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ABSTRACT yield map represent grain mixed from a certain area,
and some uncertainty is associated with the exact sizeCrop yield maps reflect stable yield patterns and annual random
and geographical location of this area as well as mea-yield variation. Procedures for classifying a sequence of yield maps
surement error. For the same location, this uncertaintyto delineate yield zones were evaluated in two irrigated maize (Zea

mays L.) fields. Yield classes were created using empirically defined is likely to vary from year to year because of different
yield categories or through hierarchical or nonhierarchical cluster combine travel paths. Therefore, a single-year yield map
analysis techniques. Cluster analysis was conducted using average is useful for interpretation of possible causes of yield
yield (MY), average yield and its standard deviation (MS), or all variation but may be of limited value for more strategic
individual years (AY) as input variables. All methods were compared SSCM decisions over medium- to long-term periods.based on the average yield variability accounted for (RVc). Methods

Procedures must be developed to correct or eliminatein which yield was empirically classified into three or four classes
recognizable errors of yield monitor measurement andaccounted for less than 54% of the yield variability observed and
integrate multiyear sequences of yield maps. Here, wefailed to delineate high-yielding areas. Six to seven yield classes estab-

lished by cluster analysis of MY accounted for 60 to 66% of the yield assume that a sequence of corrected and interpolated
variability. Differences among cluster analysis methods were small yield maps, which need to be classified to delineate areas
for MY as data source. However, fuzzy-k-means clustering had lower with different yield expectation within a field, has been
RVc than other methods if used with the MS or AY data. The spatial obtained. Such classification will result in a map of past
fragmentation of yield class maps increased in the order MY � MS �

yield performance. With multiple years of georefer-AY. Univariate cluster analysis of mean relative yield measured for
enced yield data, repeating patterns and their more sta-at least 5 yr should be used for yield classification in irrigated fields
ble natural causes may be separated from random varia-where six to seven classes appear to provide sufficient resolution of

the yield variability observed. More research should be conducted to tion in each year, providing a basis for spatially varying
develop methods that result in spatially coherent yield zones and to yield goals and other SSCM decisions.
understand differences between rainfed and irrigated environments Interpretation and classification of multiple-year
in the importance of mapping yield goals for crop management. yield maps has often involved empirical criteria or deci-

sions on how many yield classes should be formed.
Blackmore (2000) proposed an empirical classification

Georeferenced on-the-go yield mapping using com- in which the sample mean and the coefficient of varia-
bine-mounted yield monitors has become one of the tion (CV) were used to classify yield into groups such

most widely used precision-farming tools. Yield moni- as high yielding and stable, low yielding and stable, and
tors generate spatially dense data at relatively low cost, unstable. Pringle et al. (2003) proposed an “Opportunity
potentially allowing characterization of the spatial and Index” for identifying fields with the greatest overall
temporal yield variability. However, the analysis and potential for SSCM, which they calculated from the
interpretation of yield map data has lagged behind yield magnitude of yield variation, its spatial structure, and
monitor adoption by farmers. As more yield monitors empirical “thresholds” for both. Lark and Stafford
are used and multiple-year yield data accumulated, (1997, 1998) used fuzzy-k-means clustering for pattern
there is an increasing concern about how to process and recognition in multiple-year yield maps. Taylor et al.
interpret these data for site-specific crop management (2001) attempted to create yield goal maps by aggregat-
(SSCM). ing 3 to 7 yr of maize yield data into larger cells, calculat-

On a field average basis, grain yield measured by yield ing average past yields for different periods, and com-
monitors and certified electronic scales agrees within paring the different yield goals with the actual yields
2 to 5% (Doerge, 1997). With careful calibration and obtained. They concluded that there was a greater op-
operation, yield monitors are sensitive to changes in portunity for classifying consistently high-yielding areas
yield although a variable time delay exists and the grain than consistently low-yielding areas based on the mean
flow through a combine resembles a diffusive process relative yield and temporal standard deviation (SD).
(Arslan and Colvin, 2002). Individual data points on a These as well as other classification methods have not
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end pass delays (8 s) for both headlands and stop-and-govariability are accounted for. The objective of our study
segments within the field, (iii) short segments (�12 datawas to compare different procedures for classifying mul-
points), (iv) frequency distribution outliers (values outsidetiple-year continuous yield maps into categories or zones
mean � 3 SD), (v) co-located yield records caused by globalof different average yield and its variability among positioning system (GPS) drift, and (vi) local neighborhood

years. outliers. The latter were removed based on a local neighbor-
hood test performed for each yield data point following the
movement of the combine through the field. For each location,

MATERIAL AND METHODS a yield estimate was computed by inverse distance interpola-
tion within a moving window that included the three precedingStudy Sites and Data Collection
and three succeeding yield records in the same swath as well

Yield monitor data were obtained from two production as yield records within a radius of 2 � the swath width in the
fields in Nebraska from 1996 through 2001. Field A was located perpendicular direction to combine travel. The 99% confi-
near Clay Center, NE (40�30�24″ N, 98�5�5″ W), and the crop dence interval of the estimate was obtained. If the actual yield
sequence from 1996 to 2001 was maize–soybean [Glycine max. value was outside this interval, the data point was discarded,
(L.) Merr.]–maize–maize–soybean–maize. The total field area assuming that it was an outlier that is unlikely to represent
was 62.7 ha, including a circular center-pivot–irrigated area true yield variability because it was not spatially correlated
(53.5 ha), three corner areas with partial furrow irrigation with its immediate neighborhood. Depending on the site and
(6.9 ha), and a nonirrigated area (2.3 ha) in the southwest year, the cleaning algorithm removed about 10 to 20% of the
corner. Field A had four soil series (Soil Survey Staff, 1999): original yield monitor records.
Butler (fine, smectitic, mesic vertic Argiaquoll), Fillmore (fine, To eliminate yield variation caused by different crops or
smectitic, mesic Vertic Argiaboll), Crete (fine, smectitic, mesic cultivars, each data point was normalized by dividing it by the
Pachic Argiustoll), and Hastings (fine, smectitic, mesic Udic average of the corresponding cultivar (or hybrid) and/or crop

