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Abstract
Leaf area index (LAI) is a key biophysical variable that can be used to derive agronomic information for field management and yield prediction.

In the context of applying broadband and high spatial resolution satellite sensor data to agricultural applications at the field scale, an improved

method was developed to evaluate commonly used broadband vegetation indices (VIs) for the estimation of LAI with VI–LAI relationships. The

evaluation was based on direct measurement of corn and potato canopies and on QuickBird multispectral images acquired in three growing seasons.

The selected VIs were correlated strongly with LAI but with different efficiencies for LAI estimation as a result of the differences in the stabilities,

the sensitivities, and the dynamic ranges. Analysis of error propagation showed that LAI noise inherent in each VI–LAI function generally

increased with increasing LAI and the efficiency of most VIs was low at high LAI levels. Among selected VIs, the modified soil-adjusted

vegetation index (MSAVI) was the best LAI estimator with the largest dynamic range and the highest sensitivity and overall efficiency for both

crops. QuickBird image-estimated LAI with MSAVI–LAI relationships agreed well with ground-measured LAI with the root-mean-square-error of

0.63 and 0.79 for corn and potato canopies, respectively. LAI estimated from the high spatial resolution pixel data exhibited spatial variability

similar to the ground plot measurements. For field scale agricultural applications, MSAVI–LAI relationships are easy-to-apply and reasonably

accurate for estimating LAI.
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1. Introduction

Remotely sensed measurements provide great potential for

monitoring crop activities, although remote sensing cannot

directly measure agronomic variables such as leaf area index

(LAI) and crop biomass. To derive agronomic information for

field management and yield prediction, mechanistic crop

simulation models have been used to assimilate remote sensing

data (Delécolle et al., 1992; Doraiswamy et al., 2004). Since

LAI is a key state variable in crop models and drives

photosynthesis, the assimilation is often achieved by directly

updating LAI with remotely sensed LAI, and/or dynamically

optimizing model parameters to obtain a simulation in

agreement with remote-sensing estimated LAI (Moulin

et al., 1998). In either case, the provision of reliable estimation
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of LAI using remotely sensed measurements is essential to the

data assimilation and the analyses of temporal and spatial

variability of crop conditions and productivity.

Numerous studies have attempted to estimate LAI with either

physically based canopy radiative transfer models (RTMs) or

empirical or semi-empirical relationships between spectral

vegetation indices (VIs) and LAI. RTMs are based on the

rigorous description of multi-scattering processes in canopies

(Verhoef, 1984; Kuusk, 1994). The inversion of RTMs appears to

be a promising method for the estimation of LAI from

multispectral reflectances. A number of studies have inverted

different RTMs to estimate the LAI of crop canopies (Goel and

Thompson, 1984; Jacquemoud et al., 1995). Recently, Casa and

Jones (2004) estimated LAI of potato canopies using a simplified

ray tracing canopy model PROSAIL. The inversion was based on

a look-up table approach with fixed leaf chlorophyll concentra-

tions, leaf mesophyll structure, equivalent water thickness, dry

matter content, and the hotspot parameter. Walthall et al. (2004)

used a hybrid approach that combines an artificial neural network

mailto:jindong@umn.edu
http://dx.doi.org/10.1016/j.fcr.2007.01.003


J. Wu et al. / Field Crops Research 102 (2007) 33–4234
and a RTM to estimate corn and soybean LAI from Landsat

ETM+ imagery. The hybrid approach avoids tedious iterations in

the traditional model optimization and gives a relatively fast

estimation of LAI once the training of neural network is

completed.

Because of complex interactions between solar radiation and

three-dimensional, heterogeneous, and anisotropic plant cano-

pies, and the limited knowledge we have about radiative transfer

processes, RTMs have not been fully developed and discrepant

results have been found among models (Jacquemoud et al.,

2000). The robustness of RTMs relies on the calibration of input

parameters, e.g., leaf biochemical characteristics, soil optical

properties, and canopy architecture, which are not routinely

available for local crop species, soil conditions, and cultural

practices. RTMs are also difficult to invert and computationally

expensive for operational applications (Myneni et al., 1995).

Therefore, RTMs are often restricted to specific ideal conditions

of plants and environment (Gobron et al., 1997), and it is difficult

to apply this method to agricultural practices.

