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We propose a normalized difference chlorophyll index (NDCI) to predict chlorophyll-a (chl-a) concentration
from remote sensing data in estuarine and coastal turbid productive (case 2) waters. NDCI calibration and vali-
dation results derived from simulated andMEdium Resolution Imaging Spectrometer (MERIS) datasets show its
potential application to widely varying water types and geographic regions. A quadratic function (R2=0.95,
pb0.0001) accurately explained the variance in the simulated data for a chl-a range of 1–60 mgm−3. Similarly
a twofold calibration and validation of chl-a models using MERIS dataset, (chl-a range: 0.9–28.1 mgm−3)
yielded R2 of 0.9, and RMSE of ~2 mgm−3 respectively. NDCI was applied on images over the Chesapeake Bay
and Delaware Bay, the Mobile Bay, and the Mississippi River delta region in the northern Gulf of Mexico. The
newly developed algorithm was successful in predicting chl-a concentration with approximately 12% overall
bias for all above study regions. Findings from this research imply that NDCI can be successfully used on
MERIS images to quantitatively monitor chl-a in inland coastal and estuarine waters. In case of remote coastal
waters with no ground truth data, NDCI can be used to detect algal bloom and qualitatively infer chl-a concen-
tration ranges very similar to NDVI's application in terrestrial vegetation studies.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Accurate remote estimation of biophysical parameters such as
chlorophyll-a (chl-a) and phytoplankton biomass in turbid productive
waters is essential for large-scale and multi-temporal studies related
to primary production, carbon cycle, biogeochemical cycles, and overall
inland and coastal water quality. However, it is still a challenge because
of the presence of non-covarying optically active constituents whose
absorption features overlap with chl-a. Spectral channels in the blue-
green part of the electromagnetic spectrum are heavily affected by the
presence of constituents such as Colored Dissolved Organic Matter
(CDOM), detritus, and tripton. Empirical algorithms (e.g., OC4v4) that
use blue and green spectral channels often provide a relatively accurate
estimate of chl-a in case 1waters where the total non-water absorption
is dominated byphytoplankton, however, do not provide reasonable es-
timates of chl-a in turbid productive waters (O'Reilly et al., 1998). In
order to reduce the estimation error of chl-a in turbid productive wa-
ters, semi-analytical models have also been proposed (Gons et al.,
2002; Maritorena et al., 2002). However, the success of these semi-
analytical models depends on the accurate parameterization of the in-
herent optical properties of themedium that often poses a considerable
challenge. Magnuson et al. (2004) re-parameterized the original semi-
s, Mississippi State University,
ited States. Tel.: +1 662 268

).

rights reserved.
analytical model proposed by Maritorena et al. (2002) to make it suit-
able for the Chesapeake Bay and Mid-Atlantic Bight region. They
reported that the re-parameterized model was successful in attributing
CDOM absorption in the total absorption budget and offered accurate
estimation when compared to OC4v4 model and the accuracy of chl-a
estimation was within 30–50% of the in situ measured values. Even
though the re-parameterized semi analyticalmodel produced better ac-
curacy than OC4v4, the uncertainty was still very high. Because of the
difficulties in obtaining the information for re-parameterization, such
as specific absorption coefficient of phytoplankton, aph*(λ), spectral
slope of colored dissolved organic matter, SCDOM, and spectral slope of
detritus, Sdetritus, alternative approaches have been encouraged to im-
prove chl-a estimation in turbid productive waters. Over the past
years numerous algorithms have beenproposed to quantify chl-a in tur-
bid productivewaters using red-near infrared (NIR) bands and these al-
gorithms can be classified into three primary groups such as 1) two-
band empirical (Moses et al., 2009; Tzortziou et al., 2007), 2) three or
four-band empirical (Dall'Olmo & Gitelson, 2005; Le et al., 2009), and
3) three-band semi-analytical (Gons, 1999; Gons et al., 2002) models.
In this study, we have assessed the accuracy of red and NIR based
empirical and semi-analytical algorithms in geographically diverse
water bodies and propose a novel band difference algorithm for accu-
rately mapping chl-a concentration in turbid productive waters.

We have selected four algorithms from the list above for further
validation and examination of their performance and transferability
to different water bodies. The selected algorithms discussed below
are widely applied and unique in their band architecture.

http://dx.doi.org/10.1016/j.rse.2011.10.016
mailto:dmishra@gri.msstate.edu
http://dx.doi.org/10.1016/j.rse.2011.10.016
http://www.sciencedirect.com/science/journal/00344257
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Moses et al. (2009) presented a two-band model (hereafter M09)
using red and NIR bands to quantify chl-a in turbid productive waters.
To match the band configuration of MERIS sensor, the conceptual
model was designed as:

Cchl−a∝R−1
rs 665ð Þ � Rrs 708ð Þ ð1Þ

They applied M09 on MERIS images over Azov Sea, Russia and
reported the high accuracy potential of the model to estimate chl-a in
turbid productive waters. Similarly, Tzortziou et al. (2007) collected
an extensive bio-optical dataset to examine the relationship between
inherent and apparent optical properties in the mid Chesapeake Bay,
USA. They observed a better relationship (R2=0.54) between remote
sensing reflectance (Rrs) ratio at 677 and 554 nm, Rrs(677)/Rrs(554),
and chl-a concentration in the bay compared to blue-green spectral
band ratios. In this study we have modified this ratio based on the
MERIS band configuration, Rrs(665)/Rrs(559) and named it T07 for fur-
ther reference.

Cchl−a∝R−1
rs 559ð Þ � Rrs 665ð Þ ð2Þ

Dall'Olmo and Gitelson (2005) (hereafter D05) presented a three-
band model using red and NIR bands. The three-band model architec-
ture was as follows:

Cchl−a∝ R−1
rs 665ð Þ−R−1

rs 708ð Þ
h i

� Rrs 753ð Þ ð3Þ

The three band algorithm was based on several assumptions in-
cluding, (i) the absorption by suspended solids and CDOM beyond
700 nm is approximately equal to that at 665–675 nm and the differ-
ence between them is very small and can be neglected, (ii) the total
chl-a, CDOM, and total suspended sediment (TSS) absorption beyond
730 nm is nearly zero, and (iii) back-scattering coefficient of chl-a is
spectrally invariant. They reported that D05 was successful to predict
accurate estimate of chl-a in turbid productive water bodies with
wide range of optical complexity. Moses et al.(2009) further validated
D05 usingMERIS data from the Azov Sea and documented that D05was
able to retrieve chl-a concentration with a RMSE of 5.02 mgm−3 (for a
chl-a range: 18.37–47.86 mgm−3).

Gons et al. (2008) presented a semi-analytical algorithm (hereafter
G08) for chl-a retrieval using MERIS data which was a modification of
the parent algorithm (Gons, 1999). G08 uses the relationship be-
tween inherent optical properties and the Rrs at three wavelengths,
solves for chl-a absorption at 665 nm, and estimates chl-a by dividing
achl (665) by the specific absorption coefficient of chl-a, achl− a*(665).

