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Abstract. Large wildfires in the Santa Monica Mountains of southern California occur when low levels of live and
dead fuel moisture coincide with Santa Ana wind events. Declining live fuel moisture may reach a threshold that increases
susceptibility to large wildfires. Live fuel moisture and fire history data for the Santa Monica Mountains from 1984 to
2005 were used to determine a potential critical live fuel moisture threshold, below which large fires become much more
likely. The ability of live fuel moisture, remote sensing, and precipitation variables to predict the annual timing of 71 and
77% live fuel moisture thresholds was assessed. Spring precipitation, measured through the months of March, April, and
May, was found to be strongly correlated with the annual timing of both live fuel moisture thresholds. Large fires in the
Santa Monica Mountains only occurred after the 77% threshold was surpassed, although most large fires occurred after
the less conservative 71% threshold. Spring precipitation has fluctuated widely over the past 70 years but does not show
evidence of long-term trends. Predictive models of live fuel moisture threshold timing may improve planning for large
fires in chaparral ecosystems.
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Introduction

Southern California possesses a Mediterranean climate charac-
terised by variable winter and spring precipitation followed by
drought during the summer and fall. Seasonal drought causes
a decrease in available soil moisture, which can in turn pro-
duce senescence and a decrease in live vegetation water content.
Evergreen chaparral shrublands dominate higher elevations in
southern California’s coastal mountain ranges, and the mois-
ture content of live chaparral vegetation decreases as seasonal
drought progresses (Miller and Poole 1979). Low moisture con-
tent in live chaparral vegetation and in dead litter, combined with
Santa Ana winds (Schroeder et al. 1969), can result in intense
wildfires that burn tens of thousands of hectares.

Moisture content in live chaparral biomass is typically mea-
sured as live fuel moisture (LFM). LFM is defined as the water
content of live vegetation expressed as a percentage of the dry
mass of vegetation (md ):

LFM = mw − md

md
(1)

where mw is the mass of the undried vegetation. LFM in south-
ern California typically peaks in late spring and then declines
through summer and fall until precipitation returns in late fall
or winter. Fire behaviour varies dramatically with fuel moisture
content, as the moisture contained within both live and dead fuels

must be driven off before fuels can combust (Pyne et al. 1996).
As LFM decreases, fires lose less heat to fuel dehydration and
can propagate at higher spread rates. Several wildland fire agen-
cies in southern California therefore routinely sample chaparral
LFM as a measure of fire danger.

Previous research has proposed a variety of relationships
between chaparral LFM and fire danger. Green (1981) and Weise
et al. (1998) described gradually increasing fire danger as cha-
parral LFM decreases. Green (1981) proposed a three-class scale
for fire intensity, with the highest intensity occurring below 60%
LFM. Weise et al. (1998) used four fire danger classes, with
high fire danger occurring between 60 and 80% and extreme
fire danger occurring below 60%. Other studies have proposed
that fire danger dramatically increases when LFM drops below a
threshold. Pirsko and Green (1967) suggested that fire behaviour
transitions at an LFM threshold of 70%. Schoenberg et al.
(2003) investigated monthly chaparral LFM, stand age, temper-
ature, and precipitation thresholds, and found that burned area
increased at an LFM threshold of 90%. Below a monthly average
of 90% LFM, average burned area did not change.

The present study examines the relationship between a time
series of LFM and fire history data from the Santa Monica
Mountains in southern California.We find two potential ‘critical’
LFM thresholds, below which large fires occur, by comparing
LFM and area burned. LFM, remote sensing, and precipitation
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variables are examined for their ability to predict the timing of
when these thresholds are exceeded annually.The best-fit predic-
tive models are assessed using ‘leave-one-out’ cross-validation,
and the thresholds are validated using long-term fire history data.

Background

Santa Ana winds are the primary driver of fire danger in south-
ern California (Minnich 1983; Moritz 1997, 2003; Keeley et al.
1999; Keeley and Fotheringham 2001; Moritz et al. 2004).
Although Santa Ana winds can occur in any month, they are
most frequent from September through April, with the peak fre-
quency occurring in December (Raphael 2003). Fuel moisture
can limit fire danger during Santa Ana conditions. This limita-
tion is evident in that large fires do not occur during late winter
and spring SantaAna wind events, when live and dead fuel mois-
ture is typically high. Schoenberg et al. (2003) determined that
total area burned in LosAngeles County peaks in September and
October, caused by a combination of more frequent Santa Ana
winds with low LFM.