The other and extensively studied way of estimating LAI

from spectral reflectance data is to determine an empirical or

semi-empirical VI–LAI relationship, and then invert the

relationship using ground-based spectral measurements or

satellite sensor data (Curran, 1983; Asrar et al., 1985; Wiegand

et al., 1990; Turner et al., 1999; Vaesen et al., 2001). This

method emphasizes practical considerations and is based on

limited physical principles (Myneni et al., 1995), but it is

simple and easy-to-apply. For the purposes of providing

agricultural management information at the field scale, such

relationships were still used in recent works (Walthall et al.,

2004; Baez-Gonzalez et al., 2005).

Many VIs have been proposed to reduce non-vegetation

effects and enhance the responsivity to the variations of canopy

biophysical characteristics, e.g., LAI (Bannari et al., 1995).

However, the stability and sensitivity of VIs are affected by

several external perturbing factors, such as atmospheric

conditions (Myneni and Asrar, 1994), soil optical properties

(Huete, 1989), and illumination geometry (Shibayama et al.,

1986). In addition, VIs are functions of multiple internal

canopy factors, such as canopy morphology (e.g., leaf angle

distribution) and leaf physiological properties (e.g., pigment

content) (Haboudane et al., 2004).

From a practical point of view, all undesirable factors that may

affect VI–LAI relationships have to be accounted for with simple

and inexpensive procedures. To reduce atmospheric effects, VIs

ideally should be computed with atmospherically corrected

surface reflectances (Turner et al., 1999), which can be accurately

retrieved from satellite sensor data with relatively simple

algorithms (Wu et al., 2005). For agricultural field applications,

remote sensing analyses are usually operated within a relatively

small area such as a soil-mapping unit. At this scale, soil optical

properties may be well represented by defining a soil line with

respect to the specific soil type (Richardson and Wiegand, 1977;

Baret et al., 1993). The effect of soil background can be reduced

by integrating the parameters of the soil line (i.e., the slope and

intercept in the red (R)–near infrared (NIR) spectral space) into

soil-adjusted VIs.
Other factors that affect VI–LAI are mostly internal canopy

variables, namely leaf angle distribution and pigment content.

For monoculture crops planted in relatively homogeneous

fields, leaf angle distribution may not change substantially

during the growing season (Major et al., 1992). However, it is

difficult to separate the variation of leaf pigment content in the

construction of VI–LAI relationships (Haboudane et al., 2004)

because leaf pigment content changes with LAI during crop

growth and development. Vaesen et al. (2001) found in rice

canopies that plant chlorophyll content did not add significant

predictive power of VI–LAI relationships. In practice, field

applications often require a general VI–LAI relationship that

holds across the entire growing season with a wide variation of

leaf pigment content.

VI–LAI relationships have been developed for a variety of

crops: wheat (Asrar et al., 1985), rice (Vaesen et al., 2001), and

corn (Wiegand et al., 1990; Baez-Gonzalez et al., 2005). Many

studies have found significant variations of these relationships in

accordance with the change of internal and external factors.

However, none of these studies conducted sensitivity analyses to

examine how noise levels inherent in VI–LAI relationships could

have affected the accuracy of LAI estimation. On the basis of

theoretically simulated spectra of crop canopies (soil and plant),

only a few studies used leaf and canopy RTMs to evaluate

potential errors in the estimation of LAI with VI–LAI

relationships (Baret and Guyot, 1991; Bouman, 1992; Broge

and Leblanc, 2000; Haboudane et al., 2004). However, as

discussed earlier, the assumptions made in these models may

have idealized canopy radiative conditions. The evaluations may

also be biased by the choice of input parameters corresponding to

specific conditions. In fact, these parameters often change with

phenology (e.g., leaf pigment content) and environmental factors

(e.g., soil moisture) in the field (Haboudane et al., 2004).

Therefore, to account for diverse field conditions throughout the

growing season, it would be necessary to use real field

measurements to examine the efficiency of VIs.

The accuracy of LAI estimation should consider two

aspects: absolute values and spatial variability. Most studies

have only focused on the accuracy of absolute values of LAI.

Little effort has been made to assess the capability of VI–LAI

relationships in providing consistent spatial variability of crop

conditions. The validation of the spatial variability of LAI has

been challenged by difficulties in obtaining adequate ground

measurements at the coarse spatial resolution of satellite sensor

observations to represent spatial variances of the area under

investigation (Tian et al., 2002). The successful launch of the

QuickBird satellite (on 18 October 2001) has made the highest

spatial resolution satellite data readily available to user

communities and has provided new opportunities for remote

sensing applications in agriculture (Wu et al., 2007). The high

spatial resolution of QuickBird images makes it possible to

match estimated pixel data with representative ground plot

measurements, thus to evaluate the spatial variability of LAI.

