Development

ECON 8830 Anant Nyshadham

Projections & Regressions

Linear Projections

- If we have many potentially related (jointly distributed) variables
 - Outcome of interest Y
 - Explanatory variable of interest X
 - Additional potential confounders A, B, C
- We are interested in how much of Y is explained *incrementally* by X accounting for any confounding covariation with A, B, C
- A projection is a decomposition of the variation in variable into the independent (orthogonal) planes or spaces of other variables.
- Each of the independent sources of variation in the full set of variables Y,X,A,B,C is given a plane that is separated by right angles from each of the other planes.

Linear Projections

- Projections are analytical/theoretical representations and are true by construction
- We can always represent one variable as a projection on other variables

 $Y = \varrho + \lambda_x X + \lambda_a A + \lambda_b B + \lambda_c C + \psi$

- If A contributes nothing to Y, $\lambda_a=0$
- If Y,X,A,B,C are *jointly normally distributed* ψ is independent from X,A,B,C and the linear projection fully explains the relationship between Y and X,A,B,C

Regression

- Regressions are the data (empirical) analogue to projections
- A regression of Y on X,A,B,C separates the *observed* variation in Y into the orthogonal planes of *observed* variation in X,A,B,C

$$Y = \alpha + \Upsilon_x X + \Upsilon_a A + \Upsilon_b B + \Upsilon_c C + \varepsilon$$

• Y's measure the *observed* covariance between Y and regressor (X,A,B,C) divided by the variance of the regressor

Partition Regression

• A regression of Y on X,A,B,C will yield the same Yx as a regression of Y on X $Y = \alpha + \Upsilon_x X + \Upsilon_a A + \Upsilon_b B + \Upsilon_c C + \varepsilon$

$$Y = \delta + \kappa_a A + \kappa_b B + \kappa_c C + Y \rightarrow$$

$$Y = Y - (\delta + \kappa_a A + \kappa_b B + \kappa_c C)$$

$$X = \tau + \eta_a A + \eta_b B + \eta_c C + X \rightarrow$$
$$X = X - (\tau + \eta_a A + \eta_b B + \eta_c C)$$

$$\mathbf{Y} = \mathbf{Y}_{\mathbf{X}} \mathbf{X} + \mathbf{\varepsilon}$$

Fixed (Group) Effects

- Operation: include as controls a set of dummy variables that spans a dimension of variation
 - Omit one dummy if general constant is estimated
 - 1 dummy for gender
 - 11 dummies for month
- Concept: Assigns varying intercept (constant) to individual groups or time periods
 - Effectively demeans variables within cells of variation (e.g., by month or gender)
 - Ensures that coefficient of interest does not reflect these course differences across groups or time

Causality

Causality

- Program X was implemented; because of X, outcome Y happened
 - If this is true, we can say with confidence that if we implement X in a similar setting, we would expect Y to happen again
- Causal estimates measure the "true effect" of policy interventions:
 - Compare Y in a world with X versus an otherwise identical world without X

Causality and policy evaluation

- Causal estimates allow us to determine *which policies work and which do not*
 - How effective is policy X?
 - What are the measurable benefits per unit cost of policy X?
 - What are the benefits (per cost) of alternative interventions?
 - Thus, how "comparatively effective" is X?

Causal chains:

Subsidies/extension programs

Adoption of better farm inputs & new technologies

Higher agricultural yields

Examples of Policy Evaluations

- Can loans and subsidies encourage the use of chemical fertilizer?
 - Which policy works better loans or subsidies? [comparative effectiveness]
 - Does the timing of loans/subsidies matter?(i.e. seasonal variation in liquidity)
- Are matching grants effective in increasing adoption of high-yielding hybrid varieties?

Causal impact v. correlations

- *Causal impact* is not the same as *association*!
- Example: What is the impact of <u>mechanized agricultural inputs</u> on <u>yield</u>?
- Suppose we had data on these two variables, and the correlation > 0
 - Does this imply that a policy of subsidizing mechanized agriculture will increase yields?

The "evaluation problem" (1 of 2)

• The *effect* of mechanized farm implements on yields for farmer X can be expressed as:

[Yield if farmer X used mechanized inputs] minus
[Yield if farmer X did not use mechanized inputs...]

... at the same moment in time

The "evaluation problem" (2 of 2)

- The fundamental problem is constructing a *counterfactual*
 - We can never observe both states of the world at the same time
- The goal of empirical evaluation is to find a valid proxy for what would have happened to farmer X *had he not* adopted the intervention
 - This often involves finding someone (or a group of people) who "looks like" farmer X but who did not adopt, and comparing outcomes for the two

The search for a counterfactual

- The treated group and the counterfactual (or "control") group should be statistically identical on observable dimensions, except that the treated group benefited from the intervention
- If so, then we reason that the only cause for differences in outcomes between treated and untreated is the intervention
- <u>Example</u>: subsidy for chemical fertilizer adoption

- Observe treatment and control groups of farmers before and after intervention
- Compare yields of treatment group farmers before and after intervention, find yields went *down*
- Compare yields of treatment group to yields of control group after treatment intervention, find treatment yields are higher?
- What is "true" effect of intervention?