for a given field and year. The resulting yields were the relativeArgiustoll). The dominant soil in Field A was Hastings, which
percentage yield as used by Blackmore (2000) and indicateoccupied about 80% of the total field area. Field A was flat,
how the yield at each point differs relative to the mean of thewith an average slope of 0 to 1%, and moderately well to well
field. The normalized point yield data were then interpolateddrained. Crops in this field were grown under ridge tillage
to a 4- by 4-m grid using ordinary kriging (Minasny et al.,with rows in the east–west direction.
2002). This resulted in interpolated yield maps for each site-Field B was located near Cairo, NE (40�58�43.5″ N,
year as well as maps of the MY, its SD, and the CV for each98�35�36.5″ W). Continuous maize was grown from 1996 to
grid cell. Descriptive statistics were computed for both the2001, except for soybean grown in the south half of the field
cleaned original point yield data and the normalized and inter-in 2000. The total field area was 62 ha, all under ridge tillage
polated yield maps. In addition, the fractal dimension (Dv)with furrow irrigation, with furrows and water flow in the
was calculated using the semivariogram method proposed bywest–east direction. Soil series at this site included Hall (fine-
Burrough (1983). Fractal dimension can be interpreted as ansilty, mixed, mesic Pachic Argiustoll) and Wood River (fine,
index for the overall type of spatial variability (Anderson et al.,smectitic, mesic Typic Natrustoll). The majority of Field B is
1998). A higher value indicates large noise or short-distancegently sloping or flat. Wood River soils occupied about 55%
variation, whereas a smaller number indicates more spatiallyof the total area, mainly in the eastern half. More fertile Hall
structured, smoother variation over larger distances.soils are mostly found in the western half. An eroded ridge

with a slope of 3 to 7% crosses the entire field in a southwest
to northeast direction. Yield Classification Procedures

At both sites, maize was typically planted from mid- to late Yield classification was performed using empirical methodsApril at a density of 7.4 to 7.7 plants m�2. Soybean planting as well as hierarchical and nonhierarchical cluster analysis
was done in mid-May with seeding densities of 35 to 40 seeds techniques (Table 1). Except for the group of empirical meth-
m�2. Two to four different maize hybrids or soybean varieties ods, all other methods were performed for all 18 combinations
were grown in each year in different parts of the field. Both of three different sets of input data and six levels of class
crops were fully irrigated, and nutrients were applied based on numbers. Input data were either MY (univariate classifica-
routine soil testing and standard recommendations. In general, tion), MS (bivariate classification), or AY (multivariate classi-
the quality of crop management and yield levels was high at fication). The number of classes ranged from three to eight
both sites. in steps of one.

Grain yields were measured from 1996 to 2001 using a eight-
row combine equipped with a DGPS receiver and an Ag

Empirical Yield ClassificationLeader PF 3000 yield monitor (Ag Leader Technol., Ames,
IA). Yield monitors were calibrated following standard proce- The four empirical procedures included one published
dures, and logging intervals were 1 or 2 s. At Site A, yield method (Blackmore, 2000) and three classification protocols
map data for 1999 were discarded because they were incom- proposed by the authors, which were based on frequency dis-
plete and affected by errors in position recordings. tribution characteristics and presumed expert knowledge

about yield and its temporal stability with regard to potential
SSCM decisions.Data Preprocessing

MCV-3: Three yield classes were arbitrarily defined (Black-
Raw data obtained from the yield monitor (.yld files) were more, 2000) using the maps of mean relative yield and its CV

processed using SMS Basic v. 2.0 (Ag Leader Technol., Ames, among years at each site. Each grid cell was allocated to one
IA) with a constant grain flow delay of 12 s. Advanced export of three yield classes: high-yielding and stable (yield � field
format files obtained from SMS were then further processed MY and CV � 30%), low-yielding and stable (yield � field
through a cleaning algorithm. The algorithm deleted the fol- MY and CV � 30%), or unstable (CV � 30%).

MSD-3: Three yield classes were arbitrarily defined usinglowing erroneous values: (i) header status up, (ii) start and
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Table 1. Procedures used for classification of multiple-year yieldthe maps of mean relative yield and its SD among years at
map data.each site. Each grid cell was allocated to one of three yield

classes: high-yielding and stable (yield � field MY and SD 	 Code Description of procedure
field mean SD), low-yielding and stable (yield � field MY

Empirical methodsand SD 	 field mean SD), or unstable (SD � field mean).
MCV-3 Empirical categorization of three yield classes based onMSD-4: Four yield classes were arbitrarily defined using mean and CV of yield (Blackmore, 2000)

the maps of mean relative yield and its SD among years at MSD-3 Empirical categorization of three yield classes based on
mean and standard deviation of yieldeach site. Each grid cell was allocated to either: high-yielding

MSD-4 Empirical categorization of four yield classes based onand stable (yield � 66% percentile and SD 	 66% percentile),
mean and standard deviation of yieldmedium-yielding and stable (yield within 33 to 66% percentile T90-3 Categorization of three yield classes using t test at 90%

and SD 	 66% percentile), low-yielding and stable (yield � probability based on mean yield difference relative to
the field mean33% percentile and SD 	 66% percentile), or unstable (SD �

T60-3 Categorization of three yield classes using t test at 60%66% percentile).
probability based on mean yield difference relative toT90-3 and T60-3: Three yield classes were arbitrarily de- the field mean

fined using a t test with 90 or 60% probability. Assume that
Hierarchical and nonhierarchical clustering methods†the field is composed of m grid cells for which yield was

WAR-xx-y Hierarchical cluster analysis using Ward’s method, threemeasured in n years. Yield Yij corresponds to the ith cell and
to eight classesjth year, and Yj is the average field yield in a particular year. KME-xx-y Nonhierarchical cluster analysis using k means, three to

To test whether the yield in a particular cell is higher or eight classes
ISO-xx-y Unsupervised nonhierarchical ISODATA‡ k-meanslower than the field average, relative yield differences, yij, were

clustering, three to eight classescalculated as:
FUZ-xx-y Nonhierarchical fuzzy-k-means cluster analysis, three to

eight classes
yij 


Yij � Yj

Yj

[1] † -xx denotes the data source used. Each method was used in combination
with average relative yield of 5 or 6 yr, average and standard deviation
of relative yield, or relative yield of all individual years as data sourcesIn this case, yij indicates the percentage of yield compared
for the classification. -y denotes the number of classes selected andwith the average in a given year. If yij � 0, the yield was higher ranged from three to eight in steps of one for each method.

than the average; if yij � 0, the yield was lower than the ‡ ISODATA, Iterative Self-Organizing Data Analysis.
average. To judge the yield potential for a particular cell i, it

is minimized over all partitions obtainable by merging twois necessary to find out whether the average cell yield across
clusters from the previous generation (Johnson and Wichern,multiple years (yi) is significantly different from 0:
1998; SAS Inst., 1999).