While efforts have been made to design new hyperspectral

indices to increase the sensitivity to LAI (Broge and Leblanc,

2000; Haboudane et al., 2004), it is important to evaluate the

performance of existing broadband VIs in order to use most
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available satellite data. Studies have shown that broadband VIs

had similar efficiency to their narrowband counterparts

(Elvidge and Chen, 1995) and were actually less affected by

external factors when used as the estimators of LAI (Broge and

Leblanc, 2000). This study was conducted within the frame-

work of applying broadband visible and near infrared satellite

sensor data to field scale agricultural practices. The objectives

of the study were: (1) to develop appropriate methods to

evaluate the efficiency of VI–LAI relationships for the

estimation of LAI; (2) to analyze error propagation with actual

field measurements made throughout the growing season; (3) to

identify a broadband VI which has a relatively high efficiency

for field scale applications; (4) to estimate high-resolution LAI

from QuickBird data using the identified VI and to validate the

absolute value and the spatial variability of estimated LAI.

2. Materials and methods

2.1. Field experiment

The experiment was carried out in two agricultural farms

near Becker, MN. Over the growing seasons of 2002, 2003 and

2004, corn (Zea mays L.) was cultivated in a farmer-managed

field (458230N, 938500W, 262.7 m), while potato (Russet

Burbank) was cultivated in the Sand Plain Research Farm of

the University of Minnesota (458230N, 938530W, 265.2 m).

Soils in both fields were Hubbard loamy sand (Entic

Hapludolls). Soil physical and chemical properties were

assumed temporally constant and spatially uniform. Through-

out each of the growing seasons, soil surface conditions mainly

changed in wetness due to irrigation and rainfall events. The

spectral reflectances of bare soil surface were measured using a

Cropscan MSR-16R multiband radiometer (described below) to

determine the soil line. Canopy reflectance and LAI were

measured at different growth stages of the two crops and

covered a wide range of LAI. Eleven campaigns in the corn

field and 18 campaigns in the potato field were carried out from

the beginning of June to the end of August. The datasets allow

us to examine the responses of VIs to plant types and vegetation

dynamics when soil optical properties are known and

represented with a specific soil line.

2.2. Data collection

2.2.1. Canopy spectral reflectance measurement

Canopy spectral reflectances were measured with a 16-band

multispectral radiometer (Cropscan MSR-16R, 0.46–1.72 mm).

The radiometer simultaneously measures irradiance and

radiance to provide canopy surface reflectances. The red

(0.63–0.69 mm) and NIR (0.76–0.90 mm) spectrum, corre-

sponding to the third and fourth band of QuickBird data, were

simulated with appropriate Cropscan bands as weighted

averages (Wu et al., 2005). The spectroradiometer was

positioned looking vertically downward at 1 m above crop

canopies with a 288 field of view (FOV). Measurements were

taken around solar noon to minimize the effect of diurnal

changes in solar zenith angle.
Ten intensive sampling areas (3 m � 3 m) were established

along three transects across the corn field to capture the spatial

variability based on the prior knowledge of soil and crop

production zones. Multispectral reflectances were measured

every 1 m along a row or a furrow and at 0.7 m interval across

rows and furrows with the FOV centering over rows and

furrows alternatively. In total, 27 measurements were taken per

sampling area. Among them, 15 measurements were centered

over rows and 12 measurements were centered over furrows. In

the potato field, canopy reflectances were measured in 24 small

nitrogen treatment plots (3.7 m � 6.1 m). Seven measurements

were taken per plot, in which four measurements were centered

over rows and three measurements were centered over furrows.

Reflectance measurements were then averaged for each

sampling area or plot to estimate a single reflectance value.

2.2.2. LAI measurement

LAI of crop canopies was measured with Li-Cor LAI-2000

plant canopy analyzer. The 2708 view cap was used to remove

the sun and the operator from the sensor’s view. One above-

canopy reading and three below-canopy readings were

collected for each measurement. To increase the spatial

coverage, below-canopy readings were made at even intervals

along a diagonal transect between rows. Twelve measurements

were taken per sampling area for corn and three measurements

were taken per plot for potato. All measurements were averaged

to obtain a single LAI value for each sampling area or plot.