- Time-varying unobservables
 - What else changes for treatment and control groups during intervention time?
 - Rainfall or temperature shocks? Pest infestation?
 - Are changes same across both groups?
 - If yes, we can compare *changes* across groups (differencing)
 - If no, cannot separate effect of intervention from effects of time-varying unobservables
- Must make reasonable assumption

- Compare yields for adopters of chemical fertilizer to non-adopters after subsidy program, find yields of adopters are *lower*
- Key problem is *selection*: who chooses to adopt?
 - Those who choose to adopt might have worse soil (need fertilizer more)
 - Non-adopters might be participating in other programs
- Possible solution: matching
 - Requires ability to predict unobserved returns to adoption using observed characteristics

- Compare yields for farmers who were *eligible* for subsidies to those who were *ineligible*
- Key concern is that the determinants of eligibility might be correlated with the effectiveness of the intervention
- Potential solutions:
 - Experimental variation
 - Exploit discontinuity in eligiblity rule, if one exists

Conclusions

- To identify effective interventions and compare alternatives, we need to be able to estimate causal effects
- Important to construct a valid counterfactual: a group that would behave the same as the treated group would have in the absence of the intervention
- Invalid counterfactuals (in general):
 - Before and after: time-varying variables
 - Participants vs. non-participants: characteristics
- Options: Choice of method depends on program design, operational considerations, and the question

Endogeneity

True Model

• Suppose true model of yields is:

-Y = a + bX + cZ + e

- a, b, and c are parameters to be estimated; e is error term
- WHAT DOES b REPRESENT IN TERMS OF POLICY? Why do we care to estimate it?
- Do not observe Z
- Can only estimate:

-Y = a + bX + e

• What happens to estimate of b, b?

Original Example

- Y = a + bX + cZ + e
 - Y is agricultural yield (total production / area)
 - X is use of HYV (=1 if used HYV in last season, 0 otherwise)
 - Z is a vector of soil characteristics (esp. suitability for planting HYV)
- Uninteresting case: c=0
- Two important cases
 - Z is not known by farmer
 - Z is known by farmer (and affects X)

Irrelevant Z

- Suppose that c=0
 - Soil characteristics have no effects on yields (not really believable!)
 - Profit-maximizing farmer would thus not base his choice of X on Z
- Estimates of a and b will be unaffected by omission of soil quality (Z)
 - Y = a + bX + cZ + e, c=0
 - Y = a + bX + e (estimated model *is* the true model)
 - Thus linear regression will give us a = a, b = b

Exogenous X

- Farmer does not know soil quality (Z)
 Thus Z does not affect farmer's choice of X
- Suppose HYV adoption makes yield (Y) very large if Z=1, but very small if Z=0
 - Y will depend on *both* X and Z
 - Farmer cannot act on relationship between X and Z; therefore, X will not depend on Z!
- Estimate of b is unaffected:
 - -b = b; a = [E(Y bX)] = a + c Z
 - (Z is average soil quality in sample)

Endogenous X

- Farmer *knows* soil quality (Z) and takes it into account when choosing to adopt HYV (X)
 - Farmer wants to maximize yield
 - Suppose soil quality can be of two types
 - good for HYV (Z=1)
 - bad for HYV (Z=0)
 - Extreme Case: Farmer chooses to adopt (X=1) only when soil is good for HYV (i.e. Z=1); and thus X=0 if Z=0
- Estimate of b will be biased in this case:

-b = b + c; a = a

Endogenous Z (cont.)

- A less extreme, more believable case:
 - Suppose farmer *more likely* to use HYV (X=1) if his soil is suitable for it (Z=1)
 - Bias will then depend on degree of dependency between X and Z
 - $b \le b \le b + c$; $a \le a \le a + c Z$
- If we observe soil quality (Z), or know exact relationship between Z and X, can still get estimate of true b!
- But this is not common...in general, we don't know Z or its exact relationship to X
- What can we do?