Nonhierarchical or dynamic clustering is recommended for
populations that lack an inherent hierarchical structure (Web-

yi 

�
m

j
1
yij

n
[2] ster and Oliver, 1990). We used the k-means method (SAS

Inst., 1999), in which the multidimensional data set is divided
The statistical comparison is then based on the mean cell yield into k clusters, and an item is assigned to the cluster whose
(yi) and the corresponding SD (si). If the absolute value of a centroid (mean) is nearest in terms of Euclidean distance.
positive mean is large, and si is small, the yield potential for Reassignments take place, and each iteration reduces the least-
that cluster is significantly large. If the absolute value of a squares criterion until convergence is achieved (Johnson and
negative mean is large and si is small, the yield potential for Wichern, 1998; SAS Inst., 1999).
that cluster is significantly small. However, it is difficult to The Iterative Self-Organizing Data Analysis (ISODATA)
draw a conclusion if si is large or the absolute value of the classification technique was designed for image classification
mean is small. The t statistic is calculated for each cell using: based on spectral distance by iteratively classifying the pixels,

redefining the criteria for each class, and classifying again
to gradually emerge the spectral distance pattern (ERDAS,ti 


yi

si /√n
[3]

1999). The ISODATA algorithm is similar to k-means cluster-
ing, but it allows for dynamic changes in the number of cluster

If yi is different from 0, ti is large and a t-distribution table centroids through splitting and merging of clusters (Jensen,
(tstat) can be used to see if ti is large enough to claim significance. 1996). Grid yield data were converted into ERDAS image data
A desired probability (here 60 or 90%) and the degree of format using ArcGIS Spatial Analyst 8.2 (ESRI, Redlands, CA)
freedom (df 
 n � 1) must be specified. The decision about and then processed with Spatial Modeler in ERDAS Imagine
class membership is then made using: 8.5 (Leica Geosystems, Atlanta, GA) to perform the ISO-

DATA classification.High: if ti � tstat and yi � 0, then the yield is significantly
Fuzzy-k-means clustering is an extension of the normal,higher than the field average.

crisp-k-means clustering method to account for uncertainties
Variable: if ti � tstat , then the yield is not significantly associated with class boundaries and class membership. As
different than the field average. in k-means clustering, the iterative procedure minimizes the

within-class sum of squares, but each object (or cell on a map)Low: if ti � tstat and yi � 0, then the yield is significantly
is assigned a continuous class membership value ranging fromlower than the field average.
0 to 1 in all classes, rather than a single class membership
value of 0 or 1 used in the normal k-means clustering methodYield Classification by Cluster Analysis
(De Gruijter and McBratney, 1988). Fuzzy-k-means clustering

Ward’s minimum variance method (SAS Inst., 1999) was was conducted using the FuzME program (Minasny and
used for hierarchal cluster analysis of yield data. This method McBratney, 2002) with Mahalanobis distance and a fuzzy ex-
agglomerates clusters in a hierarchy of all the individual ob- ponent of 1.2. Each cell was assigned to a single yield category
jects until a single cluster contains all entities in which the based on the highest fuzzy membership value at this particu-

lar location.within-cluster sum of squares for each given cluster number
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Table 2. Summary statistics of spatial yield variability at Sites A (Clay Center, NE) and B (Cairo, NE) before and after standardization
and interpolation.

Site Year-crop† Mean Median Max. Min. SD Skewness Dv‡ CV

Cleaned original yield (Mg ha�1) %
A 1996 M 11.80 11.76 20.01 0.65 2.08 �0.25 1.83 18

1997 S 4.39 4.56 7.69 0.35 0.87 �1.70 1.81 20
1998 M 10.84 10.94 19.69 0.79 1.34 �1.50 1.90 12
2000 S 3.73 3.93 5.81 0.82 0.85 �0.63 1.81 23
2001 M 13.31 13.69 16.09 1.97 1.78 �2.04 1.81 13

B 1996 M 12.42 12.71 20.07 0.03 1.88 �3.86 1.81 15
1997 M 13.15 13.47 19.37 0.08 1.82 �2.77 1.81 14
1998 M 12.01 12.26 19.11 0.21 1.73 �3.38 1.81 14
1999 M 11.77 12.30 18.20 0.04 2.11 �3.15 1.73 18
2000 M 10.25 10.78 16.25 0.07 1.97 �1.71 1.77 19
2000 S 3.91 3.99 6.26 0.20 0.65 �1.31 1.78 17
2001 M 12.45 12.81 19.86 0.10 2.11 �2.48 1.78 17

Relative yield after standardization and interpolation
A 1996 0.990 1.008 1.481 0.198 0.145 �0.84 1.83 15

1997 0.991 1.033 1.410 0.112 0.171 �2.19 1.82 17
1998 0.996 1.014 1.288 0.223 0.102 �1.87 1.90 10
2000 0.995 1.032 1.457 0.276 0.175 �1.24 1.86 18
2001 1.001 1.032 1.182 0.272 0.125 �2.20 1.84 13

B 1996 1.056 1.077 1.442 0.014 0.123 �4.86 1.85 12
1997 1.051 1.085 1.311 0.015 0.126 �3.48 1.85 12
1998 1.038 1.058 1.374 0.033 0.123 �4.04 1.82 12
1999 1.062 1.108 1.400 0.010 0.172 �3.60 1.81 16
2000 1.047 1.085 1.391 0.096 0.176 �1.40 1.81 17
2001 1.054 1.082 1.427 0.027 0.145 �2.34 1.83 14

† M, maize; S, soybean. Site B was cropped with half maize and half soybean in 2000.
‡ Dv, fractal dimension.

classes was evaluated using the weighted Kappa index ofEvaluation of Yield Classification Results
agreement for categorical data (Kw), which was defined by

Several statistics were computed to assess the results of Cohen (1968) as
different yield classification procedures in terms of (i) yield
variance accounted for and (ii) spatial agreement between
two maps of yield classes. To compare the effectiveness of

Kw 
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k
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[5]the different classification methods in explaining the yield

variance in each year j, we used the complement of the relative
variance, denoted as RVj (Webster and Oliver, 1990):

where pij represents the number of observations that haveRVj 
 1 � S 2
W/S 2

T [4]
been classified as belonging to class i by the first classification
method and to class j by the second classification method andwhere S 2