2.2.3. Image acquisition and surface reflectance retrieval

Four QuickBird multispectral images covering both corn

and potato fields were acquired under clear sky conditions on

22 June 2002, 20 June 2003, 18 July 2003, and 20 August 2004.

The images have three visible bands (0.45–0.52 mm, 0.52–

0.60 mm, and 0.63–0.69 mm) and one NIR band (0.76–

0.90 mm). The spatial resolution of the 2002 and 2004 images

is 2.8 m, while that of the 2003 images is 2.4 m. The images

were geometrically rectified and radiometrically and atmo-

spherically corrected to obtain surface reflectance (Wu et al.,

2005). Each pixel corresponding to a sampling area or plot was

geo-located with the Differential Global Positioning System

(DGPS)–Ashtech Z-Surveyor measurements. The Ashtech Z-

Surveyor is a real-time kinematic GPS unit with the horizontal

root-mean-square-error (RMSE) of 1 cm.

2.3. Selected spectral vegetation indices

For the purpose of this study, five of the most commonly

used and functionally different broadband VIs were selected

(Bannari et al., 1995) (Table 1). These VIs were grouped into

two categories based on the assumption of the orientation of

isovegetation lines regarding to the soil line in the R–NIR

spectral space: ratio-based indices and distance-based indices

(Huete, 1989; Baret and Guyot, 1991). The most known and

widely used ratio-based index is the normalized difference

vegetation index (NDVI) (Rouse et al., 1974). NDVI is very

sensitive to soil background at low LAI (Huete, 1989), and the

sensitivity of NDVI to LAI weakens when LAI exceeds a



Table 1

Selected functionally different vegetation indices (VIs) and their referencesa

VI Reference

NDVI = (NIR � R)/(NR + R) Rouse et al. (1974)

SAVI = (1 + L)(NIR � R)/(NIR + R + L) Huete (1988)

MSAVI = (NIR + 1) � (1/2)[(2NIR + 1)2

� 8(NIR � R)]1/2

Qi et al. (1994)

TSAVI = [a(NIR � aR � b)]/[aNIR +R

� ab + X(1 + a2)]

Baret et al. (1989),

Baret and Guyot (1991)

PVI = (NIR � aR � b)/(1 + a2)1/2 Richardson and Wiegand (1977)

a NDVI, SAVI, MSAVI, TSAVI, and PVI are the normalized difference

vegetation index, the soil-adjusted vegetation index, the modified soil-adjusted

vegetation index, the transformed soil-adjusted vegetation index, and the

perpendicular vegetation index, respectively. R and NIR are spectral radiance

in the red and near infrared band, respectively. L and X are soil background

adjustment factors. a and b are the slope and intercept of the soil line,

respectively.
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threshold value, which is typically around three (Carlson and

Ripley, 1997).

Huete (1988) developed the soil-adjusted vegetation index

(SAVI) by shifting the convergent point of isovegetation lines

from the origin to a point in the quadrant of negative red and

NIR values. Many studies have indicated that SAVI not only

reduces the effect of soil variability for low LAI, but also

increases the sensitivity to high LAI (Baret and Guyot, 1991;

Elvidge and Chen, 1995). However, in order to determine the

optimal value of the soil background adjustment factor L, prior

knowledge about vegetation density or LAI is required, which

creates a loop problem since LAI is the unknown target

variable.

One approach for optimizing L was to replace the constant

factor L with an empirical but dynamic function of L and thus

formulate the modified soil-adjusted vegetation index MSAVI2

(in this paper referred to as MSAVI) regardless of vegetation

density (Qi et al., 1994). Another improvement with MSAVI is

to allow for arbitrary slopes and intercepts of the soil line rather

than to assume that the soil line has a slope of 1.0 and passes

through the origin. MSAVI may be more applicable in practice

because soil effects are implicitly adjusted according to

different vegetation densities (i.e., soil parameters are not

required for calculation). Studies using RTMs have found that

MSAVI was the most sensitive VI to LAI (Broge and Leblanc,

2000).

Arbitrary slopes and intercepts of a soil line are also used in

the transformed soil-adjusted vegetation index (TSAVI) (Baret

et al., 1989; Baret and Guyot, 1991). As for SAVI, the

convergent point of isovegetation lines has also been shifted

from the origin into the third quadrant of the R–NIR spectral

space. Baret and Guyot (1991) found that TSAVI was the best

VI for low LAI compared with NDVI and SAVI, but gave the

largest noise for high LAI.

The typical VI based on the second assumption is the

perpendicular vegetation index (PVI) (Richardson and Wie-

gand, 1977), which accounts for the effect of soil background

by computing an orthogonal greenness vector to a soil line with

arbitrary slopes and intercepts. PVI reduced soil effects and

held a near linear relationship with LAI for low LAI (Curran,
1983), but it introduced much noise at high LAI (Baret and

Guyot, 1991).

