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The Arctic is warming and melting at alarming rates. Within the lifetime of a
Millennial, the volume of ice floating on the Arctic Ocean has declined by at least
half. The pace of Arctic warming is two-to-three times that of the globe; this dis-
parity reached a new record high during 2016. While the Arctic spans only a
small fraction of the Earth, it plays a disproportionate and multifaceted role in
the climate system. In this article, we offer new perspectives on ways in which
the Arctic’s rapid warming may influence weather patterns in heavily populated
regions (the mid-latitudes) of the Northern Hemisphere. Research on this topic
has evolved almost as rapidly as the snow and ice have diminished, and while
much has been learned, many questions remain. The atmosphere is complex,
highly variable, and undergoing a multitude of simultaneous changes, many of
which have become apparent only recently. These realities present challenges to
robust signal detection and to clear attribution of cause-and-effect. In addition to
updating the state of this science, we propose an explanation for the varying and
intermittent response of mid-latitude circulation to the rapidly warming Arctic.
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INTRODUCTION

Extreme weather events have generally occurred
more frequently in recent decades.1 The looming

question—asked by the media, public, and scientists
alike—is which of these increases can be attributed
to human-caused climate change, and what are the
mechanisms? One possible factor is the rapid and

amplified warming of the Arctic. A flurry of new
research suggests it is increasing the likelihood of per-
sistent atmospheric patterns that can lead to extreme
weather events in temperate latitudes,2 but consensus
is still elusive.3

The recent pace of systemic Arctic change is
staggering. For example, about 50% of the summer
ice extent and 60% of the volume have disappeared
within a generation,4 and the ice cover is now the
smallest it has been in at least 1400 years.5 Less obvi-
ous but equally worrisome is the expanding surface
melt area on the Greenland ice sheet,6 which has
increased from a summer-mean of about 35% in the
1980s to 45% since 2010 (M. Tedesco, pers.
comm.). Springtime terrestrial snowcover has also
declined precipitously,7 which is accelerating the deg-
radation of permafrost over much of the Arctic
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tundra8 and exacerbating high-latitude wild fires.
These clear signals of anthropogenic climate change
both contribute to and result from amplified Arctic
warming (AAW), evident as rising near-surface air
temperatures in the Arctic exceed those of mid-
latitudes by a factor of at least two since the late
1990s.9 Change in the Arctic during 2016 was par-
ticularly stark.10 In addition to record-breaking
losses of sea ice and spring snow cover, AAW
reached a new high value (Figure 1). Records are
even more striking for the winter months (January–
March) in the Arctic (Figure 2): not only were near-
surface temperatures the highest since 1948, but
upper-level geopotential heights (not shown) and
atmospheric water vapor content broke records, as
well. Rising trends in water vapor are notable for
their enhancement of the greenhouse effect, clouds,
and precipitation.

Positive feedbacks involving ice and snow are
primarily responsible for the Arctic’s elevated sensi-
tivity to warming.11–13 While AAW is strongest in
lower atmospheric layers, the expansion of warmer
air raises pressure levels aloft, thereby reducing pole-
ward geopotential height gradients. Because these
gradients are a primary factor in driving upper-level
zonal (west–east) winds via the thermal wind rela-
tionship, reduced speeds are typically found south of
the areas with geopotential height increases, which
can vary greatly by season and location. This rela-
tionship has been noted in recent observations14 and
model-simulated responses to sea-ice loss.15,16

It has been hypothesized that weaker upper-
level zonal winds and raised atmospheric pressure
levels owing to AAW will affect the polar jet stream
such that large north–south undulations will increase
in amplitude and/or frequency; these larger waves
move more slowly eastward.2 Slower wave

progression causes more persistent weather regimes
that often lead to various types of extreme weather
associated with long-lasting conditions
(e.g., droughts, cold spells, heat waves, flooding, and
snowy winters).17 Clearly, an understanding of how
the recent warming of the globe and associated AAW
might affect extreme weather in the region of the
Earth where billions of people live is of great eco-
nomic and societal importance.

