Exprimiendo Java Web Start

Exprimiendo Java Web Start

Java Web Start es la apuesta de Sun Microsystemsa para lanzar a Java de una vez por todas dentro del mundo de las
apliccaiones de escritorio. La capacidad de ejecutar aplicaciones desde un navegador web y de hacer transparente al
desarrollador y al cliente el control de versiones y de dependencias hacen de Java Web Start una herramienta de valor
incalculable. En este articulo se muestra como sacar el maximo partido a esta tecnologia en entornos empresariales
donde los requerimientos de rendimiento y mantenibilidad son de gran importancia.

¢, Qué se puede encontrar en este articulo?

Este articulo trata de mostrar algunas técnicas para sacarle el maximo partido a Java Web Start dentro de un entorno
empresarial. En los primeros apartados se hace una pequefia introduccion a la tecnologia y se expone un ejemplo muy
simple de su uso. Finalmente se muestra como ejecutar mdultiples aplicaciones en una misma maquina virtual y como
aprovechar el mecanismo de carga dindmica de aplicaciones, que nos brinda la especificaciéon JNLP, dentro de
nuestras aplicaciones empresariales sin la necesidad de utilizar un navegador web para ello.

¢, Qué no se puede encontrar en este articulo?

Este articulo no es una descripcién exhaustiva de Java Web Start y JNLP, de ninglin modo se trata de una guia
definitiva de estas tecnologias y ninguna de ellas se trata en profundidad. Aunque se realiza una pequefia
introduccién, para poder seguir este articulo es recomendable que el lector esté familiarizado con estas tecnologias,
en especial con la estructura del descriptor INLP y el funcionamiento basico de la carga de aplicaciones con Java Web
Start. En [4,5,6,15,16,17,18] se puede encontrar mas informacion sobre todos estos conceptos.

Introduccidon a Java Web Start

Java Web Start es la implementacion de referencia de la especificacion JNLP (JSR 56, Java Networking Launching
Protocol)[1] que define como ejecutar aplicaciones Java remotamente desde un entorno de red cualquiera.

Java Web Start revoluciona el concepto tradicional que tenemos de las aplicaciones. Normalmente cuando se quiere
ejecutar una aplicacién que no se encuentra instalada en un equipo, se descarga del servidor, se instala en dicho
equipo y por ultimo se ejecuta. Java Web Start intenta simplificar al maximo todo este proceso de modo que el usuario
lo Unico que tiene que hacer para lanzar una aplicacion sea simplemente pinchar en un enlace de su navegador, a
partir de ese momento, todo el proceso relacionado con la descarga, instalacion y ejecucion del programa se realiza
de una manera transparente.

A pesar de su parecido, una aplicacion de Java Web Start no tiene nada que ver con un Applet. Java Web Start sélo
utiliza el navegador como medio para que el usuario pueda ejecutar las aplicaciones. Una vez que el usuario pincha en
un enlace de una aplicacion, ésta se ejecuta en la maquina virtual del cliente como cualquier otra aplicacion.

Java Web Start no forma parte del navegador web, es una aplicacion independiente y por lo tanto no requiere del
navegador para su funcionamiento. Una vez que el usuario pincha en un enlace para ejecutar una aplicacion, puede
continuar navegando o cerrar el navegador sin que esto interfiera en el funcionamiento de la aplicacién que ha sido
lanzada. Ademas, Java Web Start va guardando en una caché interna las aplicaciones que va ejecutando el usuario,
de modo que éste pueda lanzarlas posteriormente sin la necesidad de abrir el navegador o incluso ejecutarlas
localmente sin conectarse a ninguna red.

Las aplicaciones Java Web Start siguen el modelo de seguridad de la plataforma Java 2 por lo que la integridad de los
datos que obtenemos a través de la red esta garantizada. Como veremos, cominmente las aplicaciones que se
ejecuten han de estar debidamente firmadas y se requiere siempre que el usuario autorice su ejecucion.

Java Web Start viene incluido de serie dentro en el JRE a partir de su versién 1.4. La Ultima version es la 1.2 (beta)
que viene con el JRE 1.4.1 también beta. Como curiosidad resefiar que el sistema operativo OS X de Macintosh ya
trae preinstalado soporte para aplicaciones Java Web Start. Aunque técnicamente es necesario que se encuentre
instalado al menos un JRE dentro de la maquina cliente para poder ejecutar aplicaciones Java Web Start, lo cierto es
que éstas se pueden configurar de manera que el JRE utilizado se descargue automaticamente si no se encuentra
disponible con lo que se consigue una transparencia absoluta para el cliente.

http://www.javahispano.com

Java Web Start no es la tnica implementacion de la especificacion JNLP. Una alternativa muy popular es OpenJNLP
[10], una implementacion Open Source de la especificacion que esta desarrollada completamente en Java y que
utilizaremos en el dltimo apartado de este articulo.

Ventajasy desventajas de Java Web Start

Como ya he dicho anteriormente, Java Web Start revoluciona por completo el concepto tradicional de aplicaciones.
Las ventajas que ofrece tanto a los desarrolladores de las mismas como a los usuarios son muchas y muy
importantes:

* Transparencia : El usuario no necesita pasar por un proceso traumatico de descarga e instalacion de la
aplicacion para poder ejecutarla. Unicamente tiene que pinchar un enlace en su navegador y la aplicacion se
descarga, se instala y se ejecuta de manera automatica. Ademas, Java Web Start se encarga de crear los
accesos directos correspondientes en el escritorio y menu de inicio del usuario.