The selected VIs, namely, NDVI, SAVI, MSAVI, TSAVI,

and PVI, were computed with both ground-based canopy

reflectance measurements and image-retrieved surface reflec-

tances. The suggested optimal value of L (=0.5) and X (=0.08)

were used in SAVI and TSAVI, respectively. The slope (1.450)

and intercept (0.024) of the soil line were derived from ground

measurements of bare soil surface. The red and NIR

reflectances of bare soil varied from 0.03 to 0.15 and from

0.07 to 0.23, respectively.

2.4. Non-linear fitting of VI–LAI relationships

The general semi-empirical relationship between a VI and

LAI can be expressed as an exponential function based on the

modified Beer’s law (Baret and Guyot, 1991):

VI ¼ VI1 � ðVI1 � VIgÞ expð�KVILAIÞ (1)

where VI1 is the asymptotically limiting value of a specific VI

when LAI approaches a very large value; VIg is the index value

corresponding to bare soil conditions (LAI = 0). The dynamic

range of the VI (i.e., VI1 � VIg) is the difference between its

maximum (VI1) and minimum value (VIg). KVI is the absorp-

tion-scattering coefficient that determines the sensitivity of the

VI to a unit increase of LAI.

For a specific VI, these parameters depend on leaf angle

distributions, soil optical properties, and solar zenith angles. In

this study, reflectance measurements were taken for given crops

cultivated on a given type of soil, and at the solar noon and the

nadir view angle. Thus, the values of these parameters are

expected to be less variable for each crop. Based on the large

datasets measured in the three growing seasons, the Marquardt

non-linear regression technique (Marquardt, 1963) was used to

determine a set of best-fitted values with respect to each

selected VI for both corn and potato canopies. The dynamic

range of each VI, the standard deviation of each modeled

parameter, and the RMSE and the adjusted coefficient of

determination (r2) were calculated to compare the fitted

relationships.

2.5. Efficiency of VI–LAI relationships

The efficiency of a VI–LAI relationship in terms of

retrieving LAI depends on three factors: the stability of the

VI with other perturbing factors, the sensitivity of the VI to a

unit change of LAI, and the dynamic range of the VI. Several

methods have been developed to compare and evaluate the

efficiency of VIs, such as the relative equivalent LAI noise

(RENLAI) (Baret and Guyot, 1991) and the signal-to-noise ratio

(S/N) (LePrieur et al., 1994; Qi et al., 1994). But these methods

do not account for all three factors. For instance, both RENLAI

and S/N considered the stability, but RENLAI did not consider

the dynamic range and S/N did not consider the sensitivity. The

improved method (TVI(LAI)) proposed by Gilabert et al. (1998)

was modified and used in this study. TVI(LAI) takes into
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account all three factors and can be computed as a dynamic

function of LAI:

TVIðLAIÞ ¼ sLAIðVIÞ
s̄VI

� 100% (2)

where s̄VI is the average standard deviation of the whole range

of VI values corresponding to all LAI levels, and sLAI(VI) is the

standard deviation or noise of LAI induced by the variation of

VI values at a given time. s̄VI represents the dynamic range of

the VI while sLAI(VI) results from both the stability and the

sensitivity of the VI–LAI relationship. Based on the theories of

error propagation (Bevington, 1969), sLAI(VI) or the error

propagated to the final result of LAI because of the uncertain-

ties in VI can be expressed as,

sLAIðVIÞ ¼ sVI

�
d LAI

d VI

�
(3)

where sVI is the standard deviation or stability of the VI

corresponding to a given value of LAI, and d LAI/d VI is

the reversed local slope of VI–LAI relationships and represents

the sensitivity of VI to LAI change. Therefore, by combing

Eqs. (2) and (3), the method we used to evaluate the efficiency

of VI–LAI relationships was expressed as,

TVIðLAIÞ ¼
�
sVI

s̄VI

��
d VI

d LAI

��1

� 100% (4)

where d VI/d LAI is the first-order derivative deduced from

Eq. (1). TVI values decrease as the efficiency of VI–LAI

relationships increases since a VI with high efficiency should

be sensitive to vegetation density (with high d VI/d LAI), but

insensitive to other perturbing factors (with low sVI), and have a

large dynamic range of variations (with high s̄VI). Based on

ground-based measurements and the VI–LAI relationships

fitted with Eq. (1), the dynamic change of TVI values as a

function of LAI were computed for all selected VIs with respect

to each crop.