Since this hypothesis was proposed in 2012,
many researchers have set out to test it using obser-
vations, model simulations, or a combination of the
two. Despite the plethora of new work, debate still
rages on. The intent of this article is to offer fresh
perspectives about interactions between AAW and
naturally occurring variations in the climate system
in hopes of reducing some of the ongoing contro-
versy surrounding the topic of Arctic/mid-latitude lin-
kages; it is not to provide a comprehensive update of
recent literature since the assessment in this journal
by Barnes and Screen.17 Instead we are presenting
our viewpoint, while acknowledging that contrasting
viewpoints exist (e.g., Refs 18, 19, 20, and references
therein). Specifically, we suggest that seasonally vary-
ing AAW can intensify or dampen atmospheric
responses to influences from lower latitudes, depend-
ing on the proximity of regional AAW to natural var-
iations in the configuration of the jet stream.

AAW OF THE RECENT PAST

A fundamental relationship in atmospheric dynamics
relates the strength of north/south temperature gradi-
ents with vertical wind shear and, consequently,
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FIGURE 1 | Near-surface air temperature departures from normal
(relative to 1981–2010) during January–December in the mid-latitude
zone (red dashed; 40�–60�N) and the Arctic (blue; 70�–90�N) from
1948 to 2016. Data obtained from the National Centers for
Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) Reanalysis at http://www.esrl.noaa.gov/psd/.
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FIGURE 2 | Red: winter (JFM) near-surface air temperature
anomalies (relative to 1980–2010) in the Arctic (70�–90�N) from 2010
to 2016. Blue: same but for atmospheric water vapor. Data obtained
from the National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) Reanalysis at
http://www.esrl.noaa.gov/psd/.
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westerly wind speeds.21 While AAW clearly reduces
gradients and thus weakens upper-level zonal
winds,22–25 the hypothesized connection with wavier
jet stream configurations is less clear.26,27 Some stud-
ies, based on both observations and model simula-
tions, have associated AAW with the negative phase
of the Arctic Oscillation (AO),19,28–32 which tends to
exhibit a wavier jet stream character.33 The linkage
is not consistent, however, as AO is often not a good
indicator of the hemispheric-wide jet character.
Indeed, idealized model simulations demonstrate that
the relationship between AAW and the AO is not
reliable,34 and various effects on jet stream position
are complex and often competing.35,36 Evidence is
emerging, however, that the upper-level flow has
become more meandering in recent decades,28,29

although the cause(s) is unclear.
Separating the large-scale circulation responses

to AAW from those of other natural and/or forced
variations in the climate system is challenging. The
chaotic nature of the atmosphere—together with fac-
tors such as natural large-scale fluctuations (e.g., El
Niño/La Niña), other concurrent climate changes
that can even strengthen jet streams (e.g., enhanced
tropical warming), and the only recent emergence of
AAW—create challenges in detecting robust shifts in
jet stream behavior. New theoretical insight into
planetary wave dynamics has emerged that supports
the existence of an inverse, nonlinear relationship
between zonal wind speed and jet stream wave
amplitudes.37,38 Further model simulations of vary-
ing complexity have also demonstrated the influence
of sea-ice loss on temperate weather patterns,39–42

while other new studies addressing the same question
find no robust linkage.43–46 One likely reason for this
ongoing dispute is the assumption by some investiga-
tors that sea-ice loss can be used as a proxy for AAW
in forcing an atmospheric response in model
simulations,43,47 when in fact it accounts for only a
fraction of AAW.12,44 It is not surprising, therefore,
that weak responses may result from atmospheric
model simulations that are forced only with sea-ice
loss (e.g., 43,45).

Another source of discrepancy may arise from
inadequate representation of interactions between
AAW and influences from lower latitudes. It is
becoming clear that the atmosphere’s response to
AAW is dependent on the basic state of the climate
system,20,48–50 which is the underlying premise of the
specific Arctic/lower-latitude interaction we call ‘It
Takes Two to Tango.’ For example, the regions of
substantial losses in sea-ice coverage and strong
AAW vary from year to year, which in turn causes
different boundary forcing that elicits distinct

atmospheric responses.15,41,43,51 The notion of state
dependence is that the atmosphere must be ‘primed’
by other factors, which raises interesting questions
about relationships between AAW and natural varia-
bility in the climate system.20