Previous work has shown that accumulated precipitation
influences the number of fires and area burned in southern
California. Davis and Michaelsen (1995) examined the fire his-
tory of Los Padres National Forest. They found that precipitation
for the months of March through May explained much of the
variation in the area burned each year, and years with low spring
precipitation possessed a disproportionately large percentage of
the total area burned over a 77-year period. Average fire season
LFM, as measured by the departure from monthly mean LFM
for June through October, was found to be strongly correlated
with spring precipitation (Davis and Michaelsen 1995). Keeley
(2004) examined correlations between climate and the number
of fires and area burned over a larger area of southern and central
California. In contrast to Davis and Michaelsen (1995), Keeley
(2004) found that same-year seasonal precipitation was not sig-
nificantly correlated with the number of fires or area burned
in southern California. Previous-year winter and growing sea-
son precipitation did have a weak positive correlation with the
number of fires, however.

Chaparral LFM is traditionally assessed by destructive field
sampling (Countryman and Dean 1979). As field sampling is
manually intensive and may not capture spatial variation in LFM,
remote sensing has been suggested as an alternative means for
assessing chaparral LFM (Dennison et al. 2005). Several recent
studies have evaluated the potential for remote sensing retrieval
of southern California chaparral LFM. These studies have used
regression analysis to compare the strengths of relationships
between LFM and different remote sensing indices. Dennison
et al. (2005) compared normalised difference vegetation index
(NDVI) (Rouse et al. 1973) and normalised difference water
index (NDWI) (Gao 1996) correlations, while Stow et al. (2005)
compared correlations for NDWI and the visible atmospher-
ically resistant index (VARI) (Gitelson et al. 2002). Roberts
et al. (2006) and Dennison et al. (2007) compared correlations
between LFM and seven different remote sensing indices. Stow
et al. (2006) used relationships between LFM and remote sens-
ing indices to map spatial changes in LFM. These studies have
found that greenness indices using visible bands (e.g.VARI) have
the strongest correlations with chaparral LFM, with r2 values

exceeding 0.9 for individual sites and 0.7 across multiple sites
(Roberts et al. 2006; Stow et al. 2006; Dennison et al. 2007).
These studies have been limited to LFM monitoring, and have
not examined the ability of remote sensing indices to forecast
chaparral LFM.

Study site

The Santa Monica Mountains are an east–west-trending moun-
tain range west of Los Angeles, California (Fig. 1). Santa Ana
winds and steep topography contribute to frequent wildfires in
the Santa Monica Mountains. Ignitions in the Santa Monica
Mountains are almost exclusively human-caused, either by acci-
dent or by arson (Radtke et al. 1982). Area burned in the Santa
Monica Mountains peaks in October, when more frequent Santa
Ana winds coincide with low fuel moisture conditions (Radtke
et al. 1982; National Park Service 2005).

Elevations in the Santa Monica Mountains range from sea
level to 948 m. Precipitation measured at the University of
California Los Angeles (UCLA) meteorological station at the
base of the Santa Monica Mountains (Fig. 1) averages 46 cm
per year. On average, 94% of this precipitation falls during the
months of November through May. This wet season is followed
by a long summer drought with little or no precipitation. Pre-
cipitation ranges widely from year to year. The minimum water
year (beginning 1 October) precipitation measured at the UCLA
station over the 1934–2005 period was 16 cm, whereas the max-
imum water year precipitation over the same period was 110 cm.
Precipitation also varies spatially, with the coastal side of the
range and higher elevations receiving more precipitation, while
the lee side and lower elevations receive less.

The 620 km2 Santa Monica Mountains National Recreation
Area (SMMNRA) encompasses a majority of the range and rep-
resents the world’s largest urban national park. The SMMNRA
is surrounded by and surrounds several communities, making
it one of the major areas of wildland–urban interface and inter-
mix in southern California. Lower elevations of the SMMNRA
near the coast are dominated by sage scrub (∼20% of total area
(National Park Service 2005)), whereas lower elevations in the
northern part of the park are dominated by introduced European
grasses (e.g. Bromus spp.) and black mustard (Brassica nigra)
(<5% of total area). Most of the remainder of the range is cha-
parral (54% of total area), characterised by dense shrubs ranging
in height from 1 to 4 m. Chaparral dominant species in the Santa
Monica Mountains include chamise (Adenostoma fasciculatum)
and big pod ceanothus (Ceanothus megacarpus).

Methods
Live fuel moisture data
LFM values sampled at three sites in the Santa Monica Moun-
tains (Fig. 1) were provided by the Los Angeles County Fire
Department (LACFD). LACFD samples LFM approximately
once every 3 weeks for sites across Los Angeles County. Sam-
pling methods used by LACFD are described by Countryman
and Dean (1979). Dates reported in the LACFD time series do
not always reflect the actual day vegetation sampling occurred,
but are accurate to within 7 days of the actual sampling date.
At each site, one to three shrub species are sampled within an
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Fig. 1. The locations of three live fuel moisture sampling sites and the University of California, Los Angeles (UCLA) meteorological station relative to
the Santa Monica Mountains. ‘C’ is Clark Motorway, ‘S’ is Schueren Road, and ‘T’ is Trippet Ranch. The background image is a 2002 Landsat Enhanced
Thematic Mapper+ image.

area of 0.4–1.2 ha (T. Bristow, pers. comm.). Chamise is sam-
pled at most of the Los Angeles County sites, including three
sites in the Santa Monica Mountains. LFM analysis was limited
to chamise, one of two dominant species in the Santa Monica
Mountains, to ensure consistent LFM response to precipitation
and soil moisture conditions (Miller and Poole 1979).