¢ Mantenibilidad : Para los desarrolladores y administradores de sistema, Java Web Start es una bendicion.
Ahora ya no es necesario copiar la misma aplicacion a todos los usuarios de una red cada vez que se realiza
una pequefia modificacién en la misma, sino que con actualizarla en el servidor web es suficiente para que los
usuarios puedan utilizar la dltima version de la misma.

* Control de versiones : Java Web Start se encarga automaticamente de realizar el control de versiones de las
aplicaciones. Antes de ejecutar una aplicacion, Java Web Start comprueba en el servidor web que no exista
una version mas avanzada de la misma, en cuyo caso actualizara la vieja version por la nueva
automaticamente. Esto beneficia tanto a los usuarios que siempre ejecutan la Ultima versién de su software,
como a los desarrolladores que no tienen necesidad de distribuir las nuevas versiones a los usuarios o crear
algun sistema interno de control de versiones.

¢ Independencia del servidor web y del navegador : Java Web Start puede funcionar en cualquier servidor
web tan solo afiadiendo el tipo MIME correspondiente a los ficheros con extension .jnlp, por otra parte,
también funcionara en cualquier navegador aunque en algunos habra que configurar el programa asociado a
los ficheros con dicha extension.

* Independencia del sistema operativo : Aunque Java Web Start no esta disponible para todos los sistemas
operativos para los que la plataforma Java se encuentra disponible, OpenJNLP que como dijimos esta escrito
en Java y que es una inciativa Open Source si que es totalmente independiente del sistema operativo.

¢ Automatiza la gestion de JREs : Cada aplicacion puede decidir que JRE quiere utilizar para ejecutarse, es
mas, si ese JRE no existiese en el equipo del cliente, Java Web Start se encarga automaticamente de su
descarga e instalacion en el sistema.

¢ Transparencia al desarrollador : No es necesario modificar las aplicaciones existentes para que aprovechen
esta tecnologia. Para hacer una vieja aplicaciéon compatible con Java Web Start, tan sélo hay que crear un
pequeirio descriptor XML con las caracteristicas de la aplicacion y colocarla en un servidor web. Las
aplicaciones pueden seguir ejecutandose del modo tradicional sin ninguin problema.

* Ejecucion local de las aplicaciones : Java Web Start a diferencia de tecnologias como JSP/Servlets no
necesita la red para ejecutar las aplicaciones. La red tan s6lo es un medio para obtener dichas aplicaciones y
sus actualizaciones. Una vez descargada una aplicacion, ésta se ejecuta de manera local y tan sélo accede a
la red si lo necesita para su funcionamiento.

Como toda tecnologia, Java Web Start no esta exenta de problemas:

« Una maquina virtual por aplicacion : Este es quizas el problema mas importante, aunque posteriormente
veremos una posible solucion. La especificacion INLP establece que cada aplicacion se ha de ejecutar en
una maquina virtual diferente. Obviamente esto es un gran obstaculo para entornos con recursos limitados y
donde sea necesario ejecutar multiples aplicaciones diferentes simultaneamente obligando a un consumo de
recursos y de memoria innecesario.

* Problemas de flexibilidad : Java Web Start tiene varias limitaciones de flexibilidad : no se pueden pasar
algunos parametros a la maquina virtual ya que se comprometeria la seguridad y la portabilidad (ejemplo: los
parametros que comienzan con -X), algunas opciones solo se pueden configurar desde el ordenador del
usuario (como el tipo de maquina virtual a utilizar, registrar la salida, etc.)

* No soportalos JRE 1.1 e inferiores : Java Web Start basa su funcionamiento en el modelo de seguridad de
la plataforma Java 2 por lo que no existe soporte para versiones anteriores.

http://www.javahispano.com

Utilizando Java Web Start

En este apartado vamos a ver con una aplicacion sencilla el uso de Java Web Start. El codigo fuente de la aplicacion
es el siguiente y todos los ficheros necesarios para ejecutar este ejemplo se encuentran en [26].

import javax.swing.*;
import java.awt.event.*;
import java.util.*;

public class Main {

private static int count;
private static List buttons = new ArrayList();
private JButton button = new JButton();

public Main() {

JFrame frame = new JFrame();

JButton button = new JButton();

buttons.add(button);

button.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent ae) {
count++;
Iterator it = buttons.iterator();
while (it.hasNext()) {
((JButton)it.next()).setText("clicks = " + count);

}

}
})i)
button.setText("clicks = " + count);
frame.getContentPane().add(button);
frame.setSize(300,300);
frame.setLocation(400,300);
frame.setVisible(true);

// Importante. Si se hace un exit se cerrar? el loader
frame.setDefaultCloseOperation(JFrame.DISPOSE ON_CLOSE);
}

public static void main(String[] args) {
System.out.println("[Main] main class executed");
new Main();

Como se puede apreciar, se trata de un ejemplo muy sencillo que muestra una ventana con un botén que al pulsarlo
incrementa un contador. El contador es estatico para poder comprobar facilmente si nuestro programa se ejecuta en
magquinas virtuales diferentes cuando lo lanzamos varias veces y que en el siguiente apartado utilizaremos para ver

como las aplicaciones se ejecutan en la misma maquina virtual.