Case in point: several new studies have corro-
borated the connection between sea-ice loss in the
Barents/Kara seas, located northeast of Scandinavia,
and cold winters in eastern Asia,19,22,39,40,51–53 while
others do not.43,46 Lower-latitude factors may pro-
vide an initial trigger for the ice loss,54–57 and it is
likely that local positive feedbacks amplify the effects
of those triggers. The proposed linkage mechanism
goes like this: In the area of ice loss during summer
(owing to some combination of mechanical wind
forcing, poleward heat transport, and additional
downwelling longwave radiation, 56), additional
solar energy is absorbed, and resulting high sea-
surface temperatures (SSTs) further warm the lower
atmosphere during autumn, which dilates atmos-
pheric layers upward. If a jet stream ridge forms near
eastern Europe, the elevated heights caused by AAW
over the Barents/Kara Seas intensify the ridge, which
strengthens the surface high-pressure area that forms
east of the ridge axis—in this case, over western
Russia. The so-called Siberian high draws cold air
southward over Siberia, promoting earlier snowfall
and depressing the jet stream southward over central
and east Asia. A larger ridge/trough wave results,
which according to Rossby theory,21 progresses east-
ward more slowly and favors more persistent
weather conditions. Wave energy from the amplified
jet stream then propagates upward into the strato-
sphere, which can disrupt the polar vortex from its
typically quasi-circular path, helping to maintain a
wavy jet stream well into the depths of winter (Refs
19 and 39; Box 1). The two key ingredients in this
‘two-to-tango’ mechanism are (1) a jet stream ridge,
and (2) that the ridge is located near the area of
strong AAW. Either of these conditions alone may be
insufficient to trigger the chain of events that leads to
an amplified jet stream configuration associated with
persistent cold spells in central and east Asia and
abnormally warm conditions in northwestern
Europe, and other factors may interfere even if both
ingredients exist. A schematic illustrating the mech-
anism can be found in Ref 19.

A similar mechanism has been identified linking
anomalous Arctic warming near Alaska with persist-
ently cold winters in eastern North America during
2013/2014 and 2014/2015.42,51 As in the Eurasian
connection, two main factors are needed to tango:
Pacific-sector (Chukchi/Beaufort Seas) sea-ice loss
along with a collocated ridging in the eastern Pacific.

WIREs Climate Change Amplified Arctic warming and mid-latitude weather

Volume 8, September/October 2017 © 2017 Wiley Per iodica ls , Inc. 3 of 11



In late 2013 the Pacific Decadal Oscillation (PDO)
shifted abruptly from a negative to positive phase,
resulting in abnormally warm ocean temperatures
along the northwest coast of N. America. A positive
PDO favors ridging along the N. American west
coast (Figure 3, left), consistent with model simula-
tions forced by SST patterns like those prevailing in
winter 2013/2014.42,57,58 Also occurring that fall/
winter were anomalously warm surface temperatures
in the Chukchi Sea region associated with a below-
normal sea-ice cover, which further dilated upper-
level atmospheric heights and intensified ridging in
the area.42,48,51 Years with a positive PDO and
above-normal surface temperatures in the Chukchi
Sea region exhibit stronger ridging near Alaska and
deeper troughing in eastern N. America (Figure 3,
middle) compared with years that exhibit below-
normal Chukchi temperatures (Figure 3, right). A
schematic illustrating the relationship between the
position of a naturally occurring ridge and above-
normal Chukchi temperatures is presented in
Figure 4. This ‘Two to Tango’ scenario is believed to
have exacerbated the observed persistent warmth
and drought in the western United States along with
cold spells in the east during winters of 2013/2014
and 2014/2015 that were popularized as the ridicu-
lously resilient ridge and polar vortex (Figure 5; Ref
59). We submit that neither of these factors alone
may have been enough to elicit the extreme jet stream
pattern that dominated for nearly 2 years, but rather
that the regional AAW associated with a reduced ice
cover in the Pacific sector of the Arctic helped

amplify the existing ridge associated with a positive
phase of the PDO. Clearly additional model simula-
tions are needed to test this hypothesis.

