Changes in respiration activities and bacterial communities in a bioaugmented oil-polluted soil in response to the addition of acyl homoserine lactones

Samiha Al-Kharusi a, Raeid M.M. Abed a,*, Sergey Dobretsov b, **

a Department of Biology, College of Science, Sultan Qaboos University, Oman
b Department of Marine Science and Fisheries, College of Agricultural and Marine Science, Sultan Qaboos University, Oman

ABSTRACT

The effect of bacterial quorum sensing (QS) signals on the respiration activity of an oil-polluted soil with and without the addition of an alkane-degrading bacterial consortium was investigated. The addition of C4−C12-HSL N-acyl homoserine lactones (AHLs) to the contaminated soil with the bacterial consortium resulted in a significant increase in CO2 evolution rates. Experiments with 1, 10 and 100 μM of C12-HSL exhibited an increase in respiration activities with decreasing concentrations. This increase was concomitant with the degradation of hydrocarbons. 93% of the alkanes were degraded in the bioaugmented soil after C12-HSL addition. Illumina MiSeq sequencing of soil communities at the end of the experiment demonstrated that Alcanivorax sp. and Parvibaculum sp. survived after 42 days. An additional experiment with 1, 10 and 100 μM of C12-HSL increased biofilm formation in the consortium bacteria. In conclusion, the addition of AHLs has a stimulative effect on bacterial respiration activities and degradation of hydrocarbons, hence can be useful in bioaugmentation treatments of oil-polluted soils.

© 2015 Published by Elsevier Ltd.

1. Introduction

Bioaugmentation, which relies on the addition of oil-degrading microorganisms to speed up the degradation of hydrocarbons, is an environmental friendly approach that has been widely used in the bioremediation of contaminated ecosystems (Boopathy, 2000; Tyagi et al., 2011; Zouboulis and Moussas, 2011). The main pitfall of this method is the inability of the introduced microorganisms to cope with the harsh environmental conditions in the field and to compete with the indigenous bacteria. Thus, the selection of appropriate bacterial strains, with the ability to survive and degrade hydrocarbons under in situ conditions, is a key prerequisite for the success of bioaugmentation. Indeed, it was postulated that biofilm formation could potentially enhance biodegradation of pollutants, including hydrocarbons (Singh et al., 2006). Although several studies have tested bioaugmentation and reported on its success or failure (Ruberto et al., 2003; Abed et al., 2014; Colla et al., 2014; Fan et al., 2014; Hassanshahian et al., 2014; Qiao et al., 2014; Suja et al., 2014; Andreoli et al., 2015), very few studies have monitored the fate of introduced bacteria at the end of the treatment (Gertler et al., 2009a). Such studies are required in order to identify the most competent bacteria that are successful in the degradation of contaminants under field conditions.

In the environment, about 80−90% of soil microorganisms are sorbed to solid surfaces while enclosed in a matrix of hydrated extracellular polymeric substances (EPS) on soil particles (Maier et al., 2009; Flemming and Wingender, 2010). The formation of biofilms protects microorganisms from different environmental factors, such as desiccation, solar and UV radiation, heat, and allows cells to survive in hostile environments (Hall-Stoodley et al., 2004). The formation of biofilms is facilitated through the production, release and perception of QS signals, which allow cell-to-cell
communication between bacteria (Waters and Bassler, 2005; Steinberg et al., 2011). Once QS signals accumulate in the environment to critical threshold concentrations they bind to the receptor proteins, which result in the activation of target genes and, thus, control “bacterial social behavior” (Crespi, 2001; Waters and Bassler, 2005; Hartmann and Schikora, 2012; Harder et al., 2014). The most common QS signals of Gram negative bacteria are AHLs (Decho et al., 2009). Different species of bacteria produce AHLs with the different side-chain length ranging from four to eighteen carbons (Harder et al., 2014). Due to the well-known role of AHLs in the formation of biofilms, we hypothesize that the addition of these compounds during bioaugmentation treatments will enhance the survival of introduced (exogenous) as well as native (endogenous) oil-degrading bacteria and consequently increase rates of oil degradation.