Chl−a½ � ¼ Rrs 708:75ð Þ
Rrs 665ð Þ

� �
� 0:70þ bbð Þ−0:40−b1:06b

� �
=0:016 ð4Þ

where bb is the back-scattering coefficient and was expressed as:

bb ¼ 1:61 � Rrs 775ð Þ
0:082−0:6 � Rrs 775ð Þ

Gons et al. (2008) reported that G08 successfully retrieved chl-a
concentration in the Laurentian great lakes producing residuals less
than 35% of the measured values. They also reported that G08 did
not perform well in areas with chl-a less than 5 mg m−3 and even
produced some negative values in oligotrophic waters.

Although, the three-band algorithms, D05 and G08, have excellent
predictive ability, the biggest challenge of these models is that they
require Rrs measurements at 753 and 775 nm. Based on existing
atmospheric correction schemes for turbid productive waters, getting
reliable estimates of Rrs at these wavelengths is a difficult task. In
addition, another inherent difficulty of semi-analytical models such
as G08 is the use of achl− a*(665). Any uncertainty associated with
achl− a*(665) can contribute to inaccurate estimates of chl-a.

After carefully examining the strengths and weaknesses of the
above models, our goal in this research was to develop an algorithm
that can perform better than the existing algorithms. Two of the
most important criteria for a successful spectral algorithm develop-
ment include (1) applicability to satellite data, and (2) transferability
to widely varying geographic regions without producing significant
uncertainties. We have tested and analyzed both criteria in this
study as part of the model validation. We propose a novel index, Nor-
malized Difference Chlorophyll Index (NDCI), and demonstrate its
sensitivity to chl-a concentration in turbid productive waters. We
have calibrated and validated a chl-a model using NDCI by analyzing
four datasets (one simulated and three field datasets) representing
unique turbid productive water bodies and presented its potential
use for chl-a estimation in optically complex waters. The purpose of
using a simulated data was to test the model performance and sensi-
tivity to a wide range of optical parameters in the water.

NDCI uses Rrs at 665 nm, Rrs(665), and 708 nm, Rrs(708), emulating
theMediumResolution Imaging Spectrometer (MERIS) channels. Similar
to other turbid productive chl-a algorithms, this index uses the informa-
tion from the reflectance peak centered at 700 nm which is maximally
sensitive to the variations in chl-a concentration in water. Similarly, a
wide spectral absorption peak between 665 nm and 675 nm is generally
assigned to the absorption by chl-a pigments. We selected the two spec-
tral features centered at 665 nm and 708 nm to develop NDCI and to
avoid the confounding influence of CDOM and TSS on the water reflec-
tance spectra at shorter wavelengths. Also, as both bands are closely lo-
cated, we assume that the CDOM and TSS absorption is similar in
magnitude. Based on the results from bio-optical modeling in this
study, the combined range of CDOM and TSS absorptions at 665 nm
(0.0193–0.1899 m−1) and 708 nm (0.015–0.1603 m−1) in the study re-
gions are approximately equal and the difference between them can be
assumed as negligible. Further, following the simplistic concept of nor-
malized difference vegetation index (NDVI) applied in vegetation status
monitoring; NDCI was developed by taking the spectral band difference
at 708 nmand665 nmandnormalizing by the sumof their reflectance to
eliminate any uncertainties in the estimation of Rrs, seasonal solar azi-
muth differences, and atmospheric contributions at those wavelengths.
NDCI is formulated as:

Cchl−a∝
Rrs 708ð Þ−Rrs 665ð Þ½ �
Rrs 708ð Þ þ Rrs 665ð Þ½ � ð5Þ

The overarching objective of this researchwas to improve the accura-
cy of chl-a retrieval in turbid productive waters using a simple, easy to
implement, intuitive (such as NDVI for vegetation), and universal
model. Throughout this paper,we have tested these criteria using several
steps including, (1) developing a dataset simulating a wide range of bio-
optical parameters to examine the conceptual model, (2) testing the
model using an in situ dataset collected from a global bio-optical data ar-
chive and corresponding MERIS data, (3) evaluating the performance of
several existing chl-a algorithms for turbid productive waters using the
simulated and remotely sensed datasets, (4) applying the model in
three unique study regions, such as Chesapeake-Delaware Bay, the Mis-
sissippi River Delta, and the Mobile Bay, and (5) finally and most impor-
tantly, developing a generalized but practical relationship between NDCI
values and chl-a range in an attempt tomake NDCI intuitive and applica-
ble when/where ground truth data is not available.

2. Data and methods

2.1. Bio-optical modeling

The simulated Rrs spectra used for themodel conception, calibration,
and validation were approximated by the following method.
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Irradiance reflectance, R(z,λ), is defined as (Morel & Prieur, 1977)

R z; λð Þ ¼ Eu λ; zð Þ
Ed λ; zð Þ ; ð6Þ

where, Eu (λ,z) and Ed (λ,z) are upwelling irradiance (Wm−2 nm−1)
and downwelling irradiance (Wm−2 nm−1) at depth (z) in the water
column. Gordon et al. (1975) have approximated R(0,λ) at the water
surface as a function of the in-water absorption and scattering coeffi-
cients as:

R 0; λð Þ ¼ f
bb λð Þ

a λð Þ þ bb λð Þ ð7Þ

where, bb(λ) is the total backscattering coefficient (m−1); a(λ) is the
total absorption coefficient (m−1); and f is the proportionality factor
that depends on the solar zenith angle and light field geometry. Further,
Kirk (1984) modeled f as a function of the cosine of the solar zenith
angle (μ0) of the refracted photons as:

f μ0ð Þ ¼ −0:629μ0 þ 0:975 ð8Þ

R(0,λ) is closely related to the spectral remote sensing reflectance,
Rrs(λ) as (Carder & Steward, 1985):

Rrs λ;0ð Þ ¼ Lw λ;0ð Þ
Ed λ;0ð Þ ð9Þ

where, Lw (λ,0) is thewater leaving radiance (Wm−2 sr−1 nm−1); and
Ed (λ,0) is the downwelling irradiance (Wm−2 nm−1 ) above the air–
water interface. For a nadir looking sensor, Lw can be estimated from
Lu as in Mobley (1999):

Lw λ;0ð Þ ¼ τLu λ;0ð Þ ð10Þ

where, τ is a non-dimensional proportionality factor that relates up-
welling radiance measured just below the water surface to water leav-
ing radiance. For most remote sensing applications, τ can be reasonably
approximated as 0.54 (Mobley, 1999). Lu (λ, 0) is the subsurface upwell-
ing radiance and for uniform angular distribution, Lu can be formulated
as (Jerlov, 1968):