The 3-week temporal resolution of the LACFD time series
was insufficient for determining LFM during individual fire
events, especially during periods of rapid drying. To estimate
daily LFM, samples from the three sites were averaged and then
linearly interpolated to daily temporal resolution. Chamise LFM
from the Clark Motorway, Schueren Road, and Trippet Ranch
sites (Fig. 1) were averaged for each date provided by LACFD
from 1984 to 2005. Averaging the sites eliminated information
on spatial differences in LFM values, but served to decrease
noise in the temporal dimension caused by sampling error. Linear
interpolation assumes a constant rate of LFM change between
sampling dates. LFM was not sampled at the Schueren Road
site from November 1993 to October 1998, so the average LFM
only includes the Clark Motorway andTrippet Ranch sites during
this period.

California Department of Forestry and Fire Protection (CDF)
fire history data were used to determine an LFM threshold to be
used in further analysis. This critical LFM threshold is the value
below which large fires have occurred. Fires within the area of
the Santa Monica Mountains were extracted from the statewide
CDF fire history data. The subset fire history data includes 267
fires from 1933 to 2005, the date each fire was reported, and
the area of each fire. Potential LFM threshold values were deter-
mined by comparing area burned and cumulative area burned
with decreasing LFM to the interpolated LFM record for 59
fires from 1984 to 2005. The sequential day of year (1–365) that

the interpolated LFM first dropped below the threshold was then
found for each year.

Nine environmental and remote sensing variables were
assessed for their ability to predict the date LFM dropped below
the threshold value in each year (Table 1). Variables based on
LFM or remote sensing data were designed to capture either
the maximum value, the timing of the maximum value, or the
value on a specific date. Three variables were calculated from
the interpolated LFM time series. The maximum LFM was cal-
culated as the maximum annual LFM, using the average of the
three sampling sites. The day of year of the maximum LFM was
also used as a variable. As the linearly interpolated LFM values
cannot exceed the original non-interpolated values, the day of
year of the maximum LFM possessed the same 3-week temporal
resolution as the original LACFD LFM time series. A third LFM
variable, the 1 June LFM, was extracted from the interpolated
LFM time series. This date is after the end of the wet season,
but typically before steep drops in LFM that occur in late June
through August.

Remote sensing data
Ideally, remote sensing data used for the present analysis would
possess weekly temporal resolution to allow observation of
changing LFM over short time scales, and high spatial resolu-
tion to permit direct correlation of site-sampled LFM to remote
sensing indices calculated from single pixels. Unfortunately, data
that satisfied both temporal and spatial needs were not available.
Correlations between 30-m spatial resolution Landsat Thematic
Mapper (TM) data and LFM have been previously demonstrated
(Chuvieco et al. 2002), but a limited number of TM scenes
were available during each year of the study period. Although
remote sensing indices calculated from 500-m spatial resolution
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Table 1. Variables regressed against the day of year of the critical live fuel moisture (LFM) threshold
AVHRR, Advanced Very High Resolution Radiometer; NDVI, normalised difference vegetation index; UCLA,

University of California, Los Angeles

Variable Definition

Maximum LFM Maximum averaged LFM for three sample sites
Max. LFM DOY Day of each year that the maximum LFM occurred on
1 June LFM LFM on 1 June of each year, based on interpolated average of three LFM sample sites
Maximum NDVI Maximum mean NDVI calculated from 50 pixels extracted from AVHRR composite
Max. NDVI DOY Central date of the composite for which the maximum mean NDVI was found
1 June NDVI Mean NDVI calculated from 50 pixels extracted from composite period closest to 1 June
Wet Season Precip. November–May total precipitation measured at the UCLA station
DJF Precip. December–February total precipitation measured at the UCLA station
MAM Precip. March–May total precipitation measured at the UCLA station

Moderate Resolution Imaging Spectrometer (MODIS) tempo-
ral composites have been shown to have strong correlations
with chaparral LFM (Dennison et al. 2005, 2007; Stow et al.
2005, 2006; Roberts et al. 2006), MODIS data are only available
since March 2000. Advanced Very High Resolution Radiometer
(AVHRR) data have a long time series compared with MODIS
data, but at the cost of reduced spectral dimensionality (2 bands)
and spatial resolution (1.1 km). To provide the maximum tempo-
ral density and extent for comparison with the LFM time series
data, AVHRR data were used. The United States Geological Sur-
vey 14-day 1-km AVHRR NDVI composite product was used to
create a time series spanning 1989–2005. This composite was
constructed using the maximum NDVI value for each pixel over a
14-day period (Holben 1986). Fifty-two composites were created
for each year, with each composite overlapping the temporally
adjacent composite by 1 week.

