
By Mark Bennett
Chief Technology Officer, New Idea Engineering

Defining Specific Security
Requirements
Introduction
Expanding the scope of search within an
enterprise to enable employees and partners to
more easily find data seems almost directly at
odds with the security requirements that mandate
precisely controlled access to that same data.
Amid this turmoil, search vendors have remained
uncharacteristically quiet on the subject. While
they may offer a few buzzword compliant check
boxes on their data sheets, public information
about tightly integrating security with search is
scarce.

Why the Increasing Interest?
The media has made the general public more
aware of security, or more importantly, the high
profile failures of security. Within the enterprise,
corporate legal, IT, and PR departments have tried
to protect their own companies by being more
proactive, both in terms of technology and
procedures. The government has also stepped in
to add additional compliance regulations and
penalties. Judges have even mandated the search
enabling of archives as part of the discovery
phase of large lawsuits.

Perhaps a more fundamental reason for the
increased need for security is the large amount of
data that is now being stuffed into corporate data
stores and subsequently being "search enabled."
For example, the amount of email stored inside
corporations is growing, and there is a trend
within companies to "throw the switch" and turn
the corporate search engine lose on that data.
Storage manufacturers are accelerating the
amount of fully-indexed data by turning their
products into "smart" devices where the data
stored within can be searched directly, without the
need for an external search engine.

As more data is indexed, there are more chances
for sensitive data to be easily retrieved. If you

don't believe it, try searching for the word
"confidential" on your internal portal.

Turning the genie loose on these vast amounts of
data does seem at odds, at least on the surface,
with maintaining security.

Why the complexity?
Security is reasonably well understood for things
like bank accounts, and shared file network
storage and document management companies
have extended security deep within their systems
for some time now. So how hard should it be to
add security to searchable text?

Part of the answer may be that, relatively
speaking, search is still the new kid on the block,
and companies are still climbing the learning
curve. Some enterprises are still struggling to get
basic search working system wide, and once they
have it the next priority is inevitably "fixing
relevancy."

As companies progress with search, they
eventually start asking about security, as they
rightfully should. The next phase usually
involves the search vendor answering every
question with, "Oh yeah, sure, no problem." In the
extreme, the conversation degrades into an
alphabet soup of abbreviations and technical
terms that usually give managers headaches.

Here are some of the factors that can make search
engine security a bit complicated:

1. A lack of structure in many document stores.

2. The complex structure of other document
stores.

3. Existing and numerous security standards and
products.

4. A complicated mix of homegrown security
and/or legacy systems.

5. The need for the search engine "spider" to both
fully access all data and to restrict results.

6. Dense search engine and security vendor
vocabulary and product names.

7. Sparse vendor websites.

8. The difficulty of defining business
requirements for various classes of users and

Mapping Security Requirements to Enterprise Search

New Idea Engineering 1 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

data, including an occasional requirement for
"partial" access.

Defining Requirements
Though it may seem obvious, the first step in
implementing security is to define the
requirements with a particular company. This is
not as easy as it may sound. Many clients haven't
thoroughly done this and, as the design
progresses, some unusual requirements may
surface.

Security Granularity
Granularity refers to the precision with which
particular pieces of data can be secured.
Companies have very particular rules about which
documents, or which portions of which
documents, various users can see. This is, by far,
where the most interesting business requirements
come from.

All or Nothing
There is an idea that if you are "logged in" or
otherwise validated, that you can search for
information. As an example, smaller companies
may allow all employees on the internal network
to search all of the indexed data sources. If you
are logged in, you can search; if you aren't, you
can't.

This had been the traditional model of usage,
especially in smaller organizations, but it is
becoming obsolete. Today, most companies have
at least some public content and even non-
authenticated users are allowed to see it. At the
other extreme, most employees are not allowed to
see financial and human resources files. Because
of this, most companies have outgrown this
security model.

Search By Collection / Repository
One of the easiest and still reasonably useful
control techniques is to simply segregate data by
security requirements  public data is grouped
into one section, restricted data into a second,
highly confidential data into a third, etc. Most
search engines support the concept of collections,
which may also be referred to as "repositories,"
"sources," "document indexes," "spokes," or
"document sets." Search engines typically allow

each of these to be turned on and off in various
combinations for each search. Once the
credentials and access level of an individual user
is determined, the appropriate collections are
enabled for their search.

Search By Document / Record
This method of securing data will feel very
familiar to those with a database background --

certain groups or users can see certain documents.
Databases and Content Management Systems
have had this technology for a very long time and
enterprise search engines are quickly catching up.

Conceptually, in the realm of full-text search
engines the terms "record," "document," and "web
page" mean almost the same thing: a retrievable
unit of data. The specific terms used vary based
on the background of the people working on the
system or the physical source of the data.