Una vez que hayamos creado nuestra aplicacion y comprobado que funciona correctamente en modo local crearemos
el fichero jar que contendra la aplicacion. Para ello simplemente ejecutamos la siguiente linea:

jar -cvf main.jar *.class

El siguiente paso es la creacion del descriptor JNLP. Este descriptor es un fichero XML que contiene informacion sobre
nuestra aplicacion y sobre como ha de lanzarla Java Web Start. El descriptor de nuestra aplicacion es muy sencillo y
no presenta ningun problema incluso a los lectores no familiarizados con esta tecnologia, sin embargo el nimero de
parametros y opciones que soporta dicho descriptor es bastante grande, por lo que no dude en consultar las
referencias al final de este articulo para obtener una informacién mas detallada sobre el mismo.

Lo vemos a continuacion :

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://localhost:8080/jnlp/" href="jnlp.jnlp">

<information>

http://www.javahispano.com

<title>Ejemplo de JNLP</title>
<vendor>JavaHispano</vendor>
<homepage href="http://www.javahispano.com"/>
<description>Ejemplo de JNLP</description>
<description kind="short">
Esta aplicacidén es un pequefio ejemplo de la tecnologia JNLP
</description>
<icon href="images/javahispano.jpg"/>
<offline-allowed/>
</information>

<security>
<all-permissions/>
</security>

<resources>
<j2se version="1l.4+"/>
<jar href="lib/main.jar"/>
</resources>

<application-desc main-class="Main">
</application-desc>

</jnlp>

Como se puede observar la mayoria de los campos son autodescriptivos. Quizas los mas interesantes sean la etiqueta
<jnlp> cuyos atributos especifican donde se encuentra el fichero JNLP, la etiqueta <jar> que permite especificar los
diferentes archivos que componen nuestra aplicacion, la etiqueta <j2se> cuyo atributo version especifica cual es la
maquina virtual que se usara para ejecutar la aplicacion y la etiqueta <application-desc> cuyo atributo main-class
especifica cual es la clase principal de la aplicacion.

Java Web Start puede ejecutar las aplicaciones en dos modos diferentes. El primero, es el modo restringido, en el que
las aplicaciones se ejecutan en un sandbox, modo en el que s6lo pueden hacer uso de determinados recursos del
sistema. El API de Java Web Start permite la utilizacion de diversos servicios programaticamente para poder saltarse
algunas limitaciones de este modelo y permitir de este modo el acceso a ficheros, al portapapeles, a la descarga de
archivos, etc.

El segundo modo, es el modo de confianza y es el que utilizaremos en este y el resto de ejemplos. En este modo las
aplicaciones consiguen el acceso a todos los recursos del sistema. Para que una aplicacién pueda conseguir dicho
acceso, previamente ha de tener todos los ficheros jar de los que conste firmados digitalmente, de este modo, cuando
el usuario quiera ejecutar la aplicacion le aparecera un certificado donde se solicita acceso no restringido al sistema, el
usuario es el que decide si debe confiar 0 no en la fuente que emite el certificado.

El proceso de firma de los ficheros jar es muy sencillo. Lo primero que hay que hacer es crear una clave de
autenticacion con la herramienta keytool, por ejemplo:

keytool -genkey -keystore myKeyStore -alias myself

Esta herramienta nos pedira informacion acerca de la clave y del emisor del certificado que le aparecera al usuario al
ejecutar la aplicacion. La clave se almacenara en el almacén de claves que especifiquemos. Una vez creada la clave,
tan solo nos queda firmar todos nuestros ficheros jar, en este caso:

jarsigner -keystore myKeyStore main.jar myself
Por dltimo, para pedir acceso no restringido al sistema habria que afadir las siguientes lineas al descriptor jnlp:

<security>
<all-permissions/>
</security>

Bien, la aplicacion ya esta preparada por completo, tan solo falta configurar el servidor web. En este ejemplo y en el
resto, utilizaré Apache Tomcat [19], aunque también se puede utilizar cualquier otro servidor. En el servidor que se
utilice habra que afiadir soporte para el tipo MIME para los ficheros JNLP, en este caso, Tomcat ya lo trae incluido por
lo que no hay que configurar absolutamente nada.

http://www.javahispano.com

Para este y el resto de ejemplos crearé la siguiente estructura dentro del servidor web:

raiz del servidor
| jnlp
jnlp.jnlp
lib
main. jar
Esta estructura se puede crear de muchas formas, ya sea creando un contexto particular, un simple directorio a partir
del raiz, etc.

Una vez arrancado el servidor web, se deberia acceder a la aplicacién escribiendo el enlace (suponiendo que usamos
Apache Tomcat) :

htp://localhost:8080/jnlp/jnlp.jnlp

Segun el navegador que se utilice para ejecutar el ejemplo quizds sea necesario configurarlo para que asocie el tipo
MIME JNLP con la aplicacion Java Web Start u OpenJNLP en caso de utilizar este dltimo. Si por cualquier razén no se
es capaz de configurar el navegador para ejecutar aplicaciones JNLP, siempre se pueden lanzar desde la linea de
comandos, por ejemplo con Java Web Start tendriamos que escribir los siguiente:

directorio de Java Web Start/javaws http://localhost:8080/jnlp/jnlp.jnlp

Una vez hecho esto, si es la primera vez que se ejecuta la aplicacion, aparecera una alerta de seguridad en la que se
le pregunta al usuario si quiere confiar en dicha aplicacion y en la fuente que emite el certificado. En el mensaje hay
una alerta de que no se puede verificar la autenticidad del certificado, esto es totalmente normal ya que no se ha
comprado dicho certificado a ninguna autoridad de certificacion. Para lanzar la aplicacion definitivamente hay que
pulsar el botén Iniciar.