2.6. Estimation and validation of LAI from QuickBird

imagery data

The VI with the lowest TVI values was regarded as the most

efficient VI (VIe) for the estimation of LAI. To test the accuracy

of LAI estimated with VIe, we inverted the VIe–LAI

relationship to estimate LAI from QuickBird imagery data

(Eq. (5)):

LAI ¼ �
�

1

KVIe

�
ln

�
VIe
1 � VIe

VIe
1 � VIe

g

�
(5)

where VIe values were computed with the atmospherically

corrected QuickBird surface reflectances; VIe
1, VIe

g, and

KVIe are parameters of the VIe–LAI function determined with

Eq. (1). The other selected VIs were discarded because of the

low efficiency.

The algorithm was applied to each ground sampling area for

both crops. Estimates of LAI were plotted against the

corresponding ground measurements of each sampling area.
Compared with satellite sensors with coarse spatial resolutions

in heterogeneous landscapes, it is reasonably accurate to scale

up ground point measurements by averaging to the spatial

resolution of QuickBird images in relatively homogeneous

agricultural fields (Curran and Williamson, 1986). We thus

made direct comparison between the QuickBird image-

estimated pixel values and the average values of ground

measurements.

To validate the spatial variability of LAI, the spatial

cumulative distribution function (SCDF) was computed to

represent the spatial statistical characteristics of image-

estimated and ground-measured LAI. SCDF or F(LAI) was

defined as the probability that LAI takes a value less than or

equal to a given value in a spatial domain (Evans et al., 2000).

For each crop, F(LAI) of image-estimated and ground-

measured LAI were compared to determine the differences

in representing spatial heterogeneity at the field scale.

3. Results and discussion

3.1. VI–LAI relationships

All VIs were strongly correlated with LAI (Table 2). The

correlations were significant even though the measurements

were taken throughout the entire growing season under varied

field conditions, which indicated that the change of the VIs was

mainly governed by LAI. Among them, SAVI, MSAVI, TSAVI,

and PVI showed the highest correlation with LAI (r2 � 0.8 for

corn and r2 � 0.9 for potato) while NDVI showed the lowest

correlation for both crops (r2 � 0.7). It was evident that the

parameters in the VI–LAI relationships varied with indices and

there were no generic values for all VIs. Additionally, the fitted

parameters varied considerably. Although this did not affect the

strength of the correlations, it suggested the effect of

unaccounted perturbing factors by the specific index.

Since both crops were planted on the same type of soil, VIg

values (for bare soil) were identical for corn and potato.

Generally, VIg for the ratio-based VIs were larger than zero,

particularly VIg for NDVI was as large as 0.27 because of not

adjusting soil effects. VI1 values (for dense vegetation) for

NDVI, TSAVI, and PVI changed with crops due to different leaf

and canopy properties. However, it appeared that VI1 values

for SAVI and MSAVI were relatively consistent for different

crops. Actually, we found that all parameters for MSAVI (VIg,

VI1, and KVI) were close between corn and potato, which may

be explained by the fact that there is no empirical adjustment

for vegetation density in the MSAVI equation (Table 1). As a

result of differences in VIg and VI1 among VIs, the dynamic

ranges of VIs are quite different (Fig. 1). For both crops,

MSAVI had the largest dynamic range of 0.83 while PVI had

the smallest (0.43 for corn and 0.51 for potato) (Table 2). For

the ratio-based VIs, NDVI had the smallest dynamic range

(0.68 for corn and 0.63 for potato).

All VIs increased almost linearly with increasing LAI at low

LAI levels until a threshold value (LAIt) was reached, and then

entered an asymptotic regime in which VIs increased very

slowly with increasing LAI (Fig. 1). However, LAIt varied with



Table 2

Best-fitted values of the parameters in vegetation index (VI)–leaf area index (LAI) relationships and statisticsa

VI NDVI SAVI TSAVI MSAVI PVI

Corn

VIg 0.27 (0.11b) 0.11 (0.08) 0.00 (0.10) 0.11 (0.09) 0.00 (0.03)

VI1 0.95 (0.09) 0.86 (0.06) 0.76 (0.08) 0.94 (0.07) 0.43 (0.03)

VI1 � VIg 0.68 0.75 0.76 0.83 0.43

KVI 0.68 (0.14) 0.52 (0.09) 0.62 (0.11) 0.50 (0.10) 0.33 (0.08)

LAIt 3.8 4.8 4.5 5.0 6.7

r2 0.71 0.80 0.78 0.78 0.80

RMSE 0.07 0.07 0.07 0.08 0.04

Potato

VIg 0.27 (0.09) 0.11 (0.06) 0.00 (0.07) 0.11 (0.06) 0.00 (0.03)

VI1 0.90 (0.09) 0.86 (0.05) 0.73 (0.07) 0.94 (0.05) 0.51 (0.04)