Note: If you are relatively new to search engines
and have a database background you might want
also want to read “Contrasting Relational and
Full-Text Engines” at http://ideaeng.com/pub/
entsrch/issue09/article01.html.

Complexities of this Security Model
One of the complexities with this model is the
rendering of the results list. Typically a document
or record will be well secured, but the search

Mapping Security Requirements to Enterprise Search

New Idea Engineering 2 www.ideaeng.com

http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://www.ideaeng.com
http://www.ideaeng.com

engine has indexed all of the content and is engine
indexed all of the content and is displaying lists of
titles and summaries in a results list. It's not
enough to secure the actual document; the results
list should not display even the title or summary
from a document that the user cannot see. Often
even a title or summary can convey important
information. This can be the first surprise a
company has when it implements this level of
security. For example, a title of "Indictment of
John Smith Expected Tomorrow" tips off John
Smith, regardless of whether he can read the
entire or not.

A more subtle detail of the secured results list is
the display of the number of matching documents
and the links that allow users to page through a
long results list. A simple engine might display
the total matching count of documents, whereas a
highly restricted user may only have access to
10% of those records, so the count is quite
misleading. Beyond cosmetics, the engine needs
to have an accurate idea about what documents
that user can see when it is offering links to pages
2, 3 and 4 of the results list.

An even more subtle detail, but one which can
still be a requirement in highly secure systems, is
the confirmation of whether certain terms appear
in the document index at all.

For example, searches for terms like "layoffs,"
"indictments," or the names of specific people can
partially confirm the presence of information,
even if no document titles are shown. A highly
secure search will not confirm or deny the
presence of terms in its index outside the context
of what the user can search on. A more common
example may be to not confirm the presence of
obscenities or defamatory terms in non-accessible
content.

Search By Field / Subdocument
At this level of detail the design and
implementation complexity starts to ramp up.
The general idea is that different users can see
different portions of the same document.

Some examples:

• All managers can see summaries of sales
documents, but only VPs, Finance, and Sales
can see the specific financial terms.

• Partners can see the text of bug reports, but
can't see the company that the logged the issue.

• Sales Engineers can view technical design
documents, but can't read certain proprietary
details.

• Medical researchers can read legal cases, but
not patient details.

This still sounds straight forward, but the
implementation details can get a bit sticky. In the
previous section we mentioned that, conceptually,
"documents" and "records" are quite similar in the
scope of search engines. However, from an
implementation standpoint, subdividing a
database record on field boundaries is much easier
than subdividing a physical document, so when it
comes to implementation, document versus record
does matter.

Selecting only certain search fields from a
database is fairly easy, but automatically detecting
and removing certain parts of unstructured
documents can prove difficult. If a set of
documents was designed from the start for this
purpose, tools like XSLT could be used to break
them apart; in practice the search engine team
inherits somewhat random sets of documents. In
some cases formatting can be used to infer
security context, but some document formats are
harder to subdivide than others.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 3 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

Typical ease of document subdivision:

•
 Database record: easy (via select statement or
view)

•
 XML: easy (via XSLT)

•
 HTML: moderate (HTML is not always well-
formed)

•
 PDF: moderate to difficult (depends on PDF
format)

•
 Proprietary office documents: difficult (often
requires a document filtering library and
custom code or document conversion)

More open document standards are coming into
use, and even Microsoft has plans to embrace
them, so in the future subdividing documents
should become easier.

A Somewhat Odd Combination: "Title
Teasers"
We've seen this implementation enough to call it
out separately. Some sites that charge for content
allow users to see the title of documents in their
results list, and perhaps even a summary, but the
user must then pay to see the entire text of the
article.

This is a bit atypical because until the user has
paid, they do not have rights to read the
document. We said previously that results lists
shouldn't even show a title if the user doesn't have
rights to see the document, but this case is an
exception. It could be viewed as a rather extreme
form of field level security. The other oddity is
that the users’ access to particular documents can
change if they decide to pay. On the
implementation side, this may require some
adjustments to the system.

Search by Sub Field
Vocabulary: Redacting. The act of removing very
specific pieces of information from a document,
such as specific words and phrases, or perhaps
specific names and locations. The removed
information may be represented by black-boxes,
or removed entirely with no specific visual cue.

In some cases it is a requirement to restrict
information at the sub-field level. For example,
we've all seen news reports that show documents
where specific peoples’ names have been blacked
out. In this case the removal of information isn't
bounded by a neat field or document boundary; it
involves removal of more specific words and
phrases at a very fine level of granularity and
control. In some respects this is an extension of
sub-document retrieval; if a document is
unstructured, then removing portions of it use
some of the same techniques as sub-field removal.

And yes, search engines can even be coaxed into
handling this type of situation. Remember, it is
not enough to remove these terms from the actual
document when being viewed; most secure
environments would also stipulate that these
words and phrases not show up in the results list
titles or summaries. Furthermore, a really secure
system shouldn't confirm that the removed words
appear in the index at all.