Overcoming Endogeneity

- Induce variation in X which is void of relationship with Z (<u>randomization</u>)
- Remove effects of static unobserved Z by comparing two groups over time (<u>differencing</u>)
- Use other *observed* characteristics to fully predict portion of X which depends on unobserved Z (<u>matching</u>)
- Exploit discontinuity in relationship between X and Z by comparing observations within bandwidth of discontinuity (<u>discontinuity</u>)

Workshop examples

- Effects of formal sector healthcare on health outcomes
- Effects of school fee subsidies on enrollment
- Effects of access to credit on self enterprise
- Effects of nutrition on farm labor productivity

Methods

- Regression Analysis / Decomposition
- Difference in Differences
- Instrumental Variables
- Regression Discontinuity
- Structural Estimation

The Goal

- Establish Causality
 - We did X (or X happened), and because of it, Y happened.
- Why?
 - Policy: if we do X again, we can expect Y to happen; if we want Y to happen, perhaps we should do X.
 - Generalizability: if X happens in another context or a different time, we can expect Y to happen

Getting to Causality

• In a more research-friendly universe, we'd be able to observe a single person (call him Fred) in both states of the world at the same time: with the treatment and without the treatment.

> "counterfactual comparison" $Y_{treated Fred}$ - $Y_{untreated Fred}$

Getting to Causality

- In the real world, finding this "counterfactual" is impossible.
 - We cannot see the same person at the same time in two different states.
- Should we get more people? Some with the treatment and some without.
- Should we measure Y for Fred before and after he is treated?

Getting to Causality

- With more people, we can calculate Average (treated)-Average(untreated).
 - But what if there are underlying differences between the treated and untreated that also impact their Y's?
- With multiple measurements of Y for Fred with different values of X (treated and untreated), we can calculate Y_{treated Fred}-Y_{untreated Fred}
 - But what if other things changed for Fred during the same time that impacted his Y?

Randomized Experiment

- If we randomize the treatment, on average, treatment and control groups should be the same in all respects, and there won't be underlying differences that cause "bias."
- Check that it's true for all observables.
- Hope that it's therefore true for all unobservables.
- This technique is called *randomization* and is the most common strategy for establishing causality in the sciences.

Randomization

Randomize who gets treated. Check if it came out OK.

$$Y_T - Y_C$$

Basically, that's it.

Quasi-Experiment

- What do we do if we cannot randomize treatment?
 - Treatment has already occurred in the past
 - Random assignment would be unethical
 - Treatment is too grandiose or expensive
- Compare individuals with varying treatment who are otherwise as identical as possible.
 - Exploit what we know about treatment assignment
 - Regression Discontinuity, Instrumental Variables
 - Account for any non-random differences
 - Observables: Multivariate Regression, Matching
 - Unobservables: Diff-in-Diff, Control Function
- These techniques are considered "quasi-experimental"

Example Papers

- Impacts of
 - salt iodization on education and labor outcomes
 - temperature and lighting on worker productivity
 - health care on health outcomes and household enterprise activity
 - scholarships on college outcomes
 - health insurance on criminal activity
 - soft skills training on worker productivity and retention
 - managerial quality on worker productivity dynamics

Treatment Assignment

- Treatment is often *clearly* not random.
 - Many health improvements and infrastructural changes coincided with salt iodization
 - Seasonal garment styles and buying patterns are correlated with temperature
 - Sicker people seek out formal health care
 - Smarter kids and needier kids get scholarships.
 - Prevalence of crime and health conditions are both increasing in poverty
 - Workers who engage in extra-training are also more likely to put forth more effort at work
 - Production teams with better supervisors and faster learning workers might get assigned different tasks

Differencing

- If we can see treated and untreated groups before and after, we can compare the **CHANGES** in Y for treated before and after treatment to coincident changes for the untreated and
 - High and low goiter states before and after iodization
 - Factories with and without LED during high and low temperatures in the same day, month, year, etc
- Assume changes in everything else are common to both treated and untreated groups

Identifying Assumption

 Whatever happened to the control group over time is what would have happened to the treatment group in the absence of the program.

Effect of program difference-in-difference (taking into account preexisting differences between T & C and general time trend).

Instrumental Variables

- If we know of some factor Z that at least partially determines treatment X without directly impacting outcome Y, we can use Z as a predictor (instrument) of treatment X that can bypass any confounders.
 - Ease of accessing health care predicts health care utilization but not incidence and severity of sickness
- 2 key requirements
 - Z must adequately predict X (testable)
 - Z must not impact Y except through X (assumed)

Regression Discontinuity

- If we know the exact assignment rule, we can use this rule to construct instrument Z for treatment X.
 - Merit-based tuition subsidies given based on GPA and SAT/ACT cutoffs
 - Subsidized health care provided to those below wealth cutoff
- Compare those just above cutoff to those just below cutoff
- Assume at tiny increments of eligibility all else is equivalent across treated and untreated

Matching

- Match each treated participant to one or more untreated participant based on observable characteristics.
- Assumes no selection on unobservables
- Condense all observables into one "propensity score," match on that score.

Matching

• After matching treated to most similar untreated, subtract the means, calculate average difference

$$\frac{Y_{Jon(T)} - Y_{John(C)} + Y_{Jim(T)} - Y_{Tim(C)}}{2}$$