Lu λ;0ð Þ ¼ Eu λ; 0ð Þ=Q ð11Þ

where, Eu(λ,0) is upwelling irradiance (Wm−2 sr−1 nm−1) andQ is the
angular distribution factor of spectral radiance and assumed to be 4
based on the average solar zenith angle in our study area (Morel &
Gentili, 1996). Finally, combining Eqs. (6)–(11), Rrs can be written as
follows:

Rrs λð Þ ¼ 0:0448
bb λð Þ

a λð Þ þ bb λð Þð Þ ð12Þ

Tomodel the fluorescence component of Rrs, water leaving radiance
due to chlorophyll fluorescence at 685 nm (Lw,fl (685)) was modeled as
in Gilerson et al. (2007). Rrs,fl (685) was estimated as:

Rrs;f l 685ð Þ ¼ Lw;f l 685ð Þ
Ed 685ð Þ ð13Þ

Based on the Hydrolight (Mobley & Sundman, 2001) simulation as in
Gilerson et al. (2007) for a clear sky condition, Ed was considered as
1.1 Wm−2 nm−1. Finally, Rrs,fl was modeled at every wavelength using
a Gaussian peak centered at 685 nm with a standard deviation (STD) of
10.6 nm (Mobley, 1994). The final Rrs(λ) values were modeled as a
sum of Rrs estimations from Eqs. (12) and (13).
2.2. Simulation of Rrs data

Using the above bio-optical model, we simulated two Rrs datasets
representing four case 2 water bodies such as Mississippi Delta region,
Mobile Bay, Chesapeake Bay, and Delaware Bay. Further, assuming
that there are three optically active constituents in the water (i.e., phy-
toplankton, suspended matter, and CDOM), the total absorption, a (λ)
coefficients can be written as follows:

a λð Þ ¼
Xn
i¼1

ai λð Þ; ð14Þ

where, ai are the absorbing components such aswater (aw), chl-a (achl),
CDOM (aCDOM), and non-algal particle (anap). Similarly, total back-
scattering coefficient can be written as:

bb λð Þ ¼
Xn
i¼1

bb;i λð Þ ð15Þ

where, bb,i are the back-scattering components such as water (bbw) and
total particulate matter (bbp). Phytoplankton absorption coefficient was
modeled as the product of specific absorption coefficient (aφ*) and the
chl-a concentration (Cchl-a). aφ* values were taken from Ciotti et al.
(2002) as a sum of specific absorption coefficient of micro-planktons
and pico-planktons with different weighting factor, Sf, ranging from
0.1 to 0.5 that corresponds to typical turbid productive coastal waters
(Ciotti et al., 2002).

a�φ λð Þ ¼ Sf ·a
�
pico λð Þ þ 1−Sf

� �
·a�micro λð Þ ð16Þ

aw(λ) and bb,w(λ) values were taken from Pope and Fry (1997). CDOM
absorption was expressed as a function of the absorption coefficient at
440 nm, aCDOM (440), and a slope factor, SCDOM, as follows (Bricaud
et al., 1981):

aCDOM λð Þ ¼ aCDOM 440ð Þe−SCDOM λ−440ð Þ ð17Þ

Similar to CDOM absorption, anap was expressed as an exponen-
tially decaying function with respect to the wavelength as:

anap λð Þ ¼ anap 443ð Þe−Snap λ−443ð Þ ð18Þ

where, ?Snap=0.0123 nm−1 was taken from Babin et al. (2003). anap
(443) was expressed as:

anap 443ð Þ ¼ 0:031ð Þ 0:81ð ÞCchl−a

where, 0.031 and 0.81 are the mass-specific anap coefficient and Cnap:
Cchl-a ratio respectively. This relationship explains the observed co-
variation between anap and Cchl-a (Babin et al., 2003). Particulate
back-scattering coefficient was expressed as:

bbp λð Þ ¼ b�b;p 550ð Þ 550
λ

� 	y

Cp ð19Þ

where, bb,p*(550) is the specific back-scattering coefficient of particu-
late matter (0.0086 m2g−1) (Kiefer & Reynolds, 1992), y is the spectral
slope of bb,p (set to 0 as in Dall'Olmo & Gitelson, 2006), and Cp is the
concentration of particulate matter.

We used previously published ranges of aCDOM (440) and concentra-
tions of inorganic suspended sediment (ISS) resembling each study re-
gion taken from Kutser et al. (2009), Miller et al. (2002), and Tzortziou
et al. (2007) (Table 1). Assuming optical similarity, published values
from Mississippi Sound have been considered for the Mobile Bay. The
range of chl-a concentration used for the simulation widely varied



Table 1
Ranges of aCDOM (440) (m−1), SCDOM and ISS (mg l−1) from all study regions used in
the bio-optical modeling of Rrs(λ).

Study regions aCDOM (440) (m−1) SCDOM ISS (mg l−1)

Mississippi River Delta 0.05–0.07 0.016 2–5
Chesapeake Bay and Delaware Bay 2.0–5.0 0.016 5–10
Mississippi Sound/Mobile Bay 3.13–4.27 0.016 2–5
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from 1 to 60 mgm−3. Concentrations and values of model parameters,
such as chl-a, ISS, aCDOM (440), and SCDOM were randomly varied at
each iteration step to mimic the natural variability in the study regions.

Rrs data were simulated at 1 nm interval from 400 nm to 760 nm
(n=200). Rrs measurements were further simulated at each MERIS
band centers λi, for bands 1 to 10, by taking the weighted average of
each Rrs spectra using the spectral response function (SRF(λ)) of
MERIS (http://earth.eo.esa.int/pub/ESA_DOC/MERIS_Wavelengths_and_
Irradiances_Model2004.xls) as weights (Eq. (20)). Finally, the simulated
MERIS spectra were used for further analysis.

Rrs λið Þ ¼ ∑λRrs λð ÞSRF λð Þ
∑λSRF λð Þ ð20Þ

2.3. Field data

The concept of NDCI was developed using simulated data, however,
field datasets acquired from the same geographic regions were used to
further validate the NDCI and chl-a relationship. The field datasets con-
sisted of chl-a concentrations from Chesapeake Bay, Delaware Bay, the
river Mississippi Delta region, and the Mobile Bay (Fig. 1). However,
the field data were not used in the simulation because of the absence
of a wide chl-a range, and the unavailability of other data such as inor-
ganic suspended solid concentration (ISS), aCDOM (λ), and SCDOM that are
required as input to the bio-optical model. In situ chl-a data from Ches-
apeake Bay and Delaware Bay (n=38; collection dates: April, 15, 16,
and 18, 2008, May 14, 2008) were downloaded from SeaWiFS Bio-
Optical Archive and Storage System (SeaBASS) archives. Similarly, chl-
a data for Mississippi Delta region (n=10; collection date: May 19,
2007) were acquired from the NASA bio-Optical Marine Algorithm
Data (NOMAD) archive. Both SeaBASS and NOMAD archives contain
high quality bio-optical global datasets which are suitable for calibrat-
ing and validating ocean color algorithms (Werdell & Baily, 2005). In
situ data from Mobile Bay were collected and analyzed using high per-
formance liquid chromatography (HPLC) (by Hugh MacIntyre, Dolphin
Island Sea Lab) (n=8; collection date: Nov 07, 2007). The frequency
plot of chl-a observation in all field sites is presented in Fig. 2 and the
summary of chl-ameasurements, solar zenith and solar azimuth angles
of the study sites is also summarized in Table 2.

