COMPARISON OF MATHEMATICAL ALGORITHMS FOR DETERMINING THE SLOPE ANGLE IN GIS ENVIRONMENT

José L. García Rodríguez¹ and Martín C. Giménez Suárez²

Abstract

Many environmental models depend to a great degree on the accuracy of estimated slope values. A Geographic Information Systems (GIS) can extract slope angles from Digital Elevation Models (DEMs) using slope algorithms. The objective was to verify differences in estimating slope values using nine different mathematical algorithms on 10 m resolution DEMs. Software used were ArcGIS® 9.2 and SEXTANTE®. SEXTANTE® allows selecting the algorithm in order to calculate slope angle values, unlike ArcGIS, which offers only one option. The results indicated that the 2nd Polynomial Adjustment algorithm of Zevenbergen and Thorne is the most appropriate for the slope angle estimation.

Keywords: ArcGIS, Sextante, slope angle, algorithm, DEM, GIS

INTRODUCTION

The improved accuracy of slope gradient values obtained from Geographic Information Systems (GIS) has a fundamental objective: to contribute to a wide range of environmental models, like erosion models, that have the slope factor as an input. A GIS can extract slope angles from Digital Elevation Models (or DEMs) using slope algorithms. The effects of slope algorithms over slope angle estimation can vary widely in terms of the accuracy of the calculation.

Objectives

- Objective 1: Confirm differences in estimated slope values, calculated using 9 different mathematical algorithms on DEMs of 10 m resolution.
- Objective 2: Study Root Mean Square Error (RMSE) between each method and field data obtained for three ranges of slopes, 0-5º (9%), 5-20º (9-36%), and >20º (>36%) to verify the slope algorithm that best represents each range.

Material and Methods

The aim of this study was to compare data calculated using GIS and sample points measured in the Arroyo del Lugar basin (Figure 1). To make this possible, a series of slope data was taken in the field, in order to compare them with the data extracted from DEMs (Table 1). An analog clinometer was used in the field to measure the slopes; and a Trimble® GeoExplorer 3 GPS to determine the geographical position. The Topogrid method included in ArcGIS was used to create a DEM from 10 m contour lines.

Software used in this paper were GIS ArcGIS® 9.2 and SEXTANTE® (Olaya, 2006). One of the GIS used for this study was the recently launched SEXTANTE (Olaya, 2006). It facilitated the modernization, as it offers very significant advantages in terms of the hydrological analysis, in comparison with ArcGIS. One of the most important advantages provided by SEXTANTE is the possibility of selecting the algorithm to calculate slope angle values, as it has several algorithms integrated, unlike ArcGIS,
which offers only one option. SEXTANTE is a free software and available in English and Spanish. SEXTANTE is now part of GvSIG package (http://www.gvsig.gva.es/).

Test Area
The basin chosen was the Arroyo del Lugar Basin located in the Municipality of Puebla de Valles, in the northwest section of the Province of Guadalajara, Spain (Figure 1). The total area of Arroyo del Lugar basin is 768.62 ha and total length of the main stream is 7,253 m.

The main characteristic of the basin is the high quantity of gullies with steep slopes.

Methods - Objective 1
Slopes were calculated over a DEM with a resolution of 10 x 10 m, using nine different mathematical algorithms:

- 2nd Degree Polynomial Adjustment. Bauer, Rohdenburg and Bork Algorithm (1985)
- 2nd Degree Polynomial Adjustment. Heerdegen and Beran Algorithm (1982).
- 3rd Degree Polynomial Adjustment. Haralick Algorithm (1983)
- Maximum Slope. Travis Algorithm (1975)
- Maximum Slope by Triangles. Tarboton Algorithm (1997)

The methods named above can be divided into three groups. The first group consists of methods marked with letters a to e; i.e. the neighbourhood method and the polynomial methods, which calculate an average value through the central cell, using at least 4 of 8 surrounding cells (Dunn et al., 1998) over a 3 x 3 cells network (Figure 2). This group of algorithms is known as “averaged algorithms”, because they use four or more cells in a network to calculate the slope of the central cell.

The second group includes the methods labelled from f to h. These methods are fundamentally associated with flow algorithms, and not with a purely morphometric analysis. They consider the flow moving through a flat surface in the direction of the maximum slope (Suet-Yan Lam, 2004). Due to that, the local morphometry is not defined based on a mathematical function type \(z = f(x, y) \), nor are the tools for differential calculus used, as often happens in other cases. As a result, obtaining certain parameters using these methods is not recommendable. Slopes and directions obtained may be valid, although less accurate (Olaya, 2006).

The third group represents algorithms that calculate maximum slope as the direct difference between the central cell and a neighbouring cell. This group, is represented by the Maximum Downstream Slope Algorithm of Van Remortel et al. (2004). Hickey et al. (1994) originally created the algorithm for LS factor estimation. LS factor is part of USLE model for hydrologic erosion calculation. Van Remortel et al. (2004) adapted LS factor for RUSLE, i.e., revised USLE model.

This method, unlike the first group, considers the elevation of the central cell \(z_c \) when estimating slope, and this type of methodology, is known as non-averaged. This method proposes that the maximum slope (rise/run relation) between the central cell \(z_c \) and its eight neighbours \(z_i \) should be used to estimate the slope of the central cell in a 3 x 3 cells network (Dunn et al., 1998).