Hybrid: Record AND Field
We realize that some of these scenarios sound like
"overkill," but we have personally seen these
requirements and worked to implement them at
specific clients.

Moreover, some business requirements require a
combination of one or more of the techniques
mentioned above. Some data is all public,
whereas other repositories have a document-by-
document access model. Some documents have
further restrictions within the document or fields.
The organizations that spend money to implement
these highly customized systems do so out of
necessity; they need to share data in a very
controlled way, but with the convenience and
efficiency of a search engine.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 4 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

These are not weird theoretical edge cases. Big
organizations have a lot of data and a lot of folks
who need to access it. In the past few years, as
they have embraced search technology, their
requirements have come along for the ride.

Levels of Users
This is the other side of the security equation.
Generally this area is much more widely
understood, and is about the same for search as it
is for other systems. The details of
implementation may present the only challenge.

Generally, users can be classified by:

Global Status
All users who can access the system, or are
otherwise "verified," share the same security
credentials. As with data, this "one size fits all"
model is often inadequate.

The one exception where this model may make
sense is for completely public services, where
every piece of data is intended to be public and
the search engine is not used for any internal data.

General Status
In this model, access is assigned by title or rank
within the organization. Levels of access might
include Partner/VP, Management, Employee,
Customer, Public. A similar model could be
adopted based on military rank or some other
system.

Group / Role
In this model, arbitrary groups of users can be
defined. Some of these groups may still be based
on management level or rank, but roles such as
"Human Resources" and "Finance" can be defined
to allow some subordinates in specific roles to
have access to additional appropriate data. Other
examples would be allowing customer service
personnel to access customer data, or grouping by
a user's current workgroup, allowing them to
easily share information with immediate
coworkers.

Specific User
This model may be combined with the group
model mentioned above. Security can be doled
out on a user-by-user basis.

This model may be difficult to implement,
depending on the method-specific search vendor
used. As we will discuss later, the preferred
"early binding" security filter method may be
overwhelmed by the potentially enormous
security filter this model may require.

A special class of "user" is often "self" or
"owner." Almost all systems allow users access to
their own documents and content, unless their job
is simple data entry. This could be considered a
special "role" or group.

These last two security models are commonly
associated with Access Control Lists (ACLs), a
long-standing security model. Data about specific
users and groups may be implemented with
Lightweight Directory Access Protocol (LDAP).

Implementing the system
Vocabulary Note
Although these terms can have broad meanings in
the computer and software industry, our
definitions here are specific to their use in relation
to search engines.

Document Level Security
This is security that can be controlled at a
document-by-document level. User A does a
search and can find matching documents that he
has access to. User B does the exact same search,
but sees a different set of matching documents,
which are the ones she would have permission to
view.

ACL / Access Control List
This is a list of security permissions associated
with a particular document or web page, and an
electronic representation of who is and is not
allowed to see the document. These permissions
store the unique ID for each group of people who
can see the document. It is also possible to store
the ID for specific users (vs. entire groups) though

Mapping Security Requirements to Enterprise Search

New Idea Engineering 5 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

this is less common and overuse can lead to
inefficiencies. Some ACL systems also allow for
a list of group and user IDs that are specifically
not allowed to see a document; these "deny" lists
typically override all "allow" listings.

ACLs are managed and stored in some other
system, such as LDAP or Active Directory pages,
or in a content management system.

LDAP and Active Directory
LDAP and Active Directory are standards for
storing information about users, groups of users,
and other company resources. LDAP stands for
Lightweight Directory Access Protocol and is
supported by many vendors. Active Directory is
an alternative standard supported by Microsoft.
Adapters exist to allow systems using the two
different protocols to interact with each other.

CMS / Content Management System
A CMS is software that stores and manages large
numbers of documents. Examples include
Documentum, Microsoft SharePoint, Lotus Notes,
and Vignette. Content from these systems is often
indexed and searched by enterprise search
engines.

SSO / Single Sign On
SSO is a network service that allows an employee
to login once and then have access to all secured
applications without the need to login again for
each application. In order for search engines to
implement security, they usually need to interact
with one or more of these systems.

Two General Types of Implementation
Document level security, where each group can
have access to different documents on a group-by-
group basis, is the fastest growing segment of
high end search engine installations. Document
level security is used when the simpler application
level security workarounds, such as collection
level security, start to fail. To have different
permissions for each document, you need to have
some type of existing ACL system and/or SSO
system in place and integration software from the
search engine vendor to connect to it.

Early vs. Late Filtering
Although implementations are vendor specific,
there are two primary designs for providing
document level security: "early binding" and "late
binding" document filtering.

"Early binding" document filtering is set up
before the query is sent to the core search engine.
Detailed information about the user's permissions
is automatically added to the query that the user
typed, just before the query is submitted, so that
the core engine will only bring back documents
that the user can access.