2.4. Satellite data

Simultaneous observations of full resolution level 2 data acquired
by MERIS sensor onboard ENVISAT were downloaded using European
Space Agency's client EOLI (Earth Observation Link) for NDCI model
calibration and validation. Beam 3.6 software (Brockmann Consult,
Geesthacht, Germany) was used to process and analyze the MERIS
images. Image data acquired on April 15 2008 (Universal Time Co-
ordinates—15:43:39.476) over Chesapeake Bay had some cloud
cover and was masked for land and cloud. However, cloud cover
over the Mississippi River Delta region and the Mobile Bay was min-
imal. Corresponding MERIS images over Chesapeake and Delaware
Bay was not available on August 16, 2008 and therefore, image ac-
quired on August 15, 2008 was used. Images acquired on April 18,
2008 (UTC—15:49:21.537) and May 14, 2008 (UTC—15:32:21.458)
over Chesapeake Bay were also used in this study. Similarly, images
for the Mississippi Delta and the Mobile Bay were acquired on May
19, 2007(UTC—16:20:52.509) and November 07, 2007 (UTC—
16:15:06.954).

MERIS level 2 products are atmospherically corrected for normal-
ized water leaving reflectance. Corresponding Rrs spectra were
extracted from MERIS images for the in situ sampling locations and
are presented (Fig. 3B). Rrs spectra showed high variability in magni-
tude in the visible spectral domain. Maximum values of Rrs were ob-
served at the green channel (559 nm) and maximum variability was
also occurred at 559 nm and 620 nm. As expected, Rrs in the blue
spectral region showed lower reflectance because of high absorption
by chlorophylls, CDOM, and non-algal particulate matters in the
water. A large number of pixels showed negative Rrs at 412.5 and
442.5 nm possibly because of over correction for the atmospheric
scattering. The spectral shape of the average Rrs spectrum appeared
very similar to the simulated data (Fig. 3A).

2.5. Model calibration and validation

NDCI model was calibrated and validated using a simulated and a
field dataset. A one-fold calibration and validation was performed
using the simulated dataset, whereas, a three-fold calibration and val-
idation was performed using the field dataset. The three-fold calibra-
tion and validation to the field data was based on three varying
parameters including (a) solar zenith angle (θs), (b) solar azimuth
angle (φs), and (c) geographic region. In the first two calibration
and validation, the field data sorted out based on solar angle param-
eters (θs, φs) in order to test the robustness of the model to variations
observed in satellite data because of atmospheric interferences and
seasonal changes, and transferability of the model to other similar
coast water bodies. In the third calibration and validation, the data
were sorted out based on geographic region in order to maintain
the independence aspect of the field data.

The first calibration and validation dataset was sampled after sort-
ing based on descending θs and further dividing the data into two
subsamples, one for calibration (n=29) and the other for validation
(n=20). Similarly, the second calibration and validation was per-
formed after sorting the field data based on descending φs and further
dividing into a calibration dataset (n=29) and a validation dataset
(n=20). Remote sensing reflectance ( Rrs), being an apparent optical
property, is prone to vary with any change in the light field geometry
and atmospheric conditions even though the concentrations of all the
biophysical variables (TSS, chl-a, CDOM) remain constant in the
water column. While formulating NDCI, it was hypothesized that a
normalized band difference index will be less sensitive to any uncer-
tainties because of variations in light field geometry, atmospheric ef-
fects, and radiometric calibration differences by virtue of its spectral
band selection and model architecture. In the current scenario, solar
zenith (θs) and solar azimuth angles (φs) have been used as a mea-
sure to represent seasonal and spatial change in light field as these
solar angles change with geographic regions, and with season in a
geographic region.

Finally, the third set of calibration and validation was performed
by dividing the dataset from all study regions into two subsets
based on geographic regions. Calibration dataset contained all sample
points from the Chesapeake Bay and Delaware Bay (n=35), whereas,
sample points from the Mississippi Delta and the Mobile Bay were
used as the validation dataset (n=14). In this way, the model cali-
brated for a region with a specific set of bio-optical and physical char-
acteristics will be validated for a different region with a different set
of bio-optical and physical parameters demonstrating the strength
and the transferability of the algorithm to other coastal regions.

For the model calibration, best fit functions were calculated based
on least-squares regression analysis. Using the calibrated equations,
chl-a concentrations were predicted for the validation dataset. The
accuracy of the model prediction was assessed by comparing the

http://earth.eo.esa.int/pub/ESA_DOC/MERIS_Wavelengths_and_Irradiances_Model2004.xls
http://earth.eo.esa.int/pub/ESA_DOC/MERIS_Wavelengths_and_Irradiances_Model2004.xls


Fig. 1. Locationmap of data points used in the present study. (A) Chesapeake Bay and Delaware Bay, (B) RiverMississippi Delta region in the northern Gulf ofMexico, and (C)Mobile Bay.
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predicted chl-a and the measured chl-a concentration. The comparison
was expressed in terms of root mean squared error (RMSE), coefficient
of determination (R2) betweenmeasured and predicted chl-a, the slope
Fig. 2. Frequency histogram of surface chl-a concentration (mg m−3) measured from
Chesapeake and Delaware Bay, Mississippi Delta region, and Mobile Bay.
of the best fit line (m), and themean ratio that was calculated as the av-
erage of the ratios of the predicted chl-a values to the measured chl-a
values. RMSE was computed as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Ŷ i−Yi

� �2

n

vuut
ð21Þ
Table 2
Descriptive statistics of chl-a (mg m−3), solar zenith and solar azimuth angles in the
study regions. All angular measurements are in degree.

Parameters Min Max Average

Mississippi Delta, 19th May 2007 (n=6)
Chl-a (mg m−3) 14.351 28.175 21.042
Solar zenith angle 23.303 23.393 23.349
Solar azimuth angle 108.306 108.709 108.495

Chesapeake Bay and Delaware Bay (n=35)
Chl-a (mg m−3) 0.903 16.061 7.255
Solar zenith angle 26.958 34.196 31.492
Solar azimuth angle 131.943 144.597 140.914

Mobile Bay (n=8)
Chl-a (mg m−3) 4.208 6.395 5.256
Solar zenith angle 50.353 50.577 50.471
Solar azimuth angle 154.587 154.915 154.807
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Fig. 3. Average Rrs spectra derived from (A) the simulated dataset (n=200), (B) MERIS images of the study regions (n=49). y-error bars are the one STD of Rrs at MERIS band
centers.