W is the within-class variance and S 2
T is the total vari-

wij (i 
 1, 2, …, k; j 
 1, 2, …, k) is the Fleiss–Cohen weight.ance, both estimated by postclassification analysis of variance
The wij was defined by Fleiss and Cohen (1973) as(ANOVA) for a particular year j. Similar to the R2 value of a

regression, RVj is a measure of the proportion of variance
wij 
 1 � (Ci � Cj)2/(Cc � C1)2 [6]accounted for by the classification. A perfect classification

would result in zero within-class variance and a RVj of 1. For where Ci, Cj, Cc, and C1 are the scores of class i, j, c, and 1,
each yield classification method (combination of clustering respectively. The wij is restricted to 0 	 wij � 1, with wii 
 1
method, data source, and number of classes), one-way ANOVA and wij 
 wji. The Kw ranges from 0 to 1, with 1 as perfect
was conducted for each individual yield year based on the map agreement. Kappa statistics were computed for all possi-
assigned yield class membership values. An RVj value was ble map comparisons of clustering methods, with six yield
then computed for each individual yield map year, and an aver- classes in each method.
age value (RVc) was computed across the five or six yield
years at each site. Thus, RVc used in the context of this paper

RESULTSrefers to the average yield variability accounted for by the
classification during the time period studied for each site. Spatial and Temporal Yield Variability
Methods were then ranked according to the RVc. In addition,
the range of the RVj in individual years at each site was used Average maize yields at Site A ranged from 10.8 to
to assess how consistent a classification method performed in 13.3 Mg ha�1 (Table 2). Maximum yields in each year
terms of accounting for annual yield variations. An ideal yield were 16.1 to 20.0 Mg ha�1, which is equivalent to the
classification method would have an RVc close to 1 and a simulated climatic yield potential for this environment
small range of the RVj among individual years, i.e., it would (Dobermann et al., 2003). Relative spatial yield variabil-
be able to explain a large proportion of the yield variability ity in each year was modest, with CVs ranging from 12within each year. An ANOVA of the RVc values was con-

to 18% for maize and 20 to 23% for soybean. Fractalducted to test for differences among classification methods,
dimensions varied from 1.81 to 1.90, indicating thatnumber of classes, choice of data source, and years. Other
much of the yield variation occurred over shorter dis-criteria used were differentiation among classes in terms of
tances. Yields were generally higher and less variablemean class yields and within-class CVs.

The spatial agreement between two different maps of yield in the center-pivot–irrigated area compared with par-
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Table 4. Average yield variance accounted for by the classifica-Table 3. Linear correlation coefficients between yields in differ-
ent years at each site. Correlations were calculated for standard- tion (RVc) as affected by different classification methods, data

sources used, number of yield classes, and years.ized and interpolated yield maps prepared for each year.

Year 1996 1997 1998 1999 2000 ANOVA level RVc at Site A RVc at Site B

Classification methodSite A
Ward’s method 0.603 A† 0.654 A1997 0.44 – – – –
k means 0.586 A 0.628 A1998 0.43 0.62 – – –
ISODATA 0.613 A 0.652 A2000 0.50 0.70 0.63 – –
fuzzy k means 0.503 B 0.527 B2001 0.42 0.67 0.49 – 0.65
Empirical methods 0.362 C 0.323 CSite B Number of yield classes

1997 0.63 – – – – 8 0.632 A 0.677 A
1998 0.70 0.70 – – – 7 0.620 AB 0.673 A
1999 0.74 0.63 0.72 – – 6 0.607 AB 0.632 B
2000 0.38 0.66 0.60 0.44 – 5 0.578 BC 0.608 BC
2001 0.52 0.69 0.63 0.45 0.69 4 0.532 CD 0.578 C

3 0.487 D 0.524 D
Input data source

tially or nonirrigated pivot corners (Fig. 1). About 70% Mean yield 0.600 A 0.652 A
Mean and standard deviation 0.564 A 0.619 Bof the field had a CV of relative yield across years of
All years 0.565 A 0.575 C10% or less. Areas with high temporal yield variability Year
1996 0.437 C 0.598 A(CV � 30%) accounted for only 2.3% of the entire
1997 0.659 A 0.614 Afield. Areas with low average yield and large temporal
1998 0.468 C 0.601 A

yield variability were found in (i) narrow headlands on 1999 – 0.604 A
2000 0.659 A 0.624 Athe eastern and western side (machine traffic), (ii) the
2001 0.588 B 0.536 Bpartially gravity-irrigated northeast and southeast cor-

† For method, number of classes, data source, and years, different lettersners, and (iii) the nonirrigated southwest corner.
in the same site column show significant differences based on Duncan’sAverage maize yields at Site B ranged from 10.3 to multiple range test.

13.2 Mg ha�1, and maximum yields in each year were
16.3 to 20.1 Mg ha�1 (Table 2). Spatial yield variability (1.73–1.99) suggest that Dv may not be sensitive enough
was modest, with CVs ranging from 14 to 19%, but to describe relatively small differences in magnitudes
compared with Site A, the overall yield range at Site B of variability with regard to SSCM opportunities.
was larger. Fractal dimensions varied from 1.73 to 1.81, At both sites, linear correlation coefficients of yields
indicating that yield variation was somewhat more spa- measured in different years ranged from 0.38 to 0.74
tially structured and occurred over longer distances that but were mostly greater than 0.60 (Table 3). In general,
at Site A, mostly related to changes in elevation across the strong yield correlations suggest that irrigation re-
the field. High-yielding areas were located in the north- duced spatial as well as temporal yield variability among
west and central-eastern parts of the field (Fig. 1). Low- years, resulting in relatively stable yield patterns over
yielding areas occurred in (i) narrow headlands on the time.
eastern and western side due to machine traffic; (ii) the
eroded, sloping ridge crossing the field from southwest Yield Variability Assessed through Empirical
to northeast; (iii) a poorly drained area in the northeast Classification Methods
corner; and (iv) the southeast corner where subsoil clay

Empirical classification methods performed worseexcavated from adjacent roadwork was disposed. The
than cluster analysis techniques in terms of RVc ac-lowest-yielding areas with relative yield ranges of 0.08
counted for (Table 4). On average, empirical methodsto 0.45 accounted for just 1% of the entire field and accounted for 36% of the yield variability at Site A andwere located along the eastern edge and the northeast 32% at Site B, but differences occurred among the fourcorner. About 79% of the field had a CVs of 10% or empirical methods.