The AVHRR NDVI time series was compared with the LFM
time series using the composites with a central date closest to
each LACFD-reported LFM sampling date. The spatial extent of
the composited NDVI pixels (1 by 1 km) presented a problem for
determining a single NDVI value for each date. Each pixel con-
tains multiple land cover types at this resolution, so correlations
between NDVI and LFM were poor but significant (r2 < 0.2,
P < 0.001) at the pixel level. To enhance the predictive ability of
the extracted NDVI values, 50 pixels in the Santa Monica Moun-
tains with the strongest correlations with the LFM time series
were averaged to produce a ‘regional mean’ NDVI. This method
increased r2 between NDVI and LFM to 0.58 (P < 0.001). Three
variables were calculated from the regional mean NDVI time
series. The maximum NDVI was found for each 1 November–
1 June period. The day of year of this maximum NDVI was
determined using the central date of the composite period pos-
sessing the maximum NDVI. Finally, the regional mean NDVI
for the composite with a central date closest to 1 June was found.

Meteorological data
Three variables were calculated from precipitation records from
the UCLA meteorological station (Fig. 1). For each water year,
the total precipitation during the period between 1 November and
31 May was calculated as the ‘wet season’precipitation. Wet sea-
son precipitation was further broken down into winter and spring
precipitation. Winter precipitation was calculated as total precip-
itation during the months of December, January, and February

(DJF). Spring precipitation was calculated as the total precipita-
tion during the months of March, April, and May (MAM). For
both the wet season and MAM precipitation variables, the end
of the precipitation period coincides with the 1 June date used
for calculating the third LFM and NDVI variables.

Data analysis
These nine variables (Table 1) were compared with the timing of
the LFM critical threshold using linear regression. Regressions
were calculated using the time period common to all of the time
series, 1989–2005. Simple linear regression was used to calcu-
late slope, intercept and r2 values for each variable. Stepwise
multiple linear regression was used to test whether combina-
tions of variables were able to explain additional variation in the
timing of the LFM critical threshold.

The best-fit predictive model, as assessed by r2, was tested
using leave-one-out cross-validation because of the relatively
small number of years in the LFM time series. New regression
models were calculated with 1 year left out of the regression in
turn. The difference between the actual and predicted day of year
that LFM dropped below the critical threshold was calculated
for each left-out year. The LFM threshold was validated using
‘backcasting’.The best-fit predictive model was used to calculate
the day of year that LFM dropped below the threshold in previous
years, for the 1933–2005 period of the CDF fire history.The dates
of past fires were compared with the dates that the threshold
was exceeded during the year of each fire. Large fires occurring
before the date the threshold was exceeded might indicate that
the threshold was invalid.

Results

Comparison of LFM and area burned showed that fires occurred
across a wide range of LFM values, from 139 to 59% (Fig. 2).
Most of the fires burned during lower LFM conditions, with
48 of the 59 fires occurring below an interpolated LFM value
of 95%. A small number of fires accounted for most of the
area burned. The seven largest fires, all with areas greater than
1000 ha, represented 90% of the total area burned from 1984
to 2005. Newspaper accounts describe all seven fires as wind-
driven events, and specifically mention Santa Ana winds for six
of the fires (Anon. 2007). Low LFM combined with high wind
speeds allowed these fires to grow to large sizes.
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Fig. 2. (a) Live fuel moisture (LFM) v. area burned and (b) cumulative
area burned with decreasing LFM for fires in the California Department of
Forestry and Fire Protection fire history between 1984 and 2005.

The seven largest fires occurred between a maximum interpo-
lated LFM value of 77% and a minimum interpolated LFM value
of 61% (Table 2). With the exception of the 1985 Sherwood Fire,
all of the large fires occurred when the interpolated LFM was
below 71%. Unlike the other six large fires, the Sherwood Fire
was an early-season fire that occurred during a period of rapidly
changing LFM. For this reason, the interpolated LFM time series
may have overestimated regional LFM during the Sherwood Fire.
Regardless, the 77% interpolated LFM value for the Sherwood
Fire complicates the selection of a single threshold. Eighty-nine
percent of the area burned in the 1984–2005 period was burned
at or below a 71% LFM threshold (Fig. 2). Yet the 77% LFM of
the Sherwood Fire indicates that large fires may be possible at
higher LFM values. Rather than select a single threshold based

Table 2. The seven largest fires in the Santa Monica Mountains between
1984 and 2005

LFM, live fuel moisture

Fire Date Area (ha) LFM (%)

Green Meadows 26 October 1993 15 571 69.8
Topanga 2 November 1993 6664 70.7
Calabasas 21 October 1996 5063 65.0
Decker 14 October 1985 2658 61.1
Piuma 14 October 1985 2104 61.1
Sherwood 30 June 1985 1535 77.2
Pacific 29 October 1989 1287 61.0