= advertencia de sequndad

|avA™ WEB START

['x

Este aplicacidn solicita acceso sin restricciongs & su maguinay a
y Suredlocal

—_— fDeszea instalar wejecutar Ejemplo 1 de JNLP
Firmado v distribuido par: Martin

Acheeriencia no se ha podido werificar la autenticiclad de este certificado.
Mo se puede hacer ninguna afirmacidn acerca del origen ni acerca de la
validez del codigo.

Mo 58 recomienca instalar ni ejecutar este cadigo.

Iniciar Detalles Salir

Uno de los problemas de Java Web Start que ya mencioné anteriormente es que cada aplicacion se ejecuta en una
magquina virtual diferente. Una manera de comprobarlo es ejecutar dos veces la aplicacién de ejemplo de este
apartado y ver como al pulsar el boton de una de ellas el otro botén no se ve modificado, esto se debe a que las
aplicaciones se estan ejecutando cada una en su maquina virtual. En el siguiente apartado se vera una manera simple
de sobrepasar este inconveniente y poder de este modo ejecutar gran cantidad de aplicaciones en la misma maquina
virtual.

http://www.javahispano.com

Ejecutando multiples aplicaciones en la misma maquina virtual

Como se ha visto, una de las ventajas de Java Web Start es que permite lanzar aplicaciones desde la web de una
manera transparente. A poco que pensemos, una de las consecuencias de esto es la posibilidad de crear portales
empresariales que engloben aplicaciones de muy diferentes tipos.

A menudo, en las empresas encontramos aplicaciones de muy diversa indole. Es muy sencillo que en una misma
empresa existan aplicaciones nativas (ya sean del sistema operativo o viejas aplicaciones creadas por la empresa),
aplicaciones Java y aplicaciones basadas en tecnologia web (JSP, Servlets, ASP, PHP, etc.). La diversidad de todas
estas tecnologias hace que sea muy dificil la creacion de un portal personalizado donde cada usuario pueda ejecutar
estas aplicaciones y conseguir una alta mantenibilidad del sistema.

Java Web Start nos ofrece una buena posibilidad para realizar un portal de este estilo. Las aplicaciones web no
plantean ninguin problema, las aplicaciones Java tampoco son un problema ya que esta tecnologia nos permite
lanzarlas directamente desde el navegador mientras que las aplicaciones nativas pueden ejecutarse utilizando un
pequeiio lanzador de aplicaciones realizado en Java y que también podra ejecutarse sin problemas desde el
navegador. Las ventajas de un portal de este estilo son inmensas: mantenibilidad, centralizacion de la informacién,
control sencillo de los permisos de acceso, personalizacion del contenido, etc.

Sin embargo todavia nos queda un problema: cada aplicacion se ejecutara en una maquina virtual diferente, algo que
es inadmisible cuando el nimero de aplicaciones a ejecutar es relativamente grande y el nimero de recursos es
limitado.

En este apartado se muestra una posible solucion a este problema basada en el uso de un lanzador de aplicaciones.
Este lanzador actuara como un demonio de sistema que se quedara a la espera de aplicaciones Java para ejecutar.
Cuando una aplicacion Java quiera ejecutarse, el cargador iniciara un nuevo hilo en su maquina virtual y la lanzara.

Para conseguir hacer esto es necesario centralizar el acceso a las aplicaciones, es decir, antes, teniamos que cada
descriptor JNLP se utilizaba para ejecutar una aplicacion diferente, ahora cada descriptor JNLP se utilizara para
ejecutar siempre nuestro lanzador de aplicaciones y a éste se le pasara como parametro la aplicacion que se quiera
lanzar. Siguiendo con el ejemplo del apartado anterior el descriptor INLP quedaria del siguiente modo:

<application-desc main-class="Loader">
<argument>Main</argument>
</application-desc>

En este caso el lanzador se corresponde con la clase Loader. El primer argumento que recibe dicho lanzador es la
clase principal de la aplicacién que se quiere ejecutar, en este caso Main. El resto de parametros de la aplicacion se
pasarian también como argumentos, eso si, el primero siempre ha de ser la clase principal. El siguiente esquema
muestra graficamente el funcionamiento de este lanzador de aplicaciones:

http://www.javahispano.com

4)

Servicio

1 .
| il Lanzador

Java
Vel | | Largaoor
Start

Basicamente:

* Sies la primera vez que se ejecuta nuestro cargador de aplicaciones, éste se queda residente en equipo del
usuario esperando por aplicaciones para ser lanzadas. En este caso depués de registrar el cargador se
lanzaria la aplicacion que se iba a ejecutar.