less across years. Areas with a temporal yield CV of Blackmore’s method (MCV-3) had an RVc of 0.45
greater than 30% accounted for 2.3% of the entire field. at Site A (range of RVj from 0.30–0.60 in individual

Even after elaborate cleaning of the yield monitor years) and 0.54 at Site B (range of RVj from 0.42–0.69).
raw data, frequency distributions of yield remained It resulted in three yield classes with distinctively differ-
skewed to the left at both sites due to significant propor- ent means (Table 5) but little differentiation of the re-
tions of low-yielding areas. Similar observations were sulting yield class map (Fig. 2). At both sites, 2.3% of
made in other studies (Stafford et al., 1996; Taylor et the field area was classified as unstable (CV � 30%),
al., 2001). Medians were slightly larger than the means mostly along the eastern and western headlands. Be-
(Table 2). Data standardization and interpolation tween 23 and 30% fell into the low and stable class,
slightly reduced the CVs for spatial variability in each which mainly represented pivot corners at Site A and
year but tended to increase Dv (Table 2). Interpretation eroded soils and not fully irrigated parts of Site B
of Dv as a measure of spatial yield variability is problem- (Fig. 2). At Site A, about 75% of the field was classified
atic because it mainly represents the rate of change of as high and stable, and this class covered almost the
variation with area (Pringle et al., 2003). The relatively entire pivot-irrigated circle (Fig. 2) even though average
narrow ranges of Dv found in our study (1.81–1.90 for yield varied within that area (Fig. 1). Similarly, at Site B,
the interpolated data) and those reported by Pringle the same class accounted for 68% of the field.

Methods MSD-3 and MSD-4 performed worst, withet al. (2003) for 20 different crop fields in Australia
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Fig. 1. Maps of mean, standard deviation (SD), and coefficient of variation (CV) of relative yield at Sites A (Clay Center) and B (Cairo). Light
colors show high-yielding areas; dark colors show low-yielding areas with high yield variability among years.
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Table 5. Mean relative yield, SD, CV, and the proportional area of yield classes delineated from mean yields.

Site A Site B

Method Class Mean SD CV Area Mean SD CV Area

% %
MCV-3 HS 1.05 A† 0.04 3.8 74.8 1.10 A 0.03 2.6 67.5

(0.45)‡ LS 0.86 B 0.11 12.5 22.9 0.98 B 0.07 7.4 30.2
(0.54)§ US 0.61 C 0.11 18.4 2.3 0.51 C 0.26 50.6 2.3

MSD-3 HS 1.04 A 0.04 3.4 56.5 1.11 A 0.03 2.5 50.2
(0.16)‡ LS 0.93 B 0.06 6.3 6.6 0.99 B 0.12 12.6 9.8
(0.16)§ US 0.93 B 0.16 17.1 37.0 0.99 C 0.15 15.4 40.0

MSD-4 HS 1.08 A 0.02 2.2 28.7 1.13 A 0.02 1.6 29.2
(0.23)‡ MS 1.02 B 0.02 1.5 29.9 1.08 B 0.01 1.3 26.3
(0.20)§ LS 0.94 C 0.06 6.9 11.6 0.99 C 0.12 12.2 11.1

US 0.91 D 0.17 18.2 29.7 0.98 D 0.16 16.0 33.3
T90-3 H 1.07 A 0.03 3.2 36.5 1.12 A 0.02 2.0 35.6

(0.50)‡ V 1.00 B 0.05 5.4 52.9 1.05 B 0.05 4.5 52.7
(0.37)§ L 0.72 C 0.12 16.5 10.6 0.83 C 0.21 25.0 11.7

T60-3 H 1.06 A 0.04 3.3 61.1 1.11 A 0.02 2.1 54.2
(0.48)‡ V 0.98 B 0.03 2.6 21.4 1.05 B 0.02 2.0 24.0
(0.35)§ L 0.79 C 0.13 16.1 17.4 0.90 C 0.17 19.1 21.8

WAR-MY-6 6 1.08 A 0.03 2.6 31.0 1.11 A 0.02 2.2 59.2
(0.62)‡ 5 1.02 B 0.02 2.3 47.1 1.04 B 0.02 1.9 22.6
(0.68)§ 4 0.92 C 0.03 3.6 12.2 0.97 C 0.02 2.2 10.3

3 0.80 D 0.02 3.0 3.5 0.87 D 0.04 4.9 5.8
2 0.69 E 0.04 6.2 4.2 0.56 E 0.14 24.9 1.4
1 0.54 F 0.06 11.7 2.0 0.19 F 0.05 28.4 0.6

KME-MY-6 6 1.12 A 0.02 2.11 9.6 1.11 A 0.03 2.3 62.0
(0.61)‡ 5 1.03 B 0.03 3.00 67.7 1.01 B 0.04 4.4 32.0
(0.68)§ 4 0.91 C 0.05 5.11 15.1 0.84 C 0.05 6.3 4.3

3 0.72 D 0.05 7.31 5.6 0.57 D 0.07 11.5 0.7
2 0.56 E 0.04 7.62 1.8 0.32 E 0.06 18.6 0.5
1 0.40 F 0.03 8.36 0.2 0.16 F 0.04 23.3 0.5

ISO-MY-6 6 1.11 A 0.02 2.18 11.8 1.14 A 0.01 1.2 16.4
(0.62)‡ 5 1.06 B 0.01 1.35 31.8 1.10 B 0.01 1.1 36.6
(0.67)§ 4 1.01 C 0.01 1.38 28.9 1.05 C 0.02 1.8 26.7

3 0.96 D 0.02 2.09 12.1 0.96 D 0.03 3.4 14.8
2 0.85 E 0.05 5.34 9.2 0.81 E 0.08 9.9 4.3
1 0.64 F 0.09 13.70 6.1 0.30 F 0.13 44.7 1.3

FUZ-MY-6 6 1.09 A 0.03 2.6 30.6 1.12 A 0.02 1.7 39.0
(0.63)‡ 5 1.02 B 0.02 2.0 44.5 1.07 B 0.02 1.7 36.0
(0.69)§ 4 0.93 C 0.03 3.3 13.8 0.99 C 0.03 2.7 16.1

3 0.81 D 0.04 4.7 5.7 0.88 D 0.04 4.9 6.7
2 0.67 E 0.04 6.6 3.9 0.64 E 0.09 13.4 1.1
1 0.52 F 0.06 11.5 1.5 0.25 F 0.10 39.2 1.0

† For each method and site, different letters attached to class means show the significance of yield differences among classes based on Duncan’s multiple
range test.