Table 3. Linear regression coefficients, r2 values, and significance for
each variable regressed against the day of year live fuel moisture (LFM)

dropped below 77%
Refer to Table 1 for definitions of variables

Variable Slope Intercept r2 P-value

MAM Precip. (cm) 3.40 174.15 0.78 <0.001
1 June LFM 1.16 85.68 0.39 0.007
Wet Season Precip. (cm) 0.62 179.67 0.38 0.008
1 June NDVI 258.08 98.36 0.32 0.019
DJF Precip. (cm) 0.59 189.95 0.24 0.049
Maximum NDVI 313.66 22.54 0.23 0.049
Max. NDVI DOY 0.22 192.82 0.06 0.348
Maximum LFM 0.24 173.43 0.03 0.532
Max. LFM DOY 0.04 207.11 0.00 0.867

on such a small number of large fires, we evaluated two potential
critical thresholds at 71 and 77% LFM.

77% critical LFM threshold
The interpolated day of year that LFM dropped below the 77%
threshold ranged from day 161 (10 June) in 2002 to day 269
(26 September) in 1995 and 1998. This is a range of approxi-
mately 3.5 months. Linear regression showed that three variables
had significant (P < 0.01) correlations with the date of the 77%
threshold (Table 3). Correlations were highest for MAM precip-
itation, with an r2 of 0.78 and a significance greater than 99.9%
(Table 3). Based on the best fit linear relationship between MAM
precipitation and the day of year of the 77% threshold, the critical
LFM threshold of 77% was passed on day 174 (23 June) during a
year with no spring precipitation. For every centimetre of spring
precipitation, the threshold was passed 3.4 days later. The 1 June
LFM and total wet season precipitation had similar r2 values of
0.39 and 0.38 respectively, and both correlations were signifi-
cant at the 99% level. Because wet season precipitation includes
MAM precipitation, the two variables are somewhat correlated
(r2 = 0.34, P = 0.11). Stepwise multiple linear regression found
that no secondary variables were significant in addition to MAM
precipitation, so multiple linear regression results are not shown.

As none of the NDVI variables were selected by simple or
multiple linear regression, the relationship between MAM pre-
cipitation and the day of year LFM dropped below 77% was
validated using the entire LFM time series, from 1984 to 2005.
Leave-one-out cross-validation used 21 of the 22 years to find
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Table 4. r2 values, regression coefficients, and residuals for the
leave-one-out cross-validation of March–May precipitation (MAM Pre-
cip.) regressed against the day of year live fuel moisture (LFM) dropped

below 77%

Left-out MAM r2 Slope Intercept Predicted Actual –
year Precip. LFM <77% predicted

(cm) day of year (days)

None 0.78 3.68 170.36
1984 1.88 0.77 3.57 172.14 179 −16
1985 5.41 0.78 3.65 171.09 191 −9
1986 14.30 0.78 3.66 170.30 223 6
1987 3.51 0.78 3.57 172.32 185 −20
1988 8.81 0.80 3.70 169.15 202 22
1989 3.35 0.77 3.69 170.22 183 1
1990 5.00 0.78 3.72 169.51 188 10
1991 16.87 0.78 3.71 170.30 233 −5
1992 18.06 0.77 3.70 170.29 237 −3
1993 7.49 0.82 3.74 168.43 196 30
1994 5.23 0.83 3.82 167.45 187 35
1995 25.07 0.73 3.57 171.04 261 8
1996 8.97 0.78 3.69 169.82 203 10
1997 0.00 0.77 3.73 169.53 170 6
1998 26.97 0.73 3.69 170.27 270 −1
1999 12.42 0.78 3.67 170.21 216 6
2000 12.34 0.81 3.73 170.99 217 −25
2001 9.50 0.79 3.68 171.09 206 −15
2002 1.27 0.77 3.57 172.21 177 −16
2003 17.91 0.79 3.79 170.00 238 −17
2004 2.18 0.77 3.61 171.50 179 −10
2005 11.10 0.78 3.68 170.37 211 0

the best fit linear relationship. The residuals between the best
fit lines and the left-out years are shown in Table 4. Adding the
1984–88 LFM data produced steeper slopes and an earlier inter-
cept. Slope and intercept values were stable across all of the
left-out years.

The day of year LFM dropped below 77% was predicted
within 1 week of the actual date in only 36% of years (Table 4).
However, in 64% of years, the predicted threshold date was
within 2 weeks of the actual threshold date. The largest residual
occurred for 1994, when the actual date of the 77% threshold
occurred more than a month after the predicted date. Negative
residuals, indicating years in which the threshold was reached
earlier than predicted, are potentially more dangerous than posi-
tive residuals. The largest negative residual was 25 days in 2000
(Table 4). The coarse resolution of the original LFM time series,
uncertainty in the sampling date, and LFM measurement error
may have influenced the size of the residuals.