Table. 4
Model validation results: root-mean-square-error (RMSE) inmgm−3, coefficient of determi-
nation (R2), and the slope of the regression line (m) are reported for allmodels. The RMSE, R2,
and m values of the predictions are provided (a) for data points within the calibrated chl-a
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where n is the number of observations, Ŷ is the predicted value of chl-a,
Y is the observed or measured value of chl-a.

3. Results

3.1. Model calibration and validation using simulated data

We compared several existing blue-green band ratio algorithms such
as OC4 (O'Reilly et al., 1998, 2000) and two-band red-NIR models (T07,
M09) with NDCI during model calibration. Three-band models that use
Rrs values at 753 nmandbeyondwere not considered for comparison be-
cause the absorption coefficients of water and phytoplankton available
in literature do not produce reliable estimates of Rrs beyond 750 nm
(Kutser et al., 2009). Model calibration results using the blue-green
band ratio showed high sensitivity to the changes in aCDOM and anap..
Therefore, developing a single empirical relationship using blue-green
band ratios duringmodel calibration was not possible because of the ab-
sence of a common trend line for all study areas (not shown). In contrast,
red-NIR based models showed a single trend for all study areas indicat-
ing their insignificant sensitivity to the changes in aCDOM and anap.
Table 3
Model calibration: all model parameters including a0, a1, and a2 with corresponding
standard error of estimate (STE) are provided; In case of linear regression, a0 and a1
correspond to intercept and slope of the fitted equation. Coefficient of determination
(R2), adjusted R2 and p values of the regression models are also provided.

Indices a0 a1 a2 R2 Adj. R2 STE of estimate p

Simulated dataset (n=100)
NDCI 42.197 236.5 314.97 0.95 0.95 3.62 b0.0001
M09 −64.055 106.335 ⁎ 0.95 0.95 3.76 b0.0001
T07 −39.739 102.717 ⁎ 0.61 0.61 10.76 b0.0001

Field dataset (solar zenith angle, n=29)
NDCI 14.039 86.115 194.325 0.90 0.89 2.49 b0.0001
M09 −15.617 31.133 ⁎ 0.82 0.81 3.24 b0.0001
D05 14.07 177.56 808.03 0.56 0.52 5.22 b0.0001
T07 −1.832 26.56 ⁎ 0.48 0.47 5.53 b0.0001

Field dataset (solar azimuth angle, n=29)
NDCI 14.279 79.607 181.45 0.90 0.90 2.11 b0.0001
M09 −15.992 31.196 ⁎ 0.85 0.84 2.61 b0.0001
D05 14.15 156.88 769.86 0.49 0.45 4.93 0.001
T07 4.643 15.473 ⁎ 0.20 0.17 6.08 0.0134

Field dataset (Chesapeake Bay and Delaware Bay, n=35)
NDCI 13.55 87.99 212.6 0.72 0.7 2.15 b0.0001
M09 −8.88 20.96 ⁎ 0.59 0.58 2.57 b0.0001
D05 11.52 136.13 666.46 0.43 0.4 3.09 b0.0001
T07 6.0 3.164 ⁎ 0.01 0.0 4.02 0.4394

Data in bold letter highlights the best performing model with the highest R2 and lowest
STE during the calibration stage.
⁎ Not applicable.
Various linear and nonlinear trend lines were fitted to the data and
best outputs were finalized and reported for all models (Table 3). Rela-
tionship between NDCI and chl-a was essentially nonlinear. However,
logarithmic and power trend lines could not be fitted to the data be-
cause of the negative NDCI values. An exponential function with two-
parameters explained 93% of variance in the data (R2=0.93, standard
error of the estimate (STE)=4.38 mgm−3 of chl-a, pb0.0001) where
as a second order polynomial produced the highest R2 and lowest esti-
mation error (R2=0.95, STE=3.62 mgm−3 of chl-a, pb0.0001) in the
simulated dataset (Table 3). Quadratic polynomial equation was finally
selected as thefinal NDCI-chl-a equation because of higher R2 and lower
STE. Unlike NDCI, linear relationships were found between the two-
band models and chl-a during model calibration. STE and R2 for M09
were 3.76 mgm−3 and 0.95 (pb0.0001) respectively. T07 showed a
weak relationship with chl-a in the model calibration stage with STE
and R2 of 10.76 mg m−3 and 0.61 (pb0.0001) respectively.
range (values outside the brackets) and (b) for the entire dataset (values inside the bracket).

Indices RMSE (mg m−3) R2 m

Simulated dataset (n=100)
NDCI 4.83 0.93 1.05
M09 5.26 0.92 1.07
T07 21.78 0.26 0.57

Field dataset (solar zenith angle, n=20)
NDCI 1.89 0.80 1.005
M09 3.27 0.80 1.115
D05 1.97 0.81 0.795
T07 10.013 0.54 −0.544
G08 4.066 0.83 0.574
MERIS 5.856 0.74 0.403

Field dataset (solar azimuth angle, n =16)
NDCI 2.04 0.34 0.64
M09 3.08 0.31 0.22
D05 2.46 0.06 0.34
T07 8.01 0.07 0.09
G08 3.56 0.48 0.22
MERIS 1.69 0.33 0.44

Field dataset (Mobile Bay and Mississippi Delta, n=14)
NDCI 1.43 (2.37) 0.94 (0.92) 0.88 (0.91)
M09 2.82 (5.17) 0.92 (0.94) 0.49 (0.45)
D05 2.69 (6.49) 0.91 (0.62) 0.51 (0.45)
T07 5.49 (10.08) 0.53 (0.04) −0.06 (−0.01)
G08 4.95 0.92 1.43
MERIS 7.3 0.94 2.29

Data in bold letter highlights the best performing model with the lowest RMSE, highest
R2 and m close to 1 during the validation stage.
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Fig. 4. Calibration plots from the first calibration dataset that was sampled based on solar zenith angle: (A) NDCI, (B) M09, (C) D05, and (D) T07.

Fig.5. Validation plots from the first validation dataset that was sampled based on solar zenith angle: (A) NDCI (B) M09, (C) D05, (D) G08, (E) T07, and (F) MERIS case 2 chl-a prod-
uct (Algal-2). Straight lines on the plots are the 1-to-1 lines.
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Fig. 6. Calibration plots from the third calibration dataset that was sampled based on geographic region: (A) NDCI, (B) M09, (C) D05, and (D) T07. The calibration dataset contained
data points from the Chesapeake Bay and Delaware Bay.