New methods and metrics reveal that highly
amplified jet stream conditions appear to be occur-
ring more frequently since the advent of
AAW,14,28,29,32 and blocking highs may be occurring
more frequently in the North Atlantic,60 perhaps in
response to sea-ice loss.61 Other recent studies
focused on attribution of summer extreme weather
events suggest that continental jet streams tend to
split and stagnate under conditions of weak zonal
flow62,63 and that surface pressure features are wea-
kened as poleward gradients decline,24 both of which
favor persistent heat waves and flooding events. New
work also reveals changes in the relative importance
of the tropics versus AAW in influencing recent shifts
in the mid-latitude circulation. Particularly timely are
findings that report a robust wintertime relationship
between winds and temperature over land, and the
loss (advance) of sea ice (Eurasian snow cover), while
the correlation with the El Niño/Southern Oscillation
(ENSO) Index is absent.64 These findings support
previous analysis65 that suggests the role of AAW
has recently become dominant over ENSO in driving
winter continental weather patterns. Figure 6 (from
Ref 64) illustrates the relative importance of influ-
ences from the Arctic (Figure 6(b)) versus ENSO
(Figure 6(c)) in explaining recent trends in zonal
winds and temperatures over Northern Hemisphere
continents during winter (Figure 6(a)). The striking
similarity of Figure 6(b) to observed trends, along
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FIGURE 3 | Composited 500 hPa heights (m) during JFM for (left) positive-minus-negative phases of the Pacific Decadal Oscillation (PDO)
(1983, 1984, 1986, 1987, 1988, 2003, 2015 minus 1989 1991, 2000, 2008, 2009, 2011, 2012), (middle) anomalously warm surface temperatures
in the Chukchi Sea region during a positive PDO (1994, 1996, 2003, 2010, 2014), and (right) same as middle but for anomalously cold Chukchi
temperatures (1987, 1988, 1998, 2000). Chukchi Sea region defined as in Ref 51. Data obtained from the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis at http://www.esrl.noaa.gov/psd/.
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with the striking lack of similarity between Figure 6
(c) and (a), suggests that ENSO’s influence is
relatively weak.

Model simulations offer conflicting results and
raise questions about not only the observational
analysis but also the experimental design and/or the
ability of some models to capture the full impacts of
AAW, as many studies only include effects of shrink-
ing ice cover but exclude impacts of thinning sea ice,
heat transport from lower latitudes, varying lower-
latitude SST patterns, and/or troposphere-
stratosphere coupling.43–47,66 Disparate conclusions

also arise from differences in model formulation,
experimental design, and diagnostic techniques.

AAW OF THE FUTURE

There is no question that a further accumulation of
greenhouse gases will be accompanied by a continua-
tion of downward trends in the coverage of sea ice67

and spring snow extent,68 upward trends in tempera-
tures and AAW, and losses of land ice and perma-
frost. These changes are already profound, and their
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FIGURE 4 | Schematic illustrating ‘It Takes Two to Tango’ concept. Shading depicts surface temperature anomalies during November 2013
(relative to 1979–1996). (a) A possible jet stream configuration (gray curve) with ridges over the western Pacific and over the central United
States, along with a trough in the eastern Pacific. (b) Another possible jet stream configuration with a ridge in the eastern Pacific, where
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impacts are already conspicuous. Recent observa-
tions imply that the climate system is tracking along
the ‘business-as-usual’ or worst-case future scenario
Representative Concentration Pathways (RCP 8.5),
one set of conditions used to model the Earth’s tra-
jectory in coming decades. As the climate system
advances farther into uncharted territory, it is widely
expected that unforeseen surprises and abrupt events
will occur, particularly when it comes to the
ecosystem.69

While there is little uncertainty about whether
AAW will affect Northern Hemisphere weather pat-
terns, there is considerable uncertainty as to how and
how much. Many factors—both natural and
anthropogenic—affect the jet streams, and these fac-
tors vary by region and season. In addition to ampli-
fication of Arctic warming, models are consistent in
projecting amplified warming in the tropical upper
troposphere.18 Unlike AAW, which reduces the pole-
ward temperature/height gradient, this feature will
increase the equator-to-pole gradient and therefore
will constitute a competing effect on the influence of
AAW. This ‘tug of war’ has been recently explored
further, suggesting that the tropical influence may
dominate in the future.28,70 It should be noted, how-
ever, that two jet streams often exist, particularly in
winter. The weakened gradient owing to AAW will
affect primarily the polar jet stream, which dictates
much of the weather in mid-latitudes, while the
strengthened gradient owing to upper-level tropical
warming will influence primarily the subtropical jet.
While the two jets are sometimes indistinct, analyses
of the atmosphere’s response to AAW should focus
on the polar jet. A possible example of differing influ-
ences by the two jets may have occurred in this past

winter of 2015/2016: it has been suggested that the
low skill of the seasonal weather forecast—based
heavily on past patterns during strong El Niños—
may have been due in part to the influence of strong
regional AAW and/or a disrupted polar vortex,
which were not observed during previous episodes of
strong El Niño events.71