Early-binding document security is often more
complex to setup, but is strongly preferred since it
should provide much better performance and
avoid some odd display issues. If the underlying
engine understands the user's security limitations,
it will only return documents that they can see;
time is not wasted gathering titles and summaries
of documents that can't be seen. Since the
filtering happens at the lowest level of the search
engine, it should also happen much more
efficiently.

"Late binding" document filtering handles
document security after the search has been
submitted to the core engine, while the results list
of matching documents is being displayed to the
user. Each document's access level is checked
against the user's security credentials. The results
list formatter will check every document against
an external server to see if the user has access.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 6 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

Late Binding Security

Late-binding document filtering can potentially be
very slow and can strain corporate security
systems. Consider a relatively limited access
user, who belongs to only one low privileged
group. Let's assume, on average, that this user
can only see 10% of intranet content. Since most
engines show 10 documents on the first page of
results, then on average 100 documents will need
to be considered before 10 are found that are
acceptable to show. So for every search by every
user in this group, 100 documents will need to be
checked.

Vendors have many different names for these two
systems, so sadly you may need to do a little
digging.

If early-binding security is so much better than
late binding, why would anyone bother with late-
binding? The answer is that from a technical
standpoint late-binding was much simpler to
design and implement and, until very recently,
was much more common.

If you think about it, early-binding security
requires much more up-front work. For each
document, URL, database record, etc., its entire
access details must be downloaded and stored into
the search index. Getting the detailed ACL info
for a document depends on how the document
was stored. If a document is stored on a Windows
file server, then Microsoft based security
information for that file must be gathered; any
reference to specific groups or users will be
references to Microsoft domain groups and users.
On the other hand, if the document was stored

inside of Documentum, then that content
management system must be consulted for user
and group information. Those user and group
references will be specific to the Documentum
security database and may have no connection to
Microsoft domain groups and users. In a large
company, there can easily be a half dozen
different document repositories, each with their
own idea of "groups" and "users." Gathering
ACL information from each of these unique
sources and them mapping each to actual users
and groups inside of a company is a complex task.

With late-binding security, a single question can
be asked of any matching document and a user.
A simple "yes/no" request is made to retrieve the
URL of each document, and the user who issued
the search has his credentials forwarded to
whatever remote system hosts that particular
URL. The remote system will either return the
document or not, depending on the remote
system's opinion of whether that user can see that
document. From the search engine's standpoint it
will get either a "yes" or "no" answer and decide
to display or discard that document from the
results list accordingly.

Problems to Look Out For
In this final section we discuss some of the issues
that can arise when considering security. Things
don't always go as planned, even during the
design phase, and hopefully this will provide a
"heads up" on what to look out for earlier in the
process.

Non-Indexable Content and Federated
Search
There is some conflict between wanting to include
more and more data in a search engine's index,
while simultaneously increasing the chance that
even a trusted employee might accidentally gain
access to highly confidential information that he is
not supposed see.

In the last two sections we talked about how to
satisfy both goals by implementing robust
document level security in the main search
engine. A core assumption in this design is that
there is a central monolithic search engine. The

Mapping Security Requirements to Enterprise Search

New Idea Engineering 7 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

design assumes that the engine will index all of
the content into its own centralized search indices,
and then perform filtering at search time. We
refer to this as the "Über Index" design — one
search engine indexing data from all of the
repositories in the company, even the ones with
sensitive data.

In some organizations this is simply not feasible.
There may be technical obstacles such as a
repository that no vendor directly supports, or that
lacks an export or web interface.

Business-related issues, too, can present
intractable roadblocks, such as organizational
boundaries or very tight security policies. For
example, some groups may not want to provide
the spider with a login that can access all of their
content, even if they are promised that data will
be filtered reliably at search time. Or, since a
central search would technically be duplicating
their secure data onto another computer in some
format (cache files, binary search index, etc), that
might violate a security policy that mandates the
data remain solely in the original secured place.

For the latter business-related obstacles, a
thorough explanation of how search security
works might change some minds, but certainly
not all. Implementing Federated Search might be
a palatable alternative.

Federated Search allows a user to enter a search
into a single web form, but get back combined
results from multiple separate search engines.
When security is a factor, the authentication
credentials of the user that are passed into the
original system must be forwarded on to the
remote search engines, so that they can also

enforce document level security on their end. The
advantage of this model is that from the remote
and highly secure search engine's view, the search
can be treated just like a search submitted by a
user directly to that engine. If the credentials are
wrong, no results are returned; the remote search
engine maintains control of its own security,
regardless of where the search originated from.

Matching URLs or records from the remote
engines can be combined with the results from the
central engine into a single list of results.
However, there may be technical and design
issues involved with doing this. Another option is
to keep the results from the various engines in
separate parts of the results page, either in
separate tiles, different section headings, or on
separate tabs.

