82) 

52.49 
(10.59) 

53.24 
(11.72) 

60.47 
(8.64) 

63.25 
(17.52) 

Head education 
6.66 

(3.90) 
6.73 

(4.24) 
6.16 

(3.96) 
7.61 

(3.69) 
7.47 

(4.28) 
9.25 

(4.77) 

Family size 
3.93 

(1.70) 
3.53 

(1.53) 
3.48 

(1.50) 
4.27 

(1.84) 
4.75 

(1.76) 
4.23 

(1.27) 

No. of earners 
1.75 

(0.90) 
1.77 

(0.88) 
1.72 

(0.86) 
1.89 

(1.01) 
1.87 

(0.89) 
1.50 

(0.51) 

Members(<=14) 
0.65 

(0.88) 
0.59 

(0.80) 
0.55 

(0.81) 
0.81 

(0.91) 
0.85 

(0.98) 
0.55 

(0.71) 

Members (>14) 
2.86 

(1.54) 
2.80 

(1.18) 
2.68 

(1.31) 
3.15 

(1.56) 
3.36 

(1.78) 
2.83 

(0.84) 

Average age of the 
household 

37.36 
(11.51) 

34.79 
(9.57) 

36.88 
(11.36) 

33.59 
(8.30) 

38.32 
(12.68) 

39.15 
(8.02) 

Production & inputs per acre 

Yield (Kilograms) 
1469.63 
(361.38) 

1695.80 
(267.18) 

1297.58 
(284.15) 

1226.98 
(180.81) 

1471.89 
(252.81) 

1634.10 
(353.64) 

Labor for harvesting 
(units) 

7.62 
(3.28) 

8.51 
(3.09) 

8.93 
(3.20) 

6.18 
(2.39) 

6.16 
(1.78) 

4.71 
(1.91) 

Labor for land 
preparation(units) 

3.48 
(2.85) 

3.24 
(3.39) 

3.68 
(3.69) 

2.68 
(0.80) 

2.86 
(0.44) 

3.11 
(0.50) 

Fertilizer & manure 
(Qty) 

210.77 
(415.03) 

132.96 
(40.60) 

169.65 
(210.27) 

106.14 
(68.08) 

170.36 
(96.83) 

237.54 
(584.84) 

Bullocks & 
Machinery 
(frequency) 

17.59 
(29.08) 

10.97 
(9.08) 

15.73 
(26.24) 

15.82 
(19.23) 

10.84 
(8.57) 

4.41 
(1.38) 

Irrigation (including 
labor cost) (Rs) 

48.40 
(33.72) 

56.68 
(27.84) 

15.11 
(6.14) 

36.19 
(13.57) 

15.93 
(7.52) 

62.60 
(32.04) 

Other labor(Rs) 
96.63 

(37.85) 
117.61 
(36.62) 

113.49 
(41.89) 

95.95 
(21.95) 

72.11 
(14.13) 

66.92 
(10.77) 
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Table 3: Fragmentation, Landholding and Area 
 Inputs Inputs Hired Labor Hired Labor Family Labor Family Labor Yield Yield 
HHI -24.329 83.992 -178.882 -116.379 -0.276 -0.873 -0.324 0.173
 [2.79] [5.59] [1.59] [1.23] [5.13] [9.01] [2.11] [1.08]
Ln Fragment Area  -38.05  59.628  0.105  -0.137
  [5.23]  [1.39]  [6.15]  [2.61]
Ln Total Area  34.343  51.758  -0.23  0.174
  [5.09]  [2.12]  [9.03]  [2.57]
Constant 28.521 -79.179 155.652 88.057 0.403 1.004 0.789 0.293
 [3.84] [5.26] [1.69] [1.23] [8.11] [10.15] [6.26] [2.08]
Observations 2135 2135 2140 2140 2140 2140 2085 2085 
R-squared 0.01 0.13 0 0.01 0.02 0.08 0.01 0.02 
Robust t statistics in brackets       
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Table 4: Random (RE) and Fixed Effects (FE) Estimates of Reduced Form Input and Yield 

Equations Incorporating Own and Neighbors’ (N) Fragment Characteristics 
 

 Ln Input Ln Yield Ln Input Ln Yield 

 RE RE FE FE 

Main Fragment i Variables   

Ln Area -0.787 -0.037 -0.975 -0.047 

 [52.62] [4.02] [68.15] [3.68] 

Dist Max -0.096 0.011 -0.109 0.01 

 [21.38] [3.37] [28.84] [3.04] 

HHI 0.726 0.278   

 [7.75] [7.24]   

Av Dist 0.12 -0.013   

 [9.98] [2.35]   

     

Variables for Neighbors of Fragment i  

Ln N Area 0.061 -0.067 0.132 -0.098 

 [1.21] [1.79] [3.10] [2.57] 

N Dist Max -0.017 0 -0.014 -0.002 

 [1.81] [0.07] [1.80] [0.26] 

N HHI 0.025 0.42 -0.002 0.267 

 [0.23] [5.79] [0.02] [3.03] 

N Av Dist 0.071 0.032 0.047 0.014 

 [4.90] [3.09] [3.71] [1.26] 

     

Variables for Neighbors of all Fragments  

     