¢ Siel lanzador de aplicaciones ya se encuentra residente, entonces se le avisa de que se quiere ejecutar una
nueva aplicacién, posteriormente el lanzador ejecutara dicha aplicacion en un nuevo hilo de su maquina
virtual.

Para implementar este lanzador de aplicaciones residente existen muchas alternativas. En este caso se ha utilizado
RMI[20,21,22,23,24,25] principalmente por su sencillez; otras alternativas podrian haber sido utilizar sockets o utilizar
directorios compartidos.

De aqui en adelante se mostrara el cédigo fuente del cargador de aplicaciones que se puede encontrar en [26]. La
explicacion se va realizando por partes para que sea mas sencilla su comprension.

Como objeto remoto que es el lanzador de aplicaciones ha de implementar una interfaz remota:

import java.rmi.*;
public interface Loader extends Remote {

public void launchApplication(String[] args) throws Exception;
public void shutdown() throws RemoteException;

}

Como se puede ver, el cargador es muy simple, tiene métodos para lanzar aplicaciones y para retirarse del sistema.
Ahora voy a describir mas a fondo la implementacion del cargador. Primero empezaré con el método main:

public static void main(String[] args) {
if (System.getProperty("shutdown-registry") != null) { *1
shutdownRegistry();
System.exit(0);

else if (System.getProperty("own-vm") != null) { *2
executeAppInOwnVM(args) ;

}
else {
try {)
createRegistry(); *3
try {
executeApp(args) ;
}

http://www.javahispano.com

catch (Exception e) {
e.printStackTrace();

}

catch (ExportException ee) { *4
System.out.println("[Loader] registry already created");
executeApp(args);

System.exit(0);

catch (Exception e) {
e.printStackTrace();
}

¢ . Lo primero que se hace en *1 es comprobar si lo que se quiere es cerrar el cargador, esto podria
corresponderse con la tipica opcion de salir del sistema en un portal empresarial.

* . En*2 se comprueba si la aplicacién ha de ejecutarse en su propia maquina virtual ya que puede que no
gueramos que alguna aplicacion en concreto comparta la maquina virtual en la que se ejecutara con el resto
de aplicaciones.

¢ . Sino se cumple ninguna de las dos condiciones anteriores, en *3 el cargador intenta hacerse residente en el
sistema y una vez lo haya conseguido ejecuta la aplicacion.

¢ . En caso de que ya se encuentre residente (*4) se ejecuta la aplicacion.

En los siguientes puntos se muestra el cddigo de los métodos mas importantes:

public static void createRegistry()
throws RemoteException, ExportException,InterruptedException {

System.out.println("[Loader] craeting registry");
registry = LocateRegistry.createRegistry(PORT);
System.out.println("[Loader] registry created");

El método createRegistry() que se ve arriba simplemente intenta crear un registro RMI en el puerto especificado del
equipo del cliente. En ese registro es donde guardaremos el lanzador de aplicaciones.

El método executeApp() que aparece por debajo de estas lineas es el que se encarga de ejecutar la aplicaciéon y
afadir el cargador al registro RMI si es necesario:

private static void executeApp(String[] args) {

try {.)
registry = lookupRegistry(); *1

catch (Exception e) {
e.printStackTrace();

return;
}
Loader loader = null;
try {
loader = lookupLoader(); *2

loader.launchApplication(args);

}
catch (NotBoundException nbe) {
System.out.println("[Loader] loader not bound");

try {
bindLoader(); *3
loader = lookupLoader();
loader.launchApplication(args);

catch (Exception e) {
e.printStackTrace();
return;

}

catch (Exception e) {
e.printStackTrace();

http://www.javahispano.com

}

return;

}

¢ - Lo primero que se hace es intentar localizar el registro (*1) donde se deberia encontrar el lanzador de
aplicaciones, si el registro no se encuentra se finaliza la ejecucion del programa.

¢ . El siguiente paso es buscar el lanzador de aplicaciones dentro del registro (*2), si lo encontramos se
intentara lanzar la aplicacion.

* . En caso de que no se cumpla la condicién del punto anterior, se afiade el lanzador de aplicaciones al
registro (*3), se busca para asegurarse de que se ha cargado correctamente y finalmente se intenta lanzar la
aplicacion. En caso de que en alguno de estos dos ultimos puntos produzca una excepcion el programa
finalizara.

A continuacion se pueden ver estos métodos mas en detalle:

public static Registry lookupRegistry()

}

throws RemoteException {

System.out.println("[Loader] looking for registry");
Registry registry = LocateRegistry.getRegistry(PORT) ;
System.out.println("[Loader] registry found successfully");
return registry;

public static Loader lookupLoader()

}

throws RemoteException, NotBoundException, MalformedURLException {

System.out.println("[Loader] looking for loader");

Loader loader = (Loader)Naming.lookup("//localhost:"+PORT+"/loader");
System.out.println("[Loader] loader found successfully");

return loader;

public static void bindLoader()

throws RemoteException, AlreadyBoundException, MalformedURLException {

System.out.println("[Loader] binding loader");
Naming.rebind("//localhost:"+PORT+"/loader",new LoaderImpl());
System.out.println("[Loader] loader bound on registry");

Como se puede apreciar, el cédigo es muy simple y hacen uso de los mecanismos basicos de RMI[] para registrar y
buscar los diferentes objetos.