It is possible that some remote search engines will
not accept federated searches for either technical
or policy reasons. If there are a number of non-
federated sites like this, the sites themselves can
at least be listed as suggested sources of data if
the description of the site contains matching
terms.

As an example, if the finance department doesn't
want financial records searched remotely at all,
either by über-indexing or by federated search, a
description of its site could at least be included.
In this example, a user issuing a search for
"budgets" would not get any specific finance
document back, but they would see a suggestion
to visit the finance department's web site because

Mapping Security Requirements to Enterprise Search

New Idea Engineering 8 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

the site's description included terms related to
"budget."

Securing All the Links
Note: This section may be a bit terse for some
folks; please email us if you need a more detailed
explanation.

Search engines interact with many other systems
and users over the network, usually via TCP/IP
sockets. Hackers often try to monitor these
communication channels so highly secure
environments will need to encrypt or protect these
communication channels.

Some of the typical socket traffic would include:

• From the Spider to the Repository

• From the Client to the Application Server

• From the Application Server to the Search
Engine

• From the Search Application or Engine to
data logging services, such as when searches
are being sent into a Search Analytics
Database table

How Are Links Secured?
Detailing this is beyond the scope of this article,
but we can at least point you in some specific
directions.

A common way to secure sockets is by changing
from http to https, using SSL, or employing other
encryption techniques.

If it is too difficult to secure all the sockets,
machines could be organized into a secured
subnetwork or DMZ, protected by a firewall.

Traffic from other sources might be handled via a
proxy server or "reverse proxy server." One open
source resource that can help with some of these
tasks is the Squid caching proxy server from the
Apache group (http://www.squid-cache.org/).

Data Stored on Disk
Securing the Search Index
Every search engine stores information about the
source documents it has indexed or spidered in
some type of local database as a series of large
binary files on disk or network storage. These

files contain titles, summaries, and a catalog of all
the words in the source documents. Some
systems even include large snippets of the
documents' text, or may have even cached the
entire document itself. Even a search engine that
only contains word instance information is still
technically dangerous – it is possible to partially
reconstruct source documents using only word
instance information. This is not science fiction.
It can be and has been done.

We suggest locking down any servers that have
access to these disk files. There is talk of creating
encrypted search indices or solutions that will
encrypt an entire file system, but we worry that
this will slow down performance and complicate
implementation efforts. This practice is certainly
very rare.

Scripts, Logs and Stored Passwords
As with many other software products, the startup
scripts, indexing scripts, and spider configuration
files can contain passwords. Some vendors do
support storing hashed passwords so that at least
the passwords are not stored as plain text.
However, as with search indices, these disk files
should only be available to machines that are
tightly secured.

Results List Gotchas
There are a number of things than can thwart your
security designs.

Titles and Summaries can be a Leak
As we warned about in the first section, results
lists should not reveal anything about documents
that a user isn't allowed to see. Securing the
document itself, but still showing titles and
summaries to a user is a real security breach and it
is worth repeating the warning here.

Navigators and Statistics Can Reveal
Sensitive Items
As another reminder from the first section, results
lists often show how many matching documents
there are, or how many documents contain each
search term or provide clickable hyperlinks to
drill down into the results.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 9 www.ideaeng.com

http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.ideaeng.com
http://www.ideaeng.com

As an example, "layoffs" is a very loaded term;
even if an employee doesn't get any documents
listed in his results list for that search, a "helpful"
navigator that confirms the existence of
documents with that term, or worse, how many
documents have that term, is still a security
breach. An employee might assume that layoffs
are, in fact, on the way!

This level of security may not be easy to reach
with some vendors. Please check with your
vendor carefully if this is a concern.

Highlighted Document URL Linkage =
CGI Back Door
There are some very handy and innocent-looking
features in results lists that can sometimes be
hacked and used to bypass security.

For example, when a user clicks on a document in
a results list, many search engines open up the
document and show the search term highlighted
within the document, instead of sending the user
to the original document URL. This is referred to
as Document Highlighting, which should not to
be confused with highlighting search terms in the
results list's document summaries.

Related features include the ability of some search
engines to convert various document formats into
HTML by offering some type of "View as
HTML" link. Also, some search engines may
fetch matching records from a database, and
display them to the user.

In all these examples the search engine is
accessing the source document again every time a
user wants to view the document, long after
indexing is complete. More importantly, these are
usually implemented by using clickable URLs
that point back into the search engine. These
URLs can be edited to access other documents,
ones the user should not have access to. In other
words, even if a user doesn't see a secured
document in the results list, she can copy one of
these utility URLs to an editor, change the
document ID, and then paste the modified URL
back into the web browser. If security has not
been implemented properly, the search engine will
obey and retrieve and display the blocked
document.