Fig.7. Validation plots from the third validation dataset that was sampled based on geographic region: (A) NDCI (B) M09, (C) D05, (D) G08, (E) T07, and (F) MERIS case 2 chl-a
product (Algal-2). Validation dataset contained data points from the Mobile Bay and the River Mississippi Delta. Solid circles represent the predictions outside of the calibrated
chl-a range. Solid and dashed lines are the 1:1 lines for the predictions inside and outside of the calibrated chl-a range respectively. RMSE of the predictions within the calibrated
chl-a range (values outside the brackets) and the RSME of the entire dataset (values inside the bracket) are provided.
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Fig. 8. Box plots showing residuals from three fold validation, (A) dataset based on
solar zenith angle, (B) dataset based on solar azimuth angle, and (C) dataset based
on geographic regions of all models such as (1) NDCI, (2) M09, (3) D05, (4) T07,
(5) G08, and (6). MERIS chl-a product (Algal-2). The dotted lines inside boxes are
the mean lines.
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All calibrated models were examined for their predictive ability and
transferability to other geographic regions (Table 4). Using the calibra-
tion equation, chl-a values were predicted for an independently mod-
eled dataset and were compared with actual chl-a concentrations.
NDCI produced a root mean squared error (RMSE) of 4.83 mgm−3,
whereas, M09 and T07 produced RMSE of 5.26 and 21.78 mgm−3 re-
spectively. NDCI produced the most accurate prediction showing high-
est coefficient of determination (R2=0.93) between actual and
predicted chl-a and the slope of the regression line was close to 1
(m=1.05). On the simulated dataset, M09 performance was similar
to NDCI with R2=0.92 and m=1.07 and T07 model predicted signifi-
cantly inaccurate values. The residuals from NDCI and M09 validation
did not reveal a trend of over or under estimation; however, residuals
from T07 had a clear trend of over estimation (not shown).

3.2. Model calibration and validation using field data

Two sets of calibration/validationwere performed on selectedmodels
based on the solar zenith and solar azimuth angles onMERIS data fromall
study regions (Table 3). Similar to the simulated data calibration results,
in the field data calibration based on solar zenith angle, NDCI showed a
strong relationship with chl-a concentration (quadratic function) pro-
ducing R2 and STE of 0.90 and 2.49 mgm−3 respectively (pb0.0001)
(Fig.4). A two parameter-exponential trend line was also fitted that
explained 87% of variance in the data (R2=0.87, STE=2.7 mgm−3 of
chl-a, pb0.0001). However, quadratic polynomial equation was finally
selected because of higher R2 and lower STE. M09 performed as the sec-
ond best model with R2 of 0.82 and STE of 3.24 mgm−3 (pb0.0001),
however, the performance gap between NDCI and M09 was found to
be higher in field data compared to the simulated data. Unlike the
expected linear relationship between D05 and chl-a (Dall'Olmo &
Gitelson, 2005), a quadratic function explained the maximum variance
in the data (R2=0.56, pb0.0001) producing a STE of 5.22 mgm−3.
T07 model produced the least R2 (0.48) and highest STE value
(5.53 mgm−3, pb0.0001).

All four models plus G08 and MERIS level-2 chl-a product (Algal-2)
were validated using the corresponding validation dataset (Fig. 5;
Table 4). G08 was not parameterized and the chlorophyll equation
from Gons et al. (2008) was used for validation. NDCI performed the
best with the least RMSE (1.87 mgm−3), high R2, m≈1, and no clear
residual trend of over or under-estimation. T07 produced the highest
RMSE (10.01 mgm−3) and the least R2. Performance of the 3-band
model, D05, was close to NDCI in the validation stage producing RMSE
of 1.97 mgm−3 and M09 showed a clear trend of over estimation
(Fig. 5). G08 had a RMSE of 4.06 mgm−3 and showed a trend of over-
estimation for all predictions greater than 7 mgm−3. MERIS product
(Algal-2) showed excellent prediction for chl-a concentration below
13 mgm−3 with a few exceptions (Fig. 5).

Very similar trend in results were observed with the second cali-
bration dataset based on solar azimuth angle (Table 3). NDCI showed
the strongest relationship with chl-a (R2=0.90, STE=2.11 mg m−3,
pb0.0001), whereas, M09 explained 82% variation in the data and
produced a STE of 2.61 mg m−3 (pb0.0001). Neither a linear nor a
quadratic function explained the relationship between D05 and chl-a
very well, therefore the R2 was low and the STE was high. Similarly, T07
model showed weakest relationship with chl-a producing lowest R2

and highest STE values (p=0.0134). Validation results showed that the
MERIS Algal-2 chl-a product produced the least RMSE (1.69 mgm−3),
however, the R2 between predicted and actual was low and the regres-
sion slopewas significantly lower than 1 (Table 4). In contrast, NDCI pro-
duced a RMSE of 2.04 mgm−3 with the regression slope near 1. D05 and
G08 produced a RMSE of 2.46 and 3.56 mgm−3 respectively. Also, G08
produced high estimation errors for low chl-a values (oligotrophic wa-
ters) with five negative prediction. Similar to the previous validation,
T07model produced the highest RMSE and proved to have the least pre-
dictive ability.
Finally, the last set of calibration and validationwas performed on the
datasets those were sampled based on geographic regions. Similar to the
previous calibration results, NDCI showed the strongest relationship
withmeasured chl-a (R2=0.72, STE=2.15, p b0.0001) and the weakest
relationship was found between T07 and chl-a (R2=0.01, p=0.439)
(Table 3, Fig. 6). Note that the third validation dataset contained four
points with chl-a concentration higher than the chl-a concentration
range used in the calibration. Therefore, the validation results for all
models are shown in two ways including (a) data points within the cal-
ibration range (values outside the brackets) and (b) the entire dataset
(values inside the bracket) (Table 4, Fig. 7). Validation results show
that NDCI was successful predicting chl-a concentrationwith highest ac-
curacy producing a RMSE of 1.43 (2.37) mgm−3. The R2 between the
measured and predicted chl-a was 0.94 with a regression slope of 0.88
(0.91). Algal-2 showed maximum prediction error with two-fold over
estimation. It is also evident that, unlike other calibrated models, pre-
dictions by the NDCI equation outside its calibration range was also
very accurate and the equation can be reliably used to predict chl-a up
to 28.17 mgm−3 (Fig. 7).

It should be noted that in the simulated and the first field dataset,
NDCI showed the most accurate predictive ability overall with no
trend in residuals (Fig. 8). However, in the second validation dataset
three different models performed best in three different categories.
G08 produced the highest R2, Algal-2 produced the least RMSE, and
NDCI produced a regression slope closest to 1. Similarly, NDCI showed
excellent prediction in the third validation dataset producing lowest
RMSE, highest R2 between predicted and actual chl-a and m close to 1.
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Table 5
Comparison of mean ratio (STANDARD DEVIATION) of modeled andmeasured chl-a for
all field regions combined, Chesapeake Bay, Mobile Bay, and Mississippi Delta region.