El método launch(String[] args) es el verdadero encargado de lanzar la aplicacion que se quiere ejecutar. Este método
lo llama el cargador desde su maquina virtual, la misma que ejecuta todas las aplicaciones. Para ejecutar la aplicacion,
simplemente se obtiene el método main de la clase que queremos ejecutar utilizando el API Reflection y se llama a
dicho método pasandole los argumentos necesarios; cualquier otra alternativa (llamada a un método concreto, a un
constructor, a un inicializador estatico, etc.), también habria sido posible y se realizaria de modo muy similar.

public static void launch(String[] args) throws Exception {

if (args[0].length == 0)

throw new LoaderException("Not enough arguments");
¥
System.out.println("[Loader] loading arguments");
String classname = args[0];

String[] newArgs = new String[args.length-1];
if (newArgs.length != 0)
System.arraycopy(args,l,newArgs,0,newArgs.length);

}

System.out.println("[Loader] args array created");
Class appClass = Class.forName(classname);
System.out.println("[Loader] class dinamically loaded");

Method mainMethod = appClass.getMethod("main", new Class[]{String[].class});
System.out.println("[Loader] main method loaded");

http://www.javahispano.com

mainMethod.invoke(null, new Object[]{newArgs});

System.out.println("[Loader] main method invoked");
}

El conjunto de archivos que componen el ejemplo de este apartado se encuentra en [26]. Lo primero que hay que
hacer es configurar el servidor web como se vio en el apartado anterior para que el fichero ejemplo2.jnip y las librerias
que contienen el lanzador de aplicaciones (loader.jar) y la aplicaciéon que ejecutaremos (main.jar) sean accesibles. Por
seguir con la estructura que se vio en el apartado anterior, el fichero ejemplo2.jnip ird bajo el directorio jnlp mientras
que los ficheros main.jar y loader.jar se colocaran bajo el directorio jnlp/lib/. Una vez configurado todo correctamente lo
Unico que hay que hacer es arrancar nuestro navegador web y acceder al fichero ejemplo2.jnlp, momento en el que el
lanzador de aplicaciones se hara residente para posteriormente lanzar la aplicacion.

L A s calva Firtuloids : ' (LI
orsoda Java Web Stan, inkiada San Aug 17 1902920 CE5T 2002
flava 2 Rumtime Environment: Wersitn 1 4.0 por Sun Microsystems Ing
Loader] cragting registay
Loader] regstry created
fLo-ader] ioking for regisry
Loader] regestry found successiully
[Losadier] looking for loader
ELoader] oader not bound
iLoader| Dinding loader
Loader] bader bound on regisiry
Losader] koking for loacer
Loader] bbader found successiully
fLoader] loading arguments
Leader] args array craged
Loader] class dinamicaily loaded
Locadler] main method loaded
{Main] mam ciass evecifed
fiLoader] maln method irnvoked

En la consola de Java Web Start se puede ver como se va realizando todo el proceso de creacion y configuracion del
registro para acabar lanzando la aplicacion. La aplicacion lanzada es la misma que vimos en el apartado anterior, es
decir, una ventana con un boton que muestra el valor de una variable estatica que actia como contador. Si se vuelve a

lanzar el fichero ejemplo2.jnlp desde el navegador se ver4 como ahora ya no se crea el registro y se lanza
directamente la aplicacion.

10

http://www.javahispano.com

Falta resefar algunos puntos:

« Eltiempo de carga de la segunda aplicacion y posteriores es mucho menor que el de la primera ya que no es
necesario crear una nueva maquina virtual para ejecutarla, por lo tanto tenemos una ganancia importante en
tiempo de lanzamiento.

« Al gjecutarse todas las aplicaciones en una misma maquina virtual hay que tener especial cuidado con las
variables estéticas. En el ejemplo se ve claramente este efecto ya que al abrir varias aplicaciones se observa
como al pulsar en uno de los botones el resto de contadores del resto de aplicaciones también se actualizan.

Aprovechando el mecanismo de carga dinamica de aplicaciones que ofrece JNLP

Hace tiempo, me toco trabajar en un proyecto interesante, se trataba la creacién de multiples aplicaciones para
gestionar una empresa y una de ellas era un escritorio desde el que se pudiesen lanzar todas estas aplicaciones. El
principal problema al que nos enfrentdbamos era el intentar que los usuarios pudiesen acceder a todas las
aplicaciones y que éstas se ejecutasen en la misma maquina virtual para de este modo aprovechar mas los recursos
disponibles en los clientes y e incluso tener la posibilidad de compartir estructuras de datos entre las aplicaciones.

Hace unos dias, uno de mis amigos de esa empresa en la que estuve me comentd que ahora se encontraban con un
pequeiio problema. Con el paso del tiempo, la cantidad de programas que se han ido afiadiendo a ese escritorio ha
sido muy grande, en el que el tamafio de la totalidad de aplicaciones hace complicada su actualizacion y
mantenimiento. Habian pensado en Java Web Start por la flexibilidad que ofrece pero no veian la forma de utilizarlo ya
que su escritorio es una aplicacién Swing y no esta pensado para ser ejecutado desde un navegador web, ademas no
quieren tirar por la borda todo el trabajo que hicimos y quieren mantener el mismo lanzador de aplicaciones por lo que
hacer un equivalente en navegador web no es una opcién viable.