More modern systems are aware of this type of
trick and these secondary links are also validated
against the user's credentials. Older systems
might use a single "super" login to fetch
documents for highlighting, enabling hacking.

In reality, we've never seen a user actually do this,
even on the older systems. Search engines seem
rather complicated to most users and editing
URLs takes a bit of technical skill, but thorough
security doesn't rely just on "security through
obscurity."

Runtime "Super" Login
Some older search engines had one or more super
logins for the runtime search engine which was
used at search time, not just at index time. If your
system requires this type of login, please re-read
the previous section carefully and make sure you
understand it.

Admin Gotchas
Due to the default installations of some search
products, it is important to double check that
administration portion of your system does not
introduce security holes.

Secure the Admin!
It seems amazing, but some search engines'
default installation brings up an administrative
service with no password! In reality, the software
is usually on a private network so this practice is
slightly less dangerous than it sounds. Still, there
is a tendency to forget to correct this, and a year
later it may still be unsecured.

Secure the Search Analytics and Business
UIs as Well
Also, many search engines have more than one
administrative UI. They may have a UI for IT,
another UI for business owners, or perhaps even a
third UI for running reports. These should also
have passwords.

Capturing User Info in Search Logs
From a technical standpoint, it's nice to have
information about which user did what search in
the search logs. By tracking the ID of each user's
search, a Search Analytics package can show
trends on a per-user or per-group basis.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 10 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

However, some sites may have security policies
that forbid this type of data gathering, so those
sites should make sure to disable this feature.
Also, some government jurisdictions may place
restrictions on tracking user activity.

A gray area for sites concerned with privacy is
that the TCP/IP address of the computer doing a
search is often tracked. If the computers have
fixed IP addresses or tend to get the same address
when they are rebooted, it might still be possible
to track searches back to a particular user. From
a reporting standpoint this is handy, but again it
may violate a company policy or government
regulation.

Conversely, Not Capturing User Info in
Search Logs
Assuming there is no policy or law forbidding the
logging of employee or customer search activity,
then it should be properly logged. Not doing so
could cause problems later.

For example, suppose the Tech Support manager
notices a sudden cluster of searches in the reports,
such as "crashing," "software crashing," "software
crashes," "core dump," or "your software sucks."
It's likely these all came from the same frustrated
customer — but which customer? If that info
hasn't been logged, then the manager can't
proactively provide relief or account
management.

Similarly, perhaps an HR manager suddenly
notices searches such as "sexual harassment,"
"sexual harassment policies," or "reporting sexual
harassment.” Clearly some employee seems to
have some concerns or questions about this
subject but has not specifically come forward to
report anything. If the HR manager knew who
that employee was, he might want to start some
preliminary investigations.

Although we are not lawyers, we’ve seen some
recent sexual harassment rulings that seem to
center on whether or not a victimized employee
reported the abuse to management, the
implication being that if the employee did not
report the abuse, then the company should not be
held liable for failing to address it. How can an

employer fix a problem that it doesn't know
exists?

We speculate that at some point in the future a
court might decide that sexual harassment-related
queries submitted to the HR site were in fact a
means of "reporting" the problem. If that were to
happen, then a company might become liable if it
failed to notice the searches and took action.
Being able to trace these searches back to a
particular user may become a legal requirement.

Raw Search Logs or Search Reports Could
Reveal Sensitive Data
We touched on a related area earlier, but if a
casual user of the reporting toolkit were to
suddenly see a lot of query activity about a layoff
in the search logs, she might infer that a layoff is
coming. Seeing search terms doesn't always
mean that there was matching content, but it can
certainly infer it. Some engines will confirm how
many documents matched. If an analytics tool
were to report that it was the CFO searching for
layoff material, and did he in fact get 150
matches, a report user would have even more
angst.

User Info
If an identifiable user has many searches for a
particular subject that might be embarrassing, an
inconsiderate coworker might let others know.
For example, an employee might be looking for
information in the HR database about policies
related to sexual orientation or substance abuse
treatment programs; a co-worker viewing those
searches in a report might be very surprised by
this and have trouble respecting confidentiality.

Ping / Sanity Checks
As part of ensuring the search engine is running
correctly, we suggest that clients run an advanced
"ping" script to periodically run a known search
and check the actual results.

This is a good idea, but if not properly filtered out
it will add a lot of bogus entries to the Search
Analytics Reports.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 11 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

Spider / Indexing Gotchas!
Because a search engine will likely be indexing
all of your data, it is imperative to fully
understand all of the security ramifications.

Spider and Repository "Super" Logins
If the sites your spider has access to require a
login, then your spider will also need a login.
Unlike typical user logins, the spider's login will
have complete access to all of the content. This
super login must be treated carefully and should
be clearly disclosed to repository owners.