Av Ln N Area 0.354 0.202   

 [3.25] [3.56]   

Av N Dist 0.023 0.01   

 [1.27] [0.97]   

Av N HHI -0.161 -0.264   

 [1.28] [3.59]   

Av N Av Dist -0.067 -0.06   

 [2.53] [4.23]   

Observations 2140 2140 2140 2140 

Groups 1050 1050 1050 1050 

R-squared 0.84 0.04   
Absolute value of z statistics in brackets 
Also includes controls for number of neighbors, soil  characteristics, canal water,  
     and farmer characteristics  
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Table 5: Least Squares (LS) and Instrumented (IV) Random (RE) and Fixed Effects 
(FE) Estimates of Input Decision Rules Incorporating Own Fragment Characteristics 

and Neighbors’ (N) Inputs 
 

 LS-RE IV-RE LS-FE IV-FE 

     

Main Fragment i Variables 

Ln Area -0.789 -0.841 -0.974 -0.97 

 [54.25] [62.23] [69.16] [67.89] 

Dist Max -0.097 -0.1 -0.108 -0.109 

 [22.22] [25.80] [29.50] [29.37] 

HHI 0.708 0.777   

 [8.01] [7.84]   

Av Dist 0.121 0.123   

 [10.32] [9.71]   

     

Inputs of Neighbors of Fragment i and All Fragments 

Ln N Input* 0.169 0.167 0.092 0.17 

 [7.92] [4.36] [4.28] [3.57] 

Av Ln N Input* 0.003 0.006   

 [0.36] [0.66]   

     

Other Fragment i/Farmer k Variables 

No N 1.098 1.102 0.628 1.181 

 [7.04] [4.05] [3.97] [3.47] 

Numb N -0.024 -0.027 -0.031 -0.03 

 [2.66] [3.19] [3.58] [3.45] 

Canal 0.078 0.049 -0.068 -0.069 

 [1.60] [1.05] [1.26] [1.28] 

Sandy 0.189 0.181 0.168 0.161 

 [4.66] [4.59] [3.60] [3.42] 

Head Ed 0.014 0.014   

 [2.62] [2.40]   

Av Adult Ht 0.098 0.09   

 [1.58] [1.35]   

Constant 4.589 4.598 6.565 6.018 

 [11.88] [9.98] [40.84] [17.77] 

Observations 2140 2140 2140 2140 

Number of group(v3n year) 1050 1050 1050 1050 

R-squared   0.84  
Absolute value of z statistics in brackets
*Endogenous variable instrumented with N’s Area, Distance, HHI, Av Distance 
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Table 6: Least Squares (LS) and Instrumented (IV) Random (RE) and Fixed Effects 

(FE) Estimates of Yield Equations and Productions Function Incorporating Own 
Fragment Characteristics and Neighbors’ Fragment Inputs 

 
 Ln Yield Ln Yield Ln Yield Ln Yield Ln Yield 
 LS-RE IV-RE LS-FE IV-FE LS-RE 
Main Fragment i Variables    
Ln Area -0.025 -0.032 -0.046 -0.048 0.031 
 [2.80] [3.49] [3.62] [3.74] [2.95] 
Dist Max  0.009 0.009 0.008 0.008 0.017 
 [2.74] [2.70] [2.48] [2.52] [4.84] 
HHI 0.354 0.331    
 [9.88] [8.60]    
Av Dist -0.011 -0.013   -0.044 
 [2.02] [2.27]   [8.64] 
      
Inputs on Fragment i, Neighbors of i and All Neighbors  
Ln Input*     0.066 
     [6.06] 
Ln N Input* 0.053 0.089 0.015 -0.033 0.003 
 [4.03] [4.13] [0.76] [0.78] [0.58] 
Av Ln N Input* -0.02 -0.016   -0.026 
 [3.51] [2.60]   [4.59] 
      
Other Fragment/Farmer Variables    
No N 0.408 0.672 0.127 -0.214  
 [4.34] [4.44] [0.89] [0.70]  
Numb N 0.013 0.011 0.009 0.009  
 [2.38] [2.03] [1.19] [1.11]  
Canal -0.191 -0.189 -0.117 -0.116 -0.218 
 [6.58] [6.54] [2.42] [2.40] [7.37] 
Sandy -0.042 -0.054 -0.077 -0.072 -0.089 
 [1.90] [2.35] [1.83] [1.71] [3.96] 
Head Ed 0 -0.001   -0.003 
 [0.02] [0.24]   [1.19] 
Av Adult Ht 0.081 0.081   0.04 
 [2.66] [2.62]   [1.28] 
Constant 6.521 6.271 7.249 7.587 6.851 
 [33.23] [27.38] [50.15] [25.00] [37.61] 
      
Observations 2140 2140 2140 2140 2140 
Number of group(v3n year) 1050 1050 1050 1050 1050 
R-squared  0.03   
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Figure 1: 
Simulated Geographical Pattern of Inputs when Neighbor Use Lower Inputs 
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Figure 2: 
Simulated Geographical Pattern of Effective Input Use When Neighbors Use Higher Inputs 
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Figure 3: Subdivisions and Fragments 
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Figure 4: Cultivating Areas in Village N 
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Figure 5: Select Farmers with Multiple Cultivated Areas in Village N 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