‡ Average yield variability across years accounted for by the classification (RVc) for Site A.
§ Average yield variability across years accounted for by the classification (RVc) for Site B.

an RVc across all years of 0.16 (MSD-3) or 0.20 to 0.23 ent yield class maps, in which most of the area (54–61%)
was classified as high, resembling the maps obtained(MSD-4). The MSD-3 method allocated more than 50%

of each field to the high and stable yield class, and with the MCV-3 method (Fig. 2).
MYs were the same for the low-yielding and stable and
unstable classes (Table 5). The MSD-4 method resulted Yield Variability Assessed through
in a more even spread of yield classes in terms of MYs Cluster Analysis
and area covered (Table 5), but the resulting yield class

If used with the optimal choice of input data and num-maps contained much noise and potential misclassifica-
ber of classes, yield classes established by cluster analysistions (Fig. 2). In MSD-4, for example, 30 to 33% of the
techniques accounted for more than 60% of the yieldfield was classified as unstable (Table 5), which included
variability at Site A and more than 65% at Site B (Fig. 3).some areas with high average yield that also had some-
The RVc of all methods was below 0.50 in only 2 outwhat higher SD of yield across years (compare Fig. 1
of 11 crop field data sets (Table 4, 1996 and 1998 atand 2).
Site A). Based on the average RVc of all 18 possibleThe t-test–based procedures accounted for 48 to 50%
combinations of data sources and number of yieldof yield variability at Site A and 35 to 37% at Site
classes, the ranking of cluster analysis methods wasB (Table 5), indicating that results obtained with this
Ward’s method (WAR) 
 ISODATA classification 
method depend on the type of spatial yield variability
k-means cluster analysis (KME) � fuzzy-k-means clus-at a particular site. Moreover, yield class allocation de-
tering at both sites (Table 4). On average, across allpended on the choice of an acceptable probability for
methods and years, RVc was similar for all three datathe t test. Using the relatively strict criterion of 90%
sources at Site A but decreased in the order MY �probability, almost 53% of the field area at both sites
MS � AY at the more variable Site B (Table 4). Althoughwas classified as variable (Table 5 and Fig. 2). Relaxing

the probability criterion to 60% resulted in very differ- Table 4 provides an overall ANOVA summary of
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Fig. 2. Maps of three crop yield classes formed by empirical classification procedures: (i) based on mean and CV of yield (MCV-3, Blackmore,
2000), (ii) based on mean and standard deviation of yield (MSD-3), (iii) using t test at 90% probability based on mean and standard deviation
of yield difference (T90-3), and (iv) using t test at 60% probability based on mean and standard deviation of yield difference (T60-3). Light
colors show high-yielding areas; dark colors show low-yielding areas with high yield variability among years.
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Fig. 3. Average yield variance accounted for by the classification (RVc) as a function of data sources used and the number of classes selected:
(i) hierarchical cluster analysis using Ward’s methods (WAR), (ii) nonhierarchical cluster analysis using k means (KME), (iii) unsupervised
nonhierarchical ISODATA clustering method (ISO), and (iv) nonhierarchical fuzzy-k-means cluster analysis (FUZ).
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method performance, more differentiation is required Except for the fuzzy-k-means clustering–AY method,
RVj ranges were not affected by the number of classesto understand how individual clustering methods were

affected by the choice of input data and the number in the range of five to seven yield classes (Fig. 4). For
some methods (e.g., WAR–AY, ISODATA classifica-of classes.

If univariate classification was performed on MY tion–AY, fuzzy-k-means clustering–MS, and fuzzy-k-
means clustering–AY), the minimum RVj in a particulardata, the choice of a particular clustering method had

little effect on how much yield variability was accounted year increased with slightly increasing mean RVj

(
RVc) and number of classes, but the differences werefor. Using MY as the data source, RVc did not differ
significantly among clustering methods. The RVc for mostly small.

For most methods, six yield classes provided an ac-methods WAR, KME, ISODATA classification, and
fuzzy-k-means clustering in combination with MY data ceptable compromise in terms of both high RVc, narrow

RVj range, and practical class interpretation. Maps ofand three to eight classes ranged from 0.59 to 0.61 at
Site A and 0.63 to 0.66 at Site B, and differences among six yield classes for all clustering methods and data

sources are shown in Fig. 5 (Site A) and Fig. 6 (Site B).methods were not statistically significant. Similar obser-
vations were made for the WAR, KME, and ISODATA Table 5 shows the descriptive yield class statistics for

using MY data and six yield classes. All clustering tech-classification methods applied to MS or AY data. How-
ever, fuzzy-k-means clustering had lower RVc than niques shown in Table 5 resulted in high RVc (0.61–0.69)

and yield classes with significantly different mean rela-other methods if used with the MS or AY data (Fig. 3),
and this difference was statistically significant. For ex- tive yields, but the ranges of class means and class pro-

portions of the total field area differed among methods.ample, using MS data, RVc of three to eight classes was
0.58 to 0.60 for methods WAR, KME, and ISODATA At both sites, the ISODATA method produced the most

even area distribution among the yield classes, in whichclassification at Site A compared with 0.48 for fuzzy-k-
means clustering. Using AY data, the RVc of three to the largest class accounted for 32 to 37% of the field
eight classes was 0.59 to 0.63 for methods WAR, KME, area (Fig. 5 and 6). In contrast, in most other methods,
and ISODATA classification at Site A compared with the largest single yield class accounted for more than
0.42 for fuzzy-k-means clustering. Similar results were 40% of the field area, up to 68% for KME–MY-6 at
found at Site B. Site A. Within-class CVs of yield ranged from about 1

Hierarchical cluster analysis using Ward’s method to 10% for the four highest-yielding classes in each
and nonhierarchical ISODATA classification were the method. Due to lower means and sometimes also higher
only methods for which RVc increased using AY data SD, CVs were in the 6 to 45% range for the two lowest-
compared with MY or MS, particularly at six or more yielding classes, which occupied from 1 to 18% of the
yield classes (Fig. 3). Maximum RVc achieved with both whole field, mostly along headlands and in nonirrigated
methods was 0.68 to 0.69 in Field A and 0.72 in Field parts of the fields.
B at eight yield classes. Little sensitivity of RVc to the
choice of data source was shown by k-means clustering, Spatial Agreement among Yield Classes
but the fuzzy-k-means method was very sensitive to both