Detecting a Failed Page
The HTTP protocol clearly defines error codes
that should be returned when a requested page
cannot be accessed. The page may no longer exist
or perhaps a login is required. However, web
servers do not always use these codes, or do not
make it clear to the spider that an error has
occurred or that a login is required. Even if your
spider has a valid login for the repository it is
trying to crawl, you may need to help it
understand when that username and password
needs to be sent. A symptom of such a problem is
noticing that the results list has titles and
summaries that talk about logging in or
instructions about resetting your password, etc.,
rather than having the titles and summaries for the
real documents.

In the early days of the Internet, when a web
server wanted a user to login, it would send an
HTTP "challenged response" error code of 401 or
402. For a human operator, a small separate
popup dialog box appeared, and they were asked
to enter a user name and password, and
sometimes also a "realm" or "domain." A 401
style challenged response is easy to recognize
because there is a separate popup window in the
browser that is clearly not part of a normal
HTML page. Spiders generally do understand
this type of response and handle it correctly.
However, more modern sites often don't use this
return code. Instead they want to provide the user
with a full web page that explains the problem,
and the web page will include the login username
and password boxes. This is the type of situation
that spiders often have trouble with; they don't

understand that his is NOT the page they just
requested, and therefore it is treated as a regular
document.

False HTTP status 200 Codes
The most annoying version of this problem is
when a server returns an HTTP success code of
200. The server returns an HTML page with an
error message or a login form, but sends a return
code of success.

It is our very strong opinion that this practice
violates the RFC protocol for HTTP, or at least its
intent. The requested page was not returned, but
the server has reported 100% success. If there
were an error, the server should be returning a 404
or 500 series error. If the user needed to login,
then it should have returned a 401 or 402, or at
least redirected to login page by sending a 300
series error code.

If you are trying to spider a site that returns OK/
200 for failed requests, the administrator of that
web site should fix it  if it is within your
company or organization, there is some chance he
might listen. However, if you have no influence
on "false-200" sites, you will need to modify your
spider to actually look for the login or error text in
the HTML that is returned. Spiders don't usually
have an option for this, so you may need to speak
with your vendor.

If you will be indexing a lot of public sites, you
might want to consider creating some custom
spider logic that looks for these patterns by
default and takes appropriate action. This type of
system could even be designed to read bad
phrases from a file or database, so that non-
programmers can easily update the lists. This
would also be a good way to filter out other types
of bad content:

• From above, "login" required / login forms

• "squatter sites"  domains that have not
been registered and are "for sale")

• Sites that are "under construction"

• Objectionable or offensive content

• Sites that use frames

• Sites containing no actual text

Mapping Security Requirements to Enterprise Search

New Idea Engineering 12 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

• Sites that require JavaScript, Java, Flash or
some other technology to view the site

• Unsupported user agent errors

• Unsupported "referer" [sic]

• Unsupported HTTP or browser versions

Many of these sites will also report a misleading
status of 200 to your spider.

Redirects to login pages
A somewhat easier problem to detect and fix is
when a site requiring a login redirects the user to
a login page. A return code in the 300 range is
returned in the HTTP header, along with a
"location" header field. Redirects are very
common even for pages that don't require a login,
so just looking for the HTTP 300 series return
codes won't distinguish good pages from bad ones
alone, but it's a start.

Some spiders support "forms based login." When
these spiders get a redirect, they check the target
of the redirect (the new URL is sent back in the
location field of the HTTP header). They check
this new URL against a list of known login forms.
If the new URL points to the login form, the
spider understands that it needs to login; if the
spider does not recognize the redirect as a login
form, it treats it like a normal redirect and
attempts to fetch that new page.

Spider Revisiting Orphan Links
An "orphan link" is a web page that still exists,
but is no longer linked to by the main site. If a
user had bookmarked the URL for the page, then
he could still get to it; but a new user starting at
the home page would not be able to navigate to it.
This typically happens when a webmaster unlinks
content on the web site; she decided, for example,
that an area of content is obsolete and removes all
hyperlinks pointing to that section of the site. In
the webmaster's mind, this content has now been
effectively removed from the site, even though the
specific files have not been deleted.

If a new spider were to crawl the site for the first
time after the links had been removed, the spider
would never see those pages and would not index
them. However, a spider that crawled the site

before the content was unlinked would still have a
record of those pages and the URLs.

Some spiders will revisit these pages on an
individual basis by URL, regardless of any
changes to the links to those pages. Since they
already have the URLs, and since those URLs still
work, the spider will continue to index this
orphaned content. A spider that operates in this
mode is often referred to as an "Incremental
Spider." Generally, revisiting each page
individually is an advantage, because the spider
can give more attention to pages that have been
frequently changing, and only occasionally visit
pages that almost never change. This issue of
orphaned links is one of the few downsides to
these Incremental Spiders.

This is not the case with all spiders. Older spiders
tended to start at the top of a site each time they
ran, and reindex everything from scratch. Those
spiders are generally referred to as "Batch Mode
Spiders" or "Non-Incremental Spiders."