El objetivo que se persigue es que las aplicaciones se actualicen ellas mismas cada vez que sean invocadas,
consiguiendo de este modo una transparencia absoluta al usuario y un ahorro considerable de mantenimiento para el
equipo de desarrollo, y todo esto manteniendo el lanzador que existia previamente.

Por suerte, existe una solucion muy sencilla que es aprovechar todos estos mecanismos de carga dinamica de
aplicaciones que ofrece la especificacion JNLP, esta solucién pasa por utilizar OpenJNLP. OpenJNLP es un desarrollo
Open Source, que esta formado por un cargador de aplicaciones que viene a ser el equivalente a Java Web Start y por
un conjunto de librerias que implementan la especificacién de JNLP.

Hasta ahora, en el escritorio desde el que se lanzan las aplicaciones cada vez que se pulsaba en el icono de una de
dichas aplicaciones, ésta se lanzaba en un hilo diferente. Con el nuevo planteamiento, en lugar de ejecutar la
aplicacion directamente, lo que se hara serd realizar una llamada a una funcién de una de las librerias de OpenJNLP
que se encargara de comprobar y actualizar la aplicacion con nuevas versiones en el caso de existiesen y ejecutar la
aplicacion.

11

http://www.javahispano.com

En [10] esta el enlace desde donde se puede descargar OpenJNLP, una vez descargado es necesario afiadir al
CLASSPATH las librerias openjnlp-lib.jar y openjnlp-extra.jar. Es muy importante también bajar el Java Web Start
Developer?s Pack [3], que contiene la libreria jnip.jar que también es necesario afiadir al CLASSPATH.

El ejemplo se compone de una ventana que contiene un botén, cada vez que se pulsa el botén se carga la aplicacion
que hemos utilizado hasta ahora en todos los ejemplos, es decir, la que se encuentra en el fichero main.jar. El objetivo
es ver como si se actualiza esta aplicacion en el servidor el usuario siempre carga la ultima version de manera
transparente.

En el siguiente trozo de cddigo se encuentra la parte en la que se lanza la aplicacion al pulsar el boton, he suprimido
toda la parte del interfaz gréafico ya que no tiene demasiado interés.

import org.nanode.jnlp.*; *1
import org.nanode.launcher.cache.FileCache;
import org.nanode.launcher.cache.Cache;

private void launch() {

try {
final Cache cache = FileCache.defaultCache(); *2

final URL url = new URL("http://localhost:8080/jnlp/jnlp.Jjnlp");
new Thread() {
public void run() {

try {
JNLPParser.launchJNLP (cache,url, true); *3

catch (ParseException pe) {
pe.printStackTrace();

¥
}.start();

catch (MalformedURLException murle) {
murle.printStackTrace();

}

El proceso es muy sencillo:

¢ Lo primero que hay que hacer es importar las clases necesarias de la libreria OpenJnip (*1).

« Una vez hecho eso hay que establecer la caché de aplicaciones (*2), que es donde OpenJNLP ira
almacenando las aplicaciones que un usuario va ejecutando para poder ejecutarlas cuando no exista una
versién mas actualizada en el servidor. La implementacion por defecto de la caché de aplicaciones se basa
en ficheros. El directorio donde se guardan dichas aplicaciones es el .jnlp/cache/vendori/title a partir del
directorio que tenga como valor el atributo user.home, donde vendor y title se corresponden con los campos
del descriptor jnlp.

* Para finalizar el proceso se lanza la aplicacién (*3). El método launch se encarga automaticamente de
comprobar si existen actualizaciones de la aplicacion que especificamos en la url que se le pasa como
parametro y ejecuta dicha aplicacion en un nuevo hilo.

El conjunto de archivos que componen este ejemplo se encuentra en [26]. Lo primero que hay que hacer es configurar
nuestro servidor web como se vio en los anteriores apartados para que el fichero ejemplo3.jnip y las librerias que
contienen las diferentes versiones de la aplicacion que se va a ejecutar (main.jar y main2.jar) sean accesibles.

Los dos ficheros jar contienen la misma aplicacion que se ha utilizado hasta ahora como ejemplo salvo que la segunda
version dibuja el boton de color rojo. El proceso de prueba es el siguiente:

¢ Primero se ejecuta la clase Desktop.class con el comando java -cp path_a_librerias_jnlp Desktop. Esta clase
se encargara de lanzar el descriptor JNLP ejemplo3.jnip, que utiliza el fichero main.jar por lo que debera
aparecer la aplicacion con el boton normal.

¢ A continuacion, para poder observar todo lo que se ha comentado es necesario sobreescribir en el servidor el
fichero main.jar con la nueva aplicacion, main2.jar.

* Por dltimo se vuelve a ejecutar la clase Desktop.class como se explico en el primer punto. En este caso,
como la aplicacion ha sido modificada, se bajara la nueva version y el boton aparecera de color rojo.

12

http://www.javahispano.com

En este caso, y a diferencia del apartado anterior, a pesar de ejecutarse todas las aplicaciones en la misma maquina
virtual, cuando se pulsa en uno de los botones no se actualiza el contador en el resto de ventanas. ¢ Por qué sucede
esto si el contador es estatico? Esto se debe a que OpenJNLP utiliza un cargador de clases (ClassLoader) diferente
para cargar cada aplicacion y en el lenguaje Java dos instancias de una misma clase que hayan sido cargadas por
distintos cargadores de clase se comportan exactamente igual que si fueran clases diferentes.