A high average RVc and small range among yearschoice of input data and the number of classes selected
do not mean that a yield class map is useful for SSCM(Fig. 3). In fuzzy-k-means clustering, RVc increased
because the map may be too fragmented or affected byonly slightly with increasing number of classes and use
artifacts in the yield data. At issue is (i) whether theof MY data but rose steeply with AY data use. Using
yield classes mapped were spatially consistent acrossAY and less than six (Site A) or seven (Site B) classes,
different method choices and (ii) whether the classesRVc values were less than 0.45 at both sites. Even at
formed represented spatially contiguous areas thatsix to eight classes, RVc achieved with MS or AY data
would be large enough for discrete management deci-remained lower than that achieved with MY data in the
sions. Except for the KME method, spatial fragmenta-fuzzy-k-means clustering method.
tion generally increased in the order MY � MS � AYThe RVc values increased with the number of classes
as data source. Visually, this can be seen as greater(Fig. 3). At Site A, increasing the number of yield classes
scattering in many maps as the data source is changedbeyond six did not significantly increase RVc, whereas
from MY to MS or AY (Fig. 5 and 6).at Site B, six to seven yield classes resulted in the highest

The maps of yield classes (Fig. 5 and 6) showed rela-RVc. On average, across all method combinations
tested, six yield classes accounted for 61 to 63% of the tively small differences between using MY and MS data

for the classification. Kappa coefficients describing theRVc (Table 4).
Methods also differed in their ability to account for spatial agreement among the maps of yield classes

ranged from 0.56 to 0.94 for using WAR, KME, ISO-yield variation in each individual year, as expressed by
the range of RVj at each site among the 5 to 6 yr of DATA classification, and fuzzy-k-means clustering

methods in combination with either MY and MS datayield map data analyzed. Irrespective of the classifica-
tion method or number of classes, ranges of RVj among (Table 6). However, for all methods, map agreement

was generally poorer between MY and AY or MS andyears were smaller at Site B than at Site A (Fig. 4).
This may reflect yield variability that is more spatially AY as data sources because maps produced with AY

data tended to show artifacts that were related to yieldstructured and temporally consistent at Site B, which
also had no nonirrigated areas compared with Site A. monitor data in a single year. For example, at Site A,
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Fig. 4. Ranges (min.–max. bars) and means (circles) of yield variance accounted for by the classification at Sites A and B. The width of the bars
indicates how well a particular classification method performed in accounting for the yield variation in each of the five (Site A) or six (Site
B) different years. Methods shown: hierarchical cluster analysis using Ward’s methods (WAR), nonhierarchical cluster analysis using k means
(KME), unsupervised nonhierarchical Iterative Self-Organizing Data Analysis (ISODATA) clustering method (ISO), and nonhierarchical
fuzzy-k-means cluster analysis (FUZ). For each method, values are shown for three different data sources [mean yield (MY), mean and
standard deviation of yield (MS), and yields in all years (AY)] and five to seven classes.
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Fig. 5. Maps of yield classes at Site A (Clay Center) formed by hierarchical and nonhierarchical clustering procedures as affected by the choice
of input data: (i) hierarchical cluster analysis using Ward’s methods and six classes (WAR-6), (ii) nonhierarchical cluster analysis using k
means and six classes (KME-6), (iii) unsupervised nonhierarchical Iterative Self-Organizing Data Analysis (ISODATA) clustering method
using six classes (ISO-6), and (iv) nonhierarchical fuzzy-k-means cluster analysis using six classes (FUZ-6). For each method, maps are shown
for three different data sources [mean yield (MY), mean and standard deviation of yield (MS), and yields in all years (AY)]. Light colors
show high-yielding areas; dark colors show low-yielding areas with high yield variability among years.



DOBERMANN ET AL.: CLASSIFICATION OF YIELD VARIABILITY 1117

Fig. 6. Maps of yield classes at Site B (Cairo) formed by hierarchical and nonhierarchical clustering procedures as affected by the choice of
input data: (i) hierarchical cluster analysis using Ward’s methods and six classes (WAR-6), (ii) nonhierarchical cluster analysis using k means
and six classes (KME-6), (iii) unsupervised nonhierarchical Iterative Self-Organizing Data Analysis (ISODATA) clustering method using six
classes (ISO-6), and (iv) nonhierarchical fuzzy-k-means cluster analysis using six classes (FUZ-6). For each method, maps are shown for three
different data sources [mean yield (MY), mean and standard deviation of yield (MS), and yields in all years (AY)]. Light colors show high-
yielding areas; dark colors show low-yielding areas with high yield variability among years.
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Table 6. Weighted Kappa coefficients (Kw) describing the spatial to the limited number of yield classes defined, this
agreement among categorical maps of six yield classes at Sites method may not result in more detailed differentiationA and B generated by heirarchical [Ward’s method (WAR)]

of the higher-yielding, most profitable areas in a field.and nonhiearchical [ISODATA (ISO), k means (KME), and
It may be suitable for varying inputs according to twofuzzy k means (FUZ)] clustering techniques. For each cluster-

ing method, the upper part oft he table shows Kw among the or three abruptly changing yield categories, but it pro-
three different data sources used [mean yield (MY), mean yield vides less opportunity for more continuous variable-rate
and standard deviation (MS), and all years (AY)]. For each management based on yield performance, particularlydata source, the lower part oft he table shows the Kw among

in the better parts of a field. Fine-tuning of the classdifferent clustering methods. All Kw values were significant at
p � 0.0001. criteria or increasing the number of yield classes similar

to that used in cluster analysis could improve empiri-Site A Site B
cal methods.