To force orphaned content out of your search
index, you will need to take one of the following
steps:

1. Actually remove the content, page by page,
from the web server or repository.

2. Specifically remove each URL from the
spider's link database — this may not be
possible with some spiders.

3. Start a completely new spider of the site, one
which starts with a completely empty links
database. Look for options like "Full
Reindex" or "Clear Collection."

There is one other related orphaned content
problem worth mentioning, though not directly
related to security. In rare cases, a webmaster
accidentally unlinks content. This also creates
orphaned content. If the web site uses an older
spider, the number of pages in the search index
will drop dramatically; hopefully the site will
notice this large drop and fix it right away.
However, if a site accidentally unlinks content but
is using a newer incremental spider, the spider
will mask the mistake because it will continue to
access the orphaned content by URL. On the

Mapping Security Requirements to Enterprise Search

New Idea Engineering 13 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

surface this seems like an advantage, but this site
now has 3 problems:

1. There is content that users can longer navigate
to.

2. The problem is unknown and may not be
discovered for some time. Since the spider is
incremental, the search engine has no
dramatic change to report.

3. At some arbitrary point in the future, when the
site is reindexed from scratch, the page count
will drop dramatically and there may be
difficulty figuring out why. Since the content
was accidentally orphaned months or possibly
years ago, versus more recent changes which
have nothing to do with the problem, the focus
may be only on more recent changes and not
the real cause.

Spider Used File System Access, Got
Unintended Files
Sometimes a company will decide to have the
spider crawl a file system, such as a server's hard
drive, to find documents to index. These
documents are often also available on the web, so
the document has both a file name and a URL,
and the spider understands how to map one to the
other. There are various reasons for wanting to
use file system indexing instead of web indexing,
including performance, but the details are beyond
the scope of this article.

Since the spider can see all the files in every
subdirectory, it will want to index all of them,
regardless of whether or not those pages are
linked to by other pages on the web server side.
As an example, an author may have several
versions of a document. Only the final copy is
linked to on the web server, but when file
indexing is done, all 3 versions show up.

Another potential issue is that the web spider may
have only been looking for HTML and PDF files,
but many file system crawlers will also index
Excel spreadsheets, Microsoft Word documents,
Access databases, etc. by default. Those files are
much more likely to contain sensitive information
that was never intended to be published in any
format. If you use file system indexing, you
should run a report by Mime-Type, to make sure

suspicious files have not been accidentally
included.

File system indexing can also uncover entire
directory trees, and suddenly thousands of
forgotten files show up in the search index. If you
are using file system access, check for unwanted
files.

Spider Activity vs. User Activity
Many other systems within a company also log
and track access to the documents they contain.
This should not be confused with search analytics
logging; here we are talking about the logs that
other systems maintain to track the documents
users are looking at. The spider will appear to
those remote systems as a user, and they will
likely log the spider's activity as well. Therefore,
it is good to have the spider identify itself when
requesting pages from other servers so that this
activity can be interpreted differently.

One way to flag spider activity in systems that
track use accounts, such as a CMS repository, is
to give the spider its own special login.
Administrators will know that it is normal for the
user "speedy-spider" to be reading thousands of
documents.

For spiders indexing generic web servers, the
easiest way to flag spider activity is to set the
"User-Agent" field in the HTTP headings option
of your spider configuration. The User-Agent
field can even include contact information in case
there is a problem. For example:

User-Agent: Internal Search Engine Spider,
contact Satish at x4123

A webmaster investigating unusual access
patterns will see this in his log files.

Spider "HEAD" Command and Netegrity /
Site Minder
In short, the HTTP protocol supports many
request types, the two most common being GET
and POST. Users will normally only use those
two, and therefore in some cases these are the
only two request types allowed by Netegrity by
default. However, some spiders use the HEAD
request type. If your spider uses the HEAD
command, and if you use Netegrity or other SSO

Mapping Security Requirements to Enterprise Search

New Idea Engineering 14 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com

solutions, you should double check that this has
been enabled.

Summary
There are many potential security holes that need
to be double checked as you deploy an enterprise
search engine. We've listed the most common and
important, but we're always happy to hear your
thoughts.

New Idea Engineering helps companies make
search work right. We focus on search best
practices to help companies select, design, and
deploy advanced enterprise search applications.
Our methodology includes search 2.0
interactivity, periodic review of search activity
and ongoing search data quality monitoring to
ensure great relevancy and user satisfaction. To
contact us, call 1-866-IDEA-ENG or see our
website for more information at
www.ideaeng.com.

Copyright 2007. All rights reserved.

Mapping Security Requirements to Enterprise Search

New Idea Engineering 15 www.ideaeng.com

http://www.ideaeng.com
http://www.ideaeng.com
http://www.ideaeng.com
http://www.ideaeng.com