VI1 � VIg 0.63 0.75 0.73 0.83 0.51

KVI 1.03 (0.13) 0.54 (0.07) 0.77 (0.09) 0.50 (0.07) 0.24 (0.06)

LAIt 2.9 4.7 3.9 5.0 7.3

r2 0.72 0.88 0.84 0.89 0.90

RMSE 0.04 0.04 0.04 0.05 0.03

a NDVI, SAVI, TSAVI, MSAVI, and PVI are the normalized difference vegetation index, the soil-adjusted vegetation index, the transformed soil-adjusted

vegetation index, the modified soil-adjusted vegetation index, and the perpendicular vegetation index, respectively. VIg is the index value corresponding to bare soil

conditions; VI1 is the asymptotic value of a VI; VI1 � VIg is the dynamic range of a VI; KVI is the sensitivity coefficient of a VI–LAI relationship. LAIt is the

threshold value of LAI when a VI reaches VI1. RMSE is the root-mean-square-error of a VI. r2 is the adjusted coefficient of determination.
b Values in parentheses are the standard deviations of corresponding parameters.
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the type of VI used. NDVI and TSAVI reached LAIt of 2.9–3.8

and 3.9–4.5, respectively, while SAVI and MSAVI continued to

increase up to LAIt around 5. LAIt for PVI varied with crops but

was generally higher than 6. The sensitivity coefficient, KVI,
Fig. 1. Responses of vegetation indices (VIs) to leaf area index (LAI) for (a)

corn and (b) potato canopies. Curves are the non-linear fitting of the responses.
changed correspondingly with the largest value for NDVI and

TSAVI. That is, NDVI and TSAVI increased rapidly with

increasing LAI and reached LAIt earlier than SAVI and

MSAVI. PVI was characterized by the slowest variation within

the smallest dynamic range.

3.2. Efficiency of VI–LAI relationships for LAI estimation

The sensitivity of the selected VIs consistently decreased as

the amount of vegetation increased (Fig. 2). All VIs became

much less sensitive to high LAI for dense canopies. It was

found that d VI/d LAI of MSAVI was generally larger than that

of other indices throughout the whole range of LAI variation.

TVI values varied with the level of LAI (Fig. 3). All VIs

except NDVI for potato had similar low TVI values at low LAI

(1 < LAI < 2). Thus, no VI appeared to be superior to another

in reducing the effect of soil background. For potato canopies

with 1 < LAI < 2, because of the substantial expose of bare

soil, NDVI apparently caused more error in the estimation of

LAI than other VIs. Due to the shortage of measurements in the

early part of growing seasons, the behavior of VIs cannot be

concluded for LAI < 1 when the fraction of vegetation cover

was very low.

TVI values for dense canopies with high LAI were generally

larger than those for sparse canopies (Fig. 3), indicating that the

efficiency of VIs was reduced at high LAI levels. However, for

both crops, TVI values of MSAVI were consistently smaller than

other VIs. In particular when LAI � 4, the differences of TVI

between MSAVI and the indices that had the ‘worst’

performance (PVI for corn and NDVI for potato) were evident.

For dense potato canopies, TVI of MSAVI even tended to

decrease (Fig. 3). The results showed that MSAVI considerably

reduced the noise in the estimation of LAI compared with other

indices and it was the best LAI estimator. Similar results were



Fig. 2. Sensitivity (d VI/d LAI) of vegetation indices (VIs) to the change of leaf

area index (LAI) at different LAI levels for (a) corn and (b) potato canopies. Fig. 3. Error propagation in the estimation of leaf area index (LAI) at different

LAI levels for (a) corn and (b) potato canopies. TVI (%) is the efficiency index of

relative LAI noise inherent in the vegetation index (VI)–LAI functions.
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found in earlier studies using RTMs (Broge and Leblanc, 2000).

As discussed, the parameters in the MSAVI–LAI relationships

were relatively consistent for both crops, suggesting it might be

advantageous for other crops as suggested for soybean and

wheat based on simulation studies (Haboudane et al., 2004).

The efficiency of NDVI, SAVI, TSAVI, and PVI varied with

crops. For corn, the performance of NDVI was similar to SAVI

and TSAVI and much better than PVI; while for potato, NDVI

produced the largest error and SAVI and PVI proved to be

slightly better than TSAVI. It should be noted that PVI had

relatively high correlation with LAI (r2 = 0.8 for corn and

r2 = 0.9 for potato), but the overall efficiency of PVI was

actually not satisfactory because of the small dynamic range

(Table 2) and the low sensitivity (Fig. 2). For corn canopies

when LAI < 3 and for potato canopies when LAI < 2, the
Fig. 4. QuickBird images-estimated leaf area index (LAI) and correspond
sensitivity of PVI was particularly low compared with other

indices.