Method Data source MY MS MY MS Cluster analysis procedures such as WAR, KME,
WAR MS 0.77 0.91 ISODATA classification, or fuzzy-k-means clustering

AY 0.77 0.65 0.81 0.86 produced more consistent results in terms of high RVcKME MS 0.87 0.85
AY 0.66 0.72 0.79 0.86 and more aggregated yield class patterns if used as uni-

ISO MS 0.94 0.91 variate classification of mean relative cell yields or, to
AY 0.88 0.85 0.87 0.86

a lesser extent, based on bivariate classification of meanFUZ MS 0.56 0.74
AY 0.47 0.63 0.41 0.33 and SD of cell yields. If used with individual year yield

Data source Method WAR KME ISO WAR KME ISO data, techniques such as WAR and fuzzy-k-means clus-
MY KME 0.84 0.84 tering were more sensitive to individual years or ex-

ISO 0.72 0.63 0.66 0.45 tremes in the input data than KME or ISODATA classi-
FUZ 0.98 0.83 0.74 0.74 0.69 0.78

fication, which was reflected in low RVc (fuzzy-k-meansMS KME 0.84 0.66
ISO 0.60 0.62 0.71 0.34 clustering at both sites), artifacts in the yield class maps
FUZ 0.56 0.66 0.63 0.74 0.56 0.61 (WAR and fuzzy-k-means clustering at Site A), or highAY KME 0.64 0.62

spatial fragmentation (fuzzy-k-means clustering at SitesISO 0.77 0.53 0.75 0.37
FUZ 0.67 0.43 0.65 0.46 0.26 0.59 A and B; Fig. 5 and 6). Although the ISODATA method

performed well in terms of a high RVc, the resulting
the yield map of 1996 showed a rectangular high-yield- maps were most fragmented, and this method required
ing zone in the southeastern quarter of the field, mainly image-processing software. Using multivariate cluster
due to high yield mapped there in 1996. This area analysis on multiple-year data (AY) bears the risk that
also stands out as a distinct high-yield class unit in the resulting yield classes may be affected by unusual
WAR–AY-6, ISODATA classification–AY-6, or fuzzy- events occurring in individual years or errors associated
k-means clustering–AY-6 but not to the same extent with the yield-mapping procedure. Therefore, such
when MY data were used for the classification (Fig. 5). methods must be used with care and, preferably, only

Map agreement among classification methods was with larger time series of yield maps (�5 yr) in which
best when the classification was based on MY data only. individual years exert less weight on the classification
Kappa coefficients ranged from 0.69 to 0.98 for using result. At both sites, WAR, KME, and fuzzy-k-means
MY data and either WAR, KME, or fuzzy-k-means clustering in combination with MY data gave similar
clustering classification methods. However, using ISO- results and can be recommended for further use.
DATA yield classification resulted in maps that agreed Six yield classes provided an acceptable solution in
less with those produced by any of the other methods terms of high RVc and are probably sufficient for practi-
(Kw 
 0.45–0.72) because this method resulted in a cal purposes of delineating larger yield goal zones within
more even proportional spread of yield classes (Ta- a field. Of those, four classes had gradual differences
ble 5). in MY but generally low within-class yield variability.

Within such discrete yield goal zones, management in-
puts could be varied more continuously based on soilDISCUSSION
variation. In addition, each field had two low-yielding

Yield Classification Methods classes, which represented marginal field areas that also
had the largest spatial–temporal yield variability. SuchNone of the empirical yield classification methods
zones must be managed differently from the core irri-resulted in RVc values that were close to those obtained
gated field area.with most cluster analysis techniques, and the results

Similar to empirical yield classification, the applica-were sensitive to subjective decisions that also affected
tion of cluster analysis techniques also involves a num-the spatial fragmentation of yield classes. The advantage
ber of empirical choices such as classification method,of empirical classification methods is their simplicity
similarity or distance measure, number of classes, orand the ability to establish criteria based on expert
fuzzy exponent (in fuzzy-k-means clustering only). Theknowledge. However, such results are not necessarily
influence of such choices on yield classification requiresuseful with regard to the yield variability accounted for
further study. Compared with empirical or standardif the number of classes differentiated is too small. Of
clustering techniques, continuous (fuzzy) classificationthe empirical methods tested, Blackmore’s method
offers the additional advantage that uncertainties aboutbased on cell MYs and cell CVs performed best in terms

of RVc and small spatial fragmentation. However, due class membership and the class boundaries can be
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mapped based on the fuzzy membership values in differ- of Asia have demonstrated the potential for such ap-
proaches (Dobermann et al., 2002b), but their use re-ent classes (Burrough et al., 1997).

The clustering procedures compared here focused on quires knowledge of yield potential and yield goals. Var-
ying both plant density and N according to differencesmaximizing the variance between classes and minimiz-

ing the variance within classes without constraints to in the attainable yield potential is likely to be a key
management option for exploiting the yield potentialform larger, uniform patches for management. Conse-

quently, the resulting yield class maps showed much of irrigated maize (Dobermann et al., 2002a).
In summary, because crop yield response to produc-spatial fragmentation. At issue is whether other meth-

ods such as spatially constrained multivariate classifica- tion inputs is more predictable, mapping yield classes
for spatially varying yield goals within a field is likelytion (Oliver and Webster, 1989) or the application of

postclassification spatial-filtering techniques may fur- to be more important under irrigated conditions than
in rainfed agriculture. More research is needed to betterther improve the results in terms of generating spatially

aggregated, finite management elements without signifi- understand differences between rainfed and irrigated
environments in the length of yield-mapping periodscant decrease in RVc. More research should also be

conducted to study the effect of different interpolation required for yield class mapping. Spatial variation in
crop yield measured with a yield monitor is mainly agrid size on patterns of yield classes.
function of variation in climate, soil productivity, field
management, and measurement error. If the latter isYield Classification in Irrigated
small and mostly random, and if climatic effects on yieldand Rainfed Systems
are minimized due to irrigation, only a few years (about

The consistency of yield patterns for a given field 5 yr) of yield map data may be required for a reliable
depends on the particular site characteristics and crop yield classification. Under rainfed conditions, yield clas-
management measures such as irrigation, which can re- sification procedures may require a long time series of
duce the interannual yield variation. In rainfed agricul- yield maps (perhaps at least 5–10 yr) to accurately pre-
ture, crop yield variability from year to year is often dict expected yields and their probabilities. Therefore,
large and driven by soil moisture, often in relation to crop modeling should complement yield classification
topography and soil texture (Timlin et al., 1998). and its interpretation for site-specific decision-making
Stafford et al. (1996) reported low consistency of nor- in such environments, provided that the available crop
malized winter barley (Hordeum vulgare L.) yield data ecosystem models can accurately predict the yield poten-
for four successive years. Using 6 yr of yield data for a tial and the interactions among major yield-determin-
maize–soybean rotation field, Jaynes and Colvin (1997) ing factors.
concluded that at least 10 yr of yield data would be
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