El apartado anterior también podria haberse adaptado para que se produjese este efecto pero se ha dejado asi por
simplicidad y para mostrar que a veces es necesario tener cuidado con este tipo de variables estéticas.

Retomando el tema del escritorio empresarial, esta claro que la solucién a los problemas de mis amigos, y por
extension, de toda la gente que quiera aprovechar las ventajas de la carga dinamica de aplicaciones que ofrece JNLP
es muy sencilla. En lugar de lanzar las aplicaciones de la manera tradicional (creando una instancia de la aplicacién
en un nuevo hilo y ejecutandola), se puede utilizar OpenJNLP para lanzar estas aplicaciones, de modo que el proceso
de actualizacion y ejecucion de las mismas se automatiza completamente. Ademas esta solucidn permite aprovechar
todo el codigo que haya sido realizado y no obliga a crear un cargador de aplicaciones diferente, ni migrar hacia una
especie de "escritorio web", sino que permite mantener esos sistemas ya disponibles, como el escritorio empresarial
de este ejemplo, con tan sélo modificar la forma con la que cargan las aplicaciones.

Las ventajas de esta aproximacion son grandisimas en cuanto a mantenibilidad y facilidad de despliegue de
aplicaciones. Con esta solucion, modificar una aplicacion determinada no implica actualizarla en todos nuestros
usuarios sino que la actualizacion se hara de una manera simple y transparente, al tiempo que nuestros usuarios
siempre utilizan la Gltima versién de nuestro software.

Referencias

¢ 1.JSR 56 - Java Network Launching Protocol and API specification, http://jcp.org/jsr/detail/056.jsp

e 2. Java Web Start, http://java.sun.com/products/javawebstart

+ 3.Java Web Start Developer?s Pack, http://java.sun.com/products/javawebstart/download-jnlp.html

* 4. Java Web Start Architecture, http://java.sun.com/products/javawebstart/architecture.html

« 5. Official Java Web Start FAQ, http://java.sun.com/products/javawebstart/fag.html

¢ 6. Foro en SUN sobre Java Web Start, http://forum.java.sun.com/forum.jsp?forum=38

e 7. Java Web Start descarga del codigo fuente,
http://lwww.sun.com/software/communitysource/javawebstart/download.html

* 8.Java Web Start en Mac OS X, http://developer.apple.com/java/javawebstart/

* 9. Unofficial Java Web Start/JNLP FAQ, http://www.vamphqg.com/jwsfaq.html

e 10. OpenJNLP, http://openjnip.nanode.org/

13

http://www.javahispano.com

¢ 11. Rachel, http://rachel.sourceforge.net/

e 12. Fontanus JNLP Wrapper, http://zydego.fontanus.net/jnlp/wrapper/

¢ 13. Java URL, http://www.amherst.edu/~tliron/javaurl/

e 14, Juniper, http://sourceforge.net/projects/juniper/

* 15. Deploying Sofware with JNLP and Java Web Start, John Zukowski,
http://developer.java.sun.com/developer/technicalArticles/Programming/jnip/

e 16. Java Web Start to the Rescue, Raghavan N. Srinivas,
http://developer.java.sun.com/developer/technicalArticles/JavalL P/javawebstart/

« 17. Developing and distributing Java applications for the client side, Steven Kim, http://www-
106.ibm.com/developerworks/java/library/j-webstart/

* 18. Packaging JNLP Applications in a Web Archive,
http://java.sun.com/products/javawebstart/1.2/docs/downloadservietguide.html

e 19. Apache Tomcat, http://jakarta.apache.org/tomcat/

¢ 20. SUN?s RMI Tutorial, Ann Wollrath y Jim Waldo, http://java.sun.com/docs/books/tutorial/rmi/

« 21. Java Remote Method Invocation (RMI), http://java.sun.com/products/jdk/rmi/

¢ 22. RMI Architecture and Functional Specification, ftp://ftp.java.sun.com/docs/j2sel.4/rmi-spec-1.4.pdf

¢ 23. Getting Started Using Java RMI, http://java.sun.com/j2se/1.4/docs/guide/rmi/getstart.doc.html

e 24. Java Remote Method Invocation ? Distributed Computing in Java,
http://java.sun.com/marketing/collateral/javarmi.html

¢ 25. Fundamentals of RMI, http://developer.java.sun.com/developer/onlineTraining/rmi/RMI.html

e 26. 6digo fuente y ejemplos de este articulo, http://www.javahispano.com/download/ejemplos/jws.tar.gz

Martin Pérez Marifian es desarrollador Java desde hace tres afios. SUN Certified Programmer for Java 2 Platform
y SUN Certified Developer for Java 2 Platform, ademas es ingeniero de sistemas por la universidad de La Corufia.
En su vida laboral ha tocado casi todas las APIs contenidas en Java y actialmente esta trabajando para INTECNO
del Grupo DINSA desarrollando proyectos empresariales con J2EE.

Cuando no esta metido en su trabajo intenta realizar aportaciones a publicaciones escritas u online y el resto del
tiempo lo dedica a su novia y al futbol.

Para cualquier duda o tirén de orejas, e-mail a: martin@kristalnetworks.com
-~ |

14