3.3. Comparison of estimated and measured LAI

Based on the evaluation of the efficiency of VI–LAI

relationships, the MSAVI–LAI functions were inverted

(Eq. (5)) to estimate LAI from four atmospherically corrected

QuickBird images. The results indicated that the LAI estimates

were in good agreement with the corresponding ground measure-

ments (Fig. 4). The slope was 1.02 for corn and 0.97 for potato,

and the corresponding RMSE was 0.63 and 0.79, respectively

(Table 3). Because positives and negatives were canceled out in
ing ground-based measurements for (a) corn and (b) potato canopies.



Fig. 5. Spatial cumulative distribution functions (F(LAI)) of leaf area index (LAI) estimated from the QuickBird images and concurrently measured in the fields for

(a1–a2) corn and (b1–b4) potato canopies.
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the comparison, the mean-absolute-difference (MAD) between

estimated and measured LAI was even lower (0.18 for corn and

�0.03 for potato). The overall accuracy was satisfactory

considering that the average error of LAI measurements was

on the order of 0.3 for corn and 0.5 for potato. Particularly for

potato at high LAI levels (LAI > 5) when canopy leaves were

densely clumped, the measurement error could be as large as 0.7–

0.8. This might have led to the increased dispersion of the data

points presented in the scatter plot (Fig. 4b). It appeared that LAI

for corn canopies tended to be overestimated when LAI < 4 and

underestimated when LAI > 4, but the uncertainty remains to be

tested with more low and high LAI values since most LAI present

in the scenes were in the mid-range.
Table 3

Statistical comparison of the image-estimated and the ground-measured leaf

area index (LAI)a

a t* RMSE MAD

Corn 1.02 25.44 0.63 0.18

Potato 0.97 33.39 0.79 �0.03

a a is the slope of the linear regression between the estimated and the

measured LAI by forcing the intercept to be zero. t* indicates a values are

significant at a = 0.001. RMSE and MAD are the corresponding root-mean-

square-error and the mean-absolute-difference.
3.4. LAI spatial cumulative probability distributions

The F(LAI) generated with the QuickBird imagery data

were generally close to the corresponding F(LAI) derived with

the ground measurements (Fig. 5). Two pairs of comparison

were made for corn canopies and four pairs of comparison were

made for potato canopies on different dates. The comparisons

indicated that LAI estimated from the high spatial resolution

pixel data was able to demonstrate similar spatial variability of

the plot measurements on the ground. For corn canopies, the

SCDF of the image-estimated LAI only slightly deviated from

the ground measurements (Fig. 5a). For potato canopies, both

SCDFs agreed well at low LAI levels (LAI < 3) (Fig. 5b4). At

high LAI levels (LAI > 3), the agreement varied with images

but the image-estimated LAI tended to have higher F(LAI)

compared with the ground measurements (Fig. 5b).

4. Conclusions

An improved method was developed to evaluate the

efficiency of commonly used broadband VIs in estimating

LAI. The method took into account all three factors that affect

the efficiency of VIs, i.e., stabilities, sensitivities, and dynamic

ranges. Based on field measurements made in three growing
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seasons, we analyzed LAI noise inherent in each VI–LAI

function and examined the capacity of QuickBird data for

monitoring absolute LAI values and spatial variabilities.

LAI dominated the variation of canopy spectral reflectances

and all VIs were strongly correlated with LAI, but with

different efficiencies for LAI estimation. LAI noise generally

increased with increasing LAI. For dense canopies, the

efficiency of most VIs was highly reduced. The best behavior

was given by MSAVI, which had the largest dynamic range and

the highest sensitivity and overall efficiency for both crops. The

differences in the performance between MSAVI and other

indices were particularly evident at high LAI levels.

QuickBird image-estimated LAI using the inverted MSAVI–

LAI relationship agreed well with ground measurements in

both absolute values and spatial variability. The evaluation and

validation were based on corn and potato, and the parameters of

MSAVI–LAI were relatively consistent for different crops.

Thus, the results should have implications for other crops. For

the purpose of agricultural applications at the field scale, the

semi-empirical MSAVI–LAI relationships are reasonably

efficient for estimating LAI with satisfactory absolute values

and spatial variability. It was difficult to schedule ground

measurements concurrently with commercial satellite over-

passes. More coordinated ground measurements and QuickBird

images, particularly in the early growing season, are needed for

the future validation.
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