Models All Regions Chesapeake and
Delaware Bay

Mobile Bay Mississippi Delta

NDCI 1.12 (0.29) 1.07 (0.28) 1.32 (0.28) 0.95 (0.12)
M09 1.47 (0.42) 1.31 (0.38) 1.76 (0.36) 0.93 (0.11)
D05 1.17 (0.31) 1.09 (0.29) 1.33 (0.30) 0.81 (0.22)
T07 2.20 (1.60) 1.48 (1.52) 3.52 (0.62) 0.70 (0.15)
G08 1.26 (0.43) 1.30 (0.38) 1.17 (0.54) 1.26 (0.16)
MERIS 1.11 (0.65) 1.31 (0.70) 0.74 (0.30) 1.46 (0.43)

Mean ratio=average of the ratios of the predicted chl-a values to the measured chl-a
values.
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However, if all the three validation parameters are considered simulta-
neously, NDCI showed overall better predictive ability (Table 4, Fig. 8).
Thus, the three-fold calibration resulted in three sets of chl-a equations
with coefficients very close to each other. The difference among them
causes minimal impact on the prediction accuracy of the models. It
has been verified by applying all three NDCI equations on an indepen-
dent validation dataset (validation dataset 3) and the very similar re-
sults were observed. All three equations produced a RMSE very close
to 2.37 mgm−3 with a STD of 0.127 mgm−3 mg m−3 of chl-a (not
shown).

3.3. Chlorophyll mapping using MERIS data

MERIS images acquired on April 15, 2008 were selected for the
Chesapeake and Delaware Bay for mapping spatial distribution of
chl-a. Image preprocessing steps included georeferencing and land
and cloud masking. We also masked out pixels with inaccurate reflec-
tance values (mostly negative values) and Open Ocean or case 1
Fig. 9. (A) Spatial distribution of chl-a map in Chesapeake Bay, upper Bay: north of 39oN, m
north–east corner, (B) Spatial distribution of chl-a in Mississippi delta region (pixels with no
are clouds and the black and blue color represents land and open oceans respectively. Conc
areas. NDCI chl-a equation generated from the first calibration dataset
(based on solar zenith) was applied on MERIS images from Chesa-
peake and Delaware Bay, Mississippi Delta region, and the Mobile
Bay to prepare chl-a distribution maps. As shown in validation re-
sults, NDCI was successful in predicting chl-a concentration with a
12% overall bias for all regions (Table 5). chl-a estimation accuracy
for Chesapeake Bay and the Mississippi Delta were within 5–7% of
the measured in situ values, whereas, the bias in Mobile Bay was
32% (Table 5). Overall, MERIS derived chl-a distribution maps were
consistent with the published chl-a levels for the Chesapeake Bay
and the Mississippi Delta. The maximum chl-a concentration value
mapped on the images was 59.08 mg m−3 (Figs. 9 and 10). For fur-
ther analysis, all case 2 water pixels were sampled and chl-a values
were analyzed. Frequency plot of the mapped chl-a in Chesapeake
and Delaware Bay shows that the chl-a concentration in the majority
of the bay was within 7–25 mg m−3 on July 15, 2008 (Figs. 9, 10C). In
the upper Chesapeake Bay and along the shorelines, chl-a concentra-
tion was comparatively higher. All tributary rivers in the middle Bay
region also showed higher chl-a concentration (Fig. 9A).

Significant portion of the MERIS image acquired on May 19, 2007
covering Mississippi Delta was of poor quality. Most of the pixels were
flagged by MERIS atmospheric correction scheme with inaccurate re-
flectance measurements and therefore masked out. The maximum
chl-a concentration observed in the map was 58.9 mgm−3 (Fig. 9B)
and the frequency plot revealed thatmost of the pixels had chl-a values
within 10–30 mgm−3 (Fig. 10B). High concentration of chl-a was ob-
served in the eastern boundary of the delta.

The highest level and the range of frequently occurring chl-a con-
centration recorded on the Mobile Bay map derived from the cloud
free MERIS image were 58.46 mg m−3 and within 7–20 mg m−3 re-
spectively (Fig. 10C). As expected, north-shore of the bay showed
the highest chl-a concentration. Because the Mobile River and the
id-Bay (37.5°N–39°N), and lower-Bay (south of 37.5°N). Delaware Bay is located in the
data were shown in white), and (C) in the Mobile Bay. Light green patches in the figure
entration of chl-a are in mg m−3.
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Fig. 10. Relationship between NDCI range and chl-a concentration at three unique case
2 water bodies. (A) Chesapeake Bay, (B) Mississippi Delta, and (C) Mobile Bay.
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Tensaw River drains nutrient-rich water which stimulates the growth
of phytoplankton and primary production making it the most produc-
tive part of the estuary.

4. Discussion

4.1. Algorithm performance

Accurate quantification and mapping of chl-a concentration in tur-
bid productive waters using remote sensing data can create enormous
opportunities for biogeochemists and climate scientists to understand
Fig. 11. Typical reflectance spectra of contaminated pixels in MERIS Level 2 reflectance pro
that produced extreme positive predictions.
the functioning of global nutrient cycles. As discussed earlier, chl-a
mapping in turbid productive waters is often challenging because of
the effect of other optically active constituents such as CDOM, detritus,
and mineral particles whose concentration do not co-vary with chl-a
(Morel & Prieur, 1977). Performances of NDCI and M09 model on the
simulated calibration dataset were very similar although the standard
error of the estimation for NDCIwas less than theM09model. However,
NDCI produced higher R2 and less STE than theM09 in the field dataset.
Both algorithms outperformed T07 at the calibration stage. The simulat-
ed dataset was produced by varying all possible bio-optical parameters
mimicking the natural variations in the Chesapeake Bay, Mississippi
Delta, and theMobile Bay. The basic difference between the two datasets
was the possible existence of the remnant atmospheric contamination in
the field dataset. This implies that M09 is probably more sensitive to the
atmospheric parameters than NDCI and thus produced lower R2 and
higher STE with the field dataset. Since T07 uses a green channel at
560 nm, it is highly sensitive to CDOM and detritus in the water and
thus produced the highest STE and RMSE in all stages of calibration and
validation (Tables 3 and 4).

Consistent performance of NDCI among all models in all study re-
gions was evident from the lowest STD of the mean ratio of 0.29
(Table 5). In contrast, MERIS Level2 chlorophyll product (Algal-2) per-
formed poorly in all study regions with highest STD of 0.65. NDCI also
produced the least bias, e.g., 7% and 15% in the Cheasepeake-Delaware
Bay and in the Mississippi Delta respectively. Similarly, NDCI produced
a mean ratio of 1.32 with the lowest STD of 0.28 in the Mobile Bay
(Table 5).