Methods - Objective 2
For purposes of this study, DEM error at one point is the difference between calculated slope value and its real value. In this case, the accuracy of slope estimations is presented in the form of the Root Mean Square Error (RMSE) statistic expressed as:

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (S_i^{\text{interpolated}} - S_i^{\text{real}})^2}
\] (1)
Where, S_{interpol} refers to the i^{th} interpolated slope angle value, S_{real} refers to the i^{th} known or measured slope angle value of a sample point and N is the number of sample points.

In this case, the RMSE was calculated for the slope algorithms studied in Objective 1 (Table 1), for three ranges of slopes, attempting to make calculations for flat, intermediate and steep surfaces.

Dividing the slopes into three ranges allowed us to determine the methodology that best represents the reality of the terrain in each situation, which consecutively shows which model we should choose at the time we undertake a research, according to the type of predominant surface area.

RESULTS

Determine the existence of differences between the slope algorithms groups (field data included).

The analysis revealed that there were no significant differences at the 95% confidence level between all the groups. Statistical values were $F=0.690$ and $p=0.718$. Tarboton’s Maximum Slope by Triangles Algorithm (maxpend_tri) presented the highest “Maximum” value (Max=29.48) and Van Remortel, Maichle and Hickey Maximum Downstream Slope Algorithm had the greatest variability (Std. Dev.= 8.06).

Kruskal-Wallis analysis confirmed the ANOVA results, indicating no difference between the groups. Statistical values with a 95% confidence level, were $\chi^2=8.125$ and $p=0.522$.

Determine the existence of relations between each slope algorithm and field data

In order to observe the way in which groups are related, correlation coefficients between pairs of variables were calculated using the Pearson and Spearman correlation.

The best correlation with field data, according both, Pearson and Spearman correlation coefficients, was with Zevenbergen and Thorne 2nd Degree Polynomial Adjustment (Zevenb_AP2) algorithm, with a positive value of 0.671 and 0.721 at 99% confidence level, respectively.

Results of Root Mean Square Error (RMSE) estimation for Slope Algorithms

For smaller slopes than 9%, the polynomial adjustment methods show a tendency for smaller RMSE (Table 2).

RMSE values are similar in the mean slope range (9%-36%) but for slopes bigger than 20 %, RMSE values were disparate.

The row “Total” of Table 2 shows mean RMSE values for each slope algorithm, calculated for the total spectrum of slopes. According to this, the lowest RMSE corresponds to Zevenbergen and Thorne (Zevenb_AP2) algorithm.

Discussion and Conclusions

Since early 1960s, GIS has been used to manage large surfaces of land. A common objective in these management plans has been how to obtain a topographic model. As a result, an accurate estimate of the topography and topographical elements is essential.

The great majority of GIS users, use ArcGIS as the only option. ArcGIS could easily be complemented with other GIS, such as SEXTANTE, which offers calculation variants that are not found in ArcGIS: simply export the DEM made in ArcGIS to SEXTANTE using the floatgrid module, apply the slope algorithm, which is appropriate for the study area, reverse this step with the slope raster, and continue working in ArcGIS, if this is the environment preferred by the user.

Tests showed that all algorithms provide similar results of slope angles, but due to the correlation indexes and RMSE values, the recommended algorithm for determining slope angles is the Zevenbergen and Thorne 2nd degree Polynomial Adjustment algorithm (Zevenbergen and Thorne, 1987).

REFERENCES

Figure 1. Location of the Arroyo del Lugar basin (Puebla de Valles, Spain)

Figura 2. 3 x 3 mask of cells of a raster grid.
Table 1. Root Mean Square Error (RMSE) values, with regard to field data, for each one of the 9 slope algorithms, extracted from 9 rasters with a cell size of 10 m. Smallest RMSE is indicated in shady.

<table>
<thead>
<tr>
<th>Slope Ranges</th>
<th>ArcGIS (S&E)</th>
<th>Bau_ AP2</th>
<th>Zeve_ AP2</th>
<th>Max_pen</th>
<th>Maxpen_tri</th>
<th>PI_ ajuste</th>
<th>Herr_ AP2</th>
<th>Hara_ AP3</th>
<th>Hick_ mpab</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5° (9%)</td>
<td>7.09</td>
<td>6.37</td>
<td>6.71</td>
<td>6.37</td>
<td>7.57</td>
<td>8.45</td>
<td>6.75</td>
<td>6.84</td>
<td>7.97</td>
</tr>
<tr>
<td>5-20° (9%-36%)</td>
<td>5.61</td>
<td>4.55</td>
<td>5.34</td>
<td>4.55</td>
<td>6.54</td>
<td>8.95</td>
<td>5.27</td>
<td>5.44</td>
<td>6.66</td>
</tr>
<tr>
<td>>20° (>36%)</td>
<td>8.74</td>
<td>10.95</td>
<td>9.09</td>
<td>10.95</td>
<td>10.94</td>
<td>11.53</td>
<td>9.23</td>
<td>9.05</td>
<td>9.88</td>
</tr>
<tr>
<td>Total</td>
<td>6.61</td>
<td>6.46</td>
<td>6.45</td>
<td>6.46</td>
<td>7.67</td>
<td>9.27</td>
<td>6.46</td>
<td>6.52</td>
<td>7.62</td>
</tr>
</tbody>
</table>