Many new studies using simulations by a vari-
ety of models have addressed the mechanisms by
which AAW affects future mid-latitude weather. An
emerging conclusion is that nonlinear effects are criti-
cal for realistically simulating Arctic/mid-latitude
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FIGURE 5 | Near-surface air temperature anomalies for JFM
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linkages,20 and that these effects may not be captured
sufficiently by models. For example, without a
coupled ocean,15,16 realistic stratosphere,72 and sea-
ice thickness distribution,25 only a muted influence is
simulated.43,45,46 Other new work finds that AAW

must extend throughout the troposphere for it to
have a significant influence on the large-scale circula-
tion, indicating that boundary-layer processes must
be accurately represented.44,47 Highly nonlinear
blocking events are simulated reasonably well by
only a few of the Climate Model Intercomparison
Project Version 5 (CMIP5)-generation models,73 and
their association with AAW is also model-
dependent.70,74

A variety of profound changes in the climate
system is expected as greenhouse gas concentrations
continue to exceed values not seen on Earth for mil-
lions of years.75 Understanding exactly how these
changes will influence jet streams is a societally criti-
cal and rapidly evolving research topic, as changes in
the types, locations, frequency, and severity of
extreme weather events will have major impacts on
economies, ecosystems, and political stability. Prog-
ress in this line of research has been steady, but more
work is needed to design model experiments that
incorporate the full signal of AAW (not only sea-ice
variability), identify appropriate metrics, develop
methods to attribute responses to causal forcing, and
improve model simulations of certain nonlinear pro-
cesses that affect projections of large-scale atmos-
pheric shifts.

CONCLUSION

The Arctic continues on its rapid trajectory of melt-
ing and warming, punctuated by new records during
2016. The influences of these changes on the Arctic
itself and on regions well beyond its borders are only
now coming into focus. Ecosystems are shifting as
sea ice allows light to penetrate oceans that were pre-
viously nearly dark, infrastructure is crumbling as
permafrost decays, sea-level rise is accelerating as
Arctic glaciers and the Greenland ice sheet recede,
and various living things are shifting their territories
and seasonal migrations in response to disrupted
habitats. Some of these changes were expected, but
in many cases, the pace has come as a surprise. More
surprises and abrupt shifts are virtually certain.
Understanding the effects of physical Arctic change
on weather patterns in temperate latitudes presents a
substantial challenge, especially as other aspects of
the climate system undergo natural fluctuations and
human-induced alterations. Recent studies of these
processes are parting the clouds of uncertainty, but
there is still much to learn in terms of the mechan-
isms linking AAW with lower-latitude factors, all of
which influence jet streams and weather patterns.

BOX 1

POLAR VORTEX: BRIDGE BETWEEN AAW
AND SEVERE MID-LATITUDE WINTER
WEATHER

The polar vortex (PV) is a deep low-pressure cen-
ter in the upper atmosphere (between ~10 and
50 km) that sits near the North Pole during win-
ter and is encircled by a fast river of westerly
wind known as a jet.76 It is strongly coupled
with surface weather.77,78 The PV forms during
fall, at which time the vertical propagation of
either wave energy or wave drag can acceler-
ate or decelerate the mean flow79 and conse-
quently precondition the PV for the following
winter.80,81

Diminished Arctic sea ice in the Barents/Kara
Seas and/or extensive Eurasian snow cover dur-
ing fall may favor changes in the planetary
waves that constructively interfere to weaken
the PV.19 These Arctic influences appear to pro-
mote an atmospheric pattern that features
troughing (low upper-level heights) over East
Asia along with ridging (high heights) near the
Urals.52 This amplified wave configuration
favors strong vertical propagation of wave
energy from the troposphere into the
stratosphere.19

Enhanced upward wave propagation tends
to disrupt the PV, which creates circulation
anomalies that appear first in the stratosphere
then subsequently propagate downward in
winter, creating a ‘memory mechanism’ that
prolongs the initial forcing by sea-ice loss and
expansive snow cover. These circulation anoma-
lies take the form of ridging and/or blocking in
high latitudes along with a weaker and south-
shifted polar jet stream. Surface high-pressure
over the Arctic tends to increase, and the wav-
ier jet transports mild air northward, further
warming the Arctic. Over mid-latitude conti-
nents, meanwhile, persistent cold spells are
favored along with a greater likelihood of
snowstorms in the population centers of the
NH mid-latitudes.
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