The main objectives of this study were to investigate the effect of five AHLs (i.e. N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL), dodecanoyl-L-homoserine lactone (C12-HSL) on respiration activities of a bacterial consortium and on oil-polluted soils with and without the consortium. Based on the results from this experiment and since C12-HSL is more stable in the environment than shorter side-chain AHLs, the effect of different concentrations of C12-HSL on respiration activities of a bacterial consortium and on oil-polluted soils and on biofilm formation of bacterial strains was further investigated. The fate of the bacterial consortium and changes in the bacterial community composition of the soils at the end of the experiment were followed using illumina MiSeq sequencing. The degradation of hydrocarbons was compared in the presence and absence of the bacteria consortium with and without C12-HSL.

2. Materials and methods

2.1. Soil collection

Oil contaminated soils were collected from an area close to an oil production facility in Mina Al-Fahal, a coastal area in Muscat, Oman (23’ 37” 49.92”N; 58’ 31” 23.84”E). Soils from this area have been previously investigated for their physical and chemical properties as well as for their response to different bioremediation treatments including the addition of inorganic nutrients and exogenous microorganisms (Abed et al., 2014). In brief, the concentration of total petroleum hydrocarbons (TPH) in this soil was 22 ± 0.7 mg g⁻¹ soil and the pH was 7.46. The soils contained 62% silt, 30% sand and 8% clay and thus had a silt loam texture. The concentration of phosphate and nitrate reached 0.5 and 21 mg l⁻¹, respectively. Soils in sterile plastic boxes were brought back to the laboratory, where all experiments were performed.

2.2. Bioaugmentation experiments

2.2.1. Preparation of consortium

Prior to the experiment, a consortium composed of five alkane-degrading bacterial strains (i.e. Alcanivorax sp. MH3, Parvibaculum MH21, Azospirillum sp. AH2, Marinobacter sp. AH3 and Marinobacter sp. AH6) was prepared by cultivation in an artificial seawater medium supplemented with acetate at 30 °C. Detailed biochemical, physiological and phylogenetic characterization of the strains has been published elsewhere (Abed et al., 2014). The strains were selected based on their ability to degrade different alkanes and to represent different bacterial genera. The optical density of each strain was monitored at 600 nm until it reached 0.2. The cells were then collected at the exponential phase by centrifugation, washed three times with sterile seawater to remove traces of acetate and

re-suspended in carbon- and nutrient-free (i.e. without KH2PO4 and NH4Cl) minimal salt medium. Equal volumes of each bacterial suspension were mixed together in artificial seawater medium and 1 ml of this mixture was added to 19 ml medium for each treatment (see below 2.2.2.). The artificial seawater medium contained MgCl2·6H2O (5.6 gl⁻¹), MgSO4·7H2O (6.8 gl⁻¹), CaCl2·2H2O (1.47 gl⁻¹), KCl (0.66 gl⁻¹), KBr (0.09 gl⁻¹) and was supplemented with trace elements mixture (Widdel and Rabus, 2001) and vitamins (Heijhuisen and Hansen, 1986).

2.2.2. Experimental setup

The experiment was performed in glass bottles (volume 165 ml) containing 10 g of oil polluted soil mixed with 20 ml of carbon- and nutrient-free minimal salt medium. These soils were incubated, each in triplicate: 1) with five different acyl homoserine lactones (i.e. C4-HSL, C6-HSL, C8-HSL, C10-HSL and C12-HSL), each added separately to the oil-polluted soils in the presence of the bacterial consortium at the concentration of 1 μM and 2) with different concentrations of C12-HSL (i.e. 1 μM, 10 μM and 100 μM) added to the soil with and without consortium as well as to the consortium alone. A fresh dose of crude Arabian light oil 0.5% (v/v) was added to all soils, in order to follow the degradation of alkanes. The same incubations in the absence of AHLs and in the absence of extra oil served as controls. All used AHLs were ordered as pure compounds from Sigma–Aldrich (USA). The bottles were sealed with thick, black