The best fit linear regression equation for all years (1984–
2005), shown in the first row of Table 4, was used to calculate the
predicted day LFM dropped below 77% from the UCLA MAM
precipitation data (1933–2005). Fires that occurred during the
months of January, February, and March were excluded from the
analysis, because these fires were likely influenced by moisture
conditions during both the previous and current wet seasons.
Fig. 3 shows the difference between the date each fire was
reported and the date during that year that LFM was predicted
to drop below 77%. Fires were recorded from 119 days before
the threshold was reached to 161 days after the threshold was
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Fig. 3. The difference between the day of year each fire was reported and
the day of year live fuel moisture was predicted to pass below 77%, for 256
fires in the Santa Monica Mountains (1933–2005). The dashed line indicates
no difference between a fire date and the predicted threshold date.

Table 5. Linear regression coefficients, r2 values, and significance for
each variable regressed against the day of year live fuel moisture dropped

below 71%
Refer to Table 1 for definitions of variables

Variable Slope Intercept r2 P-value

MAM Precip. (cm) 3.58 195.43 0.66 <0.001
1 June NDVI 356.13 78.83 0.46 0.003
Wet Season Precip. (cm) 0.77 195.05 0.45 0.003
DJF Precip. (cm) 0.81 205.42 0.34 0.015
Maximum NDVI 375.96 8.36 0.26 0.038
1 June LFM 1.06 119.85 0.25 0.042
Max. NDVI DOY 0.30 210.36 0.08 0.278
Maximum LFM 0.40 170.59 0.06 0.351
Max. LFM DOY −0.02 235.64 0.00 0.955

reached. Ninety-seven percent of the total area burned between
1933 and 2005 was burned in fires that started after the predicted
77% LFM threshold date. The largest fire that burned before the
predicted threshold date was the 1985 Sherwood Fire, which
occurred 9 days before the predicted threshold date. Twenty-
seven fires larger than the Sherwood Fire all burned on or after
the predicted threshold date, including the 10 355 ha 1978 Kanan
Fire that burned 6 days after the predicted threshold date.

71% critical LFM threshold
The interpolated day of year that LFM dropped below the 71%
threshold ranged from day 173 (22 June) in 2003 to day 308
(4 November) in 1998. This is a range of approximately 4.5
months, and is 27 days longer than the range for the 77%
threshold. Three variables were found to be significantly corre-
lated (P < 0.01) with the date of the 71% threshold using linear
regression (Table 5). Again, correlations were highest for MAM
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Table 6. r2 values, regression coefficients, and residuals for the
leave-one-out cross-validation of March–May precipitation (MAM Pre-
cip.) regressed against the day of year live fuel moisture (LFM) dropped

below 71%

Left-out MAM r2 Slope Intercept Predicted Actual –
year Precip. LFM <71% predicted

(cm) day of year (days)

None 0.68 3.89 189.48
1984 1.88 0.67 3.90 189.33 197 1
1985 5.41 0.68 3.81 191.21 212 −21
1986 14.30 0.68 3.89 189.49 245 −1
1987 3.51 0.68 3.70 192.92 206 −35
1988 8.81 0.68 3.89 189.13 223 7
1989 3.35 0.67 3.88 189.65 203 −2
1990 5.00 0.68 3.88 189.57 209 −1
1991 16.87 0.69 4.00 189.25 257 −19
1992 18.06 0.66 3.85 189.61 259 6
1993 7.49 0.82 4.02 185.11 215 67
1994 5.23 0.72 4.02 186.68 208 33
1995 25.07 0.64 3.94 189.17 288 −4
1996 8.97 0.68 3.89 189.22 224 5
1997 0.00 0.68 4.04 187.21 187 18
1998 26.97 0.58 3.61 191.34 289 19
1999 12.42 0.68 3.87 189.32 237 7
2000 12.34 0.68 3.90 189.65 238 −7
2001 9.50 0.69 3.88 190.42 227 −19
2002 1.27 0.66 3.71 192.30 197 −24
2003 17.91 0.69 4.00 189.12 261 −17
2004 2.18 0.67 3.89 189.48 198 0
2005 11.10 0.68 3.90 189.88 233 −11

precipitation, with an r2 of 0.66 and a significance greater that
99.9%. As expected, the intercept of the best fit line was higher,
as the 71% threshold occurs later in the year than the 77% thresh-
old. Based on the best fit linear relationship between MAM
precipitation and the day of year of the 71% threshold, the 71%
threshold should be passed on day 195 (14 July) during a year
with no precipitation. For every centimetre of spring precipita-
tion, the threshold should be passed 3.6 days later. This slope
was slightly steeper than the best fit slope for the 77% thresh-
old. Total wet season precipitation (r2 = 0.45) was again found
to be significant at the 99% level. The 1 June NDVI was also sig-
nificantly correlated with date of the 71% threshold (r2 = 0.46,
P = 0.003). Stepwise multiple linear regression again showed
that no secondary variables were significant in addition to MAM
precipitation.

Leave-one-out cross-validation for the 71% threshold also
used the entire LFM time series from 1984 to 2005 (Table 6).
Adding the 1984–88 LFM data again produced steeper slopes
and an earlier intercept. Using the 71% threshold increased the
number of years in which the predicted threshold date was within
a week of the actual threshold date. The predicted threshold date
was within 2 days of the actual threshold date for 23% of the
years, and within 1 week of the actual threshold date for 50% of
the years. Although the residuals decreased in the best years for
the 71% threshold, they increased in the worst years (Table 6).
Three years had greater than 1 month difference between the pre-
dicted and actual threshold dates. The largest residual occurred
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Fig. 4. The difference between the day of year each fire was reported and
the day of year live fuel moisture was predicted to pass below 71%, for 256
fires in the Santa Monica Mountains (1933–2005). The dashed line indicates
no difference between a fire date and the predicted threshold date.

for 1993, when the actual day of year of the 71% threshold
occurred 67 days after the predicted day of year. A large negative
residual of 35 days was found for 1987.

The best fit linear regression equation for all years (1984–
2005) in the first row of Table 6 was used to calculate the
predicted day LFM dropped below 71% for 1933–2005 (Fig. 4).
Fires were recorded from 132 days before the threshold was
reached to 150 days after the threshold was reached. Three fires
larger than 1000 ha burned before the predicted threshold. The
1985 Sherwood Fire burned 29 days before the predicted 71%
threshold date. The 1978 Kanan and Mandeville Fires burned 20
days before the predicted threshold date. Despite missing these
three large fires, 92% of the total area burned between 1933 and
2005 was burned in fires that started after the predicted 71%
threshold date.

Long-term trends in MAM precipitation

Westerling et al. (2006) found an earlier start to fire season across
the Western United States linked to earlier spring snowmelt,
driven largely by trends in temperature. It is unclear whether
these findings also apply to fire regimes that typically receive
little or no precipitation in the form of snow. Based on our find-
ings, and supported by those of others in the region (Davis and
Michaelsen 1995; Schoenberg et al. 2003), large wildfires in
chaparral ecosystems appear to be dependent on low LFM coin-
ciding with extreme fire weather conditions. In particular, the
strong relationship between the timing of 77 and 71% LFM and
large fire occurrence indicates that the beginning of fire season
may be primarily controlled by the amount of spring precipita-
tion. Spring precipitation thus provides a means for assessing
whether the fire season is starting sooner in the Santa Monica
Mountains, analogously to the temperature-based approach of
Westerling et al. (2006) for higher elevation forest sites.
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Fig. 5. March–May (MAM) precipitation for 1933–2005 measured at the
University of California, Los Angeles meteorological station, and the 5-year
running mean of MAM precipitation.

Annual MAM precipitation measured at the UCLA meteo-
rological station between 1933 and 2005 is shown in Fig. 5.
These data display high year-to-year variability characteristic of
precipitation in southern California. A 5-year running mean of
MAM precipitation was calculated to reveal decadal trends in
MAM precipitation (Fig. 5). The 5-year running mean shows
higher MAM precipitation during the late 1930s, early 1940s,
late 1970s, and early 1980s. There are no statistically signif-
icant long-term trends in MAM precipitation, although minor
long-term trends might be difficult to isolate given the annual-
and decadal-scale variability in MAM precipitation. Unlike
Westerling et al. (2006), no evidence for an earlier start to the
fire season is seen in spring precipitation trends for the Santa
Monica Mountains.

Previous studies have demonstrated that fire activity may be
correlated with climate indices, including the Southern Oscilla-
tion Index (SOI), the Pacific Decadal Oscillation Index (PDOI),
and theAtlantic Multidecadal Oscillation Index (AMOI) (Keeley
2004; Kitzberger et al. 2007).Yearly MAM precipitation was not
significantly correlated with SOI, PDOI, or AMOI, but 5-year
mean MAM precipitation was weakly correlated with 5-year
mean PDOI (r2 = 0.35, P = 0.012).

Discussion

Both 77 and 71% thresholds are within the 60–80% high fire dan-
ger class described by Weise et al. (1998), but below the 90%
threshold found by Schoenberg et al. (2003). The 71% LFM
threshold is similar to the 70% LFM threshold established by
Pirsko and Green (1967). The 77% LFM threshold is more con-
servative than the 71% threshold, and appears to have several
advantages over the 71% threshold. The date of the 77% thresh-
old has a stronger correlation with MAM precipitation. The 77%
threshold produced smaller negative residuals, and fires larger
than 1000 ha occurred almost exclusively after the predicted date
of the 77% threshold. Most of the large fires, however, occurred
more than 5 weeks after the threshold was reached. This pro-
duces an apparent gap between the 77% threshold dates and the
actual dates of most large fires. MAM precipitation may have

been a poor predictor of the dates of LFM thresholds in 1978,
the year of the Kanan and Mandeville Fires. The actual LFM
during these fires may have been much closer to 71% than indi-
cated by the relationships between MAM precipitation and the
LFM thresholds. Alternatively, the gap may indicate that other
conditions necessary for large fires, such as Santa Ana winds,
are rarer when LFM is near 77% than when LFM is lower. A
more extensive fire history will be needed to absolutely deter-
mine whether the actual chamise critical LFM threshold is closer
to 77 or 71%. Until this analysis has been done, caution dictates
use of the 77% threshold.

Despite the coarse temporal resolution of LFM sampling
and uncertainty in the exact sampling date, a strong relation-
ship exists between spring precipitation and the timing of LFM
decline. Spring precipitation provides soil moisture during the
early part of summer, delaying the onset of LFM decline. In
contrast, winter precipitation has a relatively poor correlation
with the timing of the 77 and 71% thresholds. Moderate win-
ter precipitation followed by early onset of the summer drought
does not appear to delay LFM decline. In one year, 1993, winter
precipitation did appear to play a strong role in the large resid-
ual found for the 71% threshold model (Table 6). The year 1993
had the highest DJF precipitation (82.6 cm), but a below-average
MAM precipitation (7.5 cm). The high winter precipitation pro-
vided enough soil moisture to delay the 71% threshold by almost
10 weeks past the predicted threshold date. Besides this one
year, there is little apparent relationship between DJF precipita-
tion and residuals from either the 71 or 77% threshold–MAM
precipitation regressions, and DJF was not selected as an addi-
tional variable for stepwise multiple linear regression for either
threshold. Surprisingly, maximum LFM and the day of year of
maximum LFM are very poor predictors of when the critical
LFM thresholds are surpassed. Higher maximum LFM values
and later LFM maximum dates appear to have no influence on
when the 77 and 71% thresholds are reached.

Although the LFM thresholds and extreme fire behaviour may
be linked, LFM is certainly not the only factor producing large
fires.The timing of decreasing LFM is correlated with SantaAna
frequency. Raphael (2003) determined that SantaAna conditions
occur with low frequency in the month of September but increase
in frequency of occurrence through the month of December. Six
of the seven large fires from 1984 to 2005 occurred in October
or November (Table 2), months when Santa Ana wind events
are relatively frequent. From 1933 to 2005, 30 out of 35 fires in
excess of 1000 ha occurred in October, November or December.
Dead fuel moisture, which responds to short-term meteorolog-
ical conditions and is especially important for determining the
success of ignitions, may also play a strong role in determin-
ing the occurrence of large fires. Fire suppression is another
complicating factor. Suppression success will be enhanced by
high live and dead fuel moisture and low wind speeds. Suppres-
sion likely amplifies the large increase in fire size that occurs at
lower LFM.

Poor correlations between the dates of the LFM thresholds
and remotely sensed variables were likely due in part to the type
of remote sensing time series used. Previous studies, includ-
ing Dennison et al. (2005), Roberts et al. (2006) and Dennison
et al. (2007) have found NDVI to be inferior to other indices for
LFM retrieval in chaparral. Dennison et al. (2007) also found
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that the compositing method used to create the AVHRR NDVI
time series reduces index correlations with chaparral LFM. The
predictive power of other indices calculated from a newer gen-
eration of sensors (e.g. MODIS) may be higher than NDVI as
investigated here.

Conclusions

Based on a comparison of 22 years of chamise LFM data sampled
at three sites with fire history data and precipitation records, we
conclude the following:

(1) A chamise critical LFM threshold appears to exist in the
range of 70–80%, although the exact value of this threshold
cannot be determined using time series LFM and fire history
date from the Santa Monica Mountains. More comprehen-
sive data are needed to determine whether the 77 or 71%
threshold is more appropriate and whether LFM directly
controls fire size in chaparral.

(2) Spring precipitation is strongly correlated with the timing
of chamise LFM decline in the Santa Monica Mountains.

(3) Spring precipitation does not provide evidence that the fire
season is starting earlier in the Santa Monica Mountains
over the past 70 years.

The present research did not investigate spatial variability of
precipitation and spatial variability of LFM. Future research will
focus on understanding relationships between spatial variation in
precipitation and LFM decline over larger areas. The strength of
precipitation correlations with LFM decline may be dependent
on local differences in soil water availability and evapotranspi-
ration. Understanding spatial variability caused by these factors
may lead to an improved model of critical LFM timing. Further
research will also explore correlations between precipitation and
LFM thresholds in other important chaparral species, such as big
pod ceanothus and sagebrush.

Predictive models of critical LFM threshold timing may allow
planning for the potential occurrence of large fires. Predicted
critical threshold dates could be used to improve allocation of fire
protective resources, including personnel and equipment. Crit-
ical threshold dates could also allow wildland–urban interface
residents to plan for increased fire and arson vigilance during
periods of fire susceptibility.
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