4.2. Chlorophyll mapping using MERIS data

Rrs spectra sampled from the MERIS images were very similar in
shape but higher in magnitude when compared to some of the pub-
lished spectra from the same regions (Dall'Olmo & Gitelson, 2005;
Darecki et al., 2003; Moses et al., 2009). This is because of the differ-
ences in the interpretation of Rrs. For example, Simis (2006) consid-
ered normalized water leaving reflectance, the radiometric quantity
available from MERIS Level 2 products, [ρw]N , as an equivalent of
Rrs. However, if we notice the formulation of both radiometric mea-
surements, [ρw]N is a product of Rrs and a constant, π, which could
be the reason of higher magnitude of sampled spectra from MERIS
images. Most of the spectra from the Chesapeake Bay exhibited an ab-
sorption feature centered at 620 nm (MERIS channel 6) which implies
the presence of phycocyanin in the bay waters. Phycocyanin is widely
accepted as a characteristic photopigment in cyanobacteria. Thus, the
above mentioned distinct optical signature implies abundance of cya-
nobacteria in the Chesapeake Bay during summer months. Spectra
from the river Mississippi Delta region and the Mobile Bay lacked
this optical feature. In all study regions, some pixels produced ex-
tremely inaccurate estimation of chl-a (extreme negative and positive
duct. (A) Spectra that produced extreme negative chl-a concentration, and (B) Spectra
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Table 6
Qualitative comparison between NDCI and chl-a concentration from all
study regions.

NDCI range Chl-a range (mg m−3 )

b−0.1 b7.5
−0.1 to 0 7.5–16
0 to 0.1 16–25
0.1 to 0.2 25–33
0.2 to 0.4 33–50
0.4 to −0.5 >50
0.5 to 1 Severe bloom
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values). Reflectance spectra were randomly extracted from those ex-
treme pixels and analyzed. All spectra showed unusual spectral shape
and negative reflectance values at several spectral channels (Fig. 11).
Those contaminated pixel values are believed to be originated from in-
accurate atmospheric correction scheme. Those contaminated pixels
were masked out from the final chlorophyll map products.

4.2.1. Chl-a and NDCI relationship
One of the biggest advantages of NDCI is that its range varies be-

tween −1 and +1 for areas with no cloud cover and adjacency and
bottom effects. Therefore, qualitative chl-a mapping (such as NDVI
for vegetation) and bloom detection using satellite data is possible
for remote areas where field data is unavailable or unusable. Further
analysis of the relationship between NDCI and chl-a helped us to as-
sociate an approximate chl-a range with certain NDCI values which
has tremendous application and will make mapping of chl-amore ac-
curate for remote areas. Based on the absorption properties and the
spectral band structure of NDCI, in optically clear water bodies NDCI
is expected to hold values closer to −1. NDCI values in water bodies
Fig. 12. (A) True color MERIS image of Lake Pontchartrain, LA, USA acquired on October 14,
Harris, and Lake Eustis, FL, USA, acquired in April 29, 2010 (White color represents pixels w
with moderate to high algal biomass are expected to vary in the
range of −0.3 to close to 1. In case of algal blooms with surface
scum on water bodies, NDCI values would vary within a range of 0.5
to 1 (Table 6). To reinforce the validity of the NDCI and chl-a range rela-
tionship, MERIS images of two entirely different areas,1) a mesotrophic
water body (Lake Pontchartrain, LA, USA), and 2) an eutrophic inland
water body (Lake Apopka, FL, USA) were considered. Lake Pontchartrain
is a large, shallow, oligohaline, and semienclosed estuary located in
southeastern Louisiana, USA. MERIS image acquired on October 14,
2010 is shown in true color composite and corresponding NDCI map is
also shown (Fig. 12A and B). NDCI values ranged between 0.4 to around
0 qualitatively suggesting chl-a concentration below~20 mgm−3which
is evident from the true color composite (Fig. 12A and B). On the other
hand, lake Apopka is a large (surface area=124 km2), shallow (mean
depth=1.7 m), hyper eutrophic inland lake located in central Florida,
USA and notorious for high nutrient concentrations and phytoplankton
biomass (Carrick & Schelske, 1997). During summer months (April–
July), chlorophyll concentration in the lake Apopka reaches as high as
105 mgm−3 (Carrick & Schelske, 1997). MERIS image of the lake ac-
quired on April 29, 2010 is shown in true color and alongwith the corre-
sponding NDCI map (Fig. 12C and D). The true color composite shows a
severe phytoplankton algal bloom in the lake that gives the lake water a
deep green hue such as terrestrial vegetation. Most frequently occurring
NDCI values in the lake varies from 0.4 to 0.6 implying a severe bloom
condition in the lake corresponding very well with data from literatures.
Similarly, severe algal bloomwas evident in the Lake Harris and the Lake
Eustis in the same MERIS image (Fig. 12C).

4.2.2. Possible sources of estimation error
Errors associatedwith atmospheric correction of theMERIS imageries

produced extreme negative and positive estimations of chl-a over a few
2010, (B) Corresponding NDCI image, (C) True color MERIS image of Lake Apopka, Lake
ith no data), and (D) Corresponding NDCI image. Location maps are provided in insets.
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pixels in all study regions. In ocean color remote sensing studies, accura-
cy of the atmospheric correction scheme controls the accuracy of the
mapped biophysical variable because the errors from the atmospheric
correction stage are propagated to the final product. Based on the spec-
tral band architecture of NDCI, it is clear that it would predict higher
chl-a values upon increase in the difference between Rrs(708) and Rrs
(665). Any disproportionate increase or decrease in reflectance at 665
and 708 nm creates inaccurate estimations of chl-a. For example, pixels
with disproportionate increase in reflectance at 665 nm as compared
to 708 nm will produce extreme negative values ; similarly dispropor-
tionate increase in reflectance at 708 nm will estimate extreme positive
values of chl-a.

Seven in situ data points sampled from the Chesapeake andDelaware
Bay on July 16 2008 did not have corresponding MERIS image and used
MERIS reflectance product from July 15, 2008. Next day image was
used based on the assumption that the overall concentration and spatial
distribution of biomass does not changewithin a day. Similar assumption
has also beenmadewhile usingMERIS data previously (Gons et al., 2008;
Moses et al., 2009). In reality, this assumptionmight not hold true as the
water circulation in estuarine and coastal environment is very dynamic
in nature. This might have caused some uncertainties in model calibra-
tion and validation.

5. Conclusion

Wehave presented a new index, NDCI, to be used on remotely sensed
data to predict chl-a concentrations in optically complex turbid produc-
tivewaters.Wehave tested its accuracy andpotential applicability by ex-
tensively calibrating and validating it on (1) simulated, and (2) MERIS
data representing three unique study areas with a wide range of trophic
status and optical complexity. The results presented in this paper illus-
trate the potential of NDCI to quantify chl-a concentration when used
with remote sensing reflectance data from MERIS sensor. We have also
analyzed and presented the quantitative interpretation of NDCI values
in the absence of field data and for remote areas, which makes NDCI
widely applicable to coastal waters as NDVI to terrestrial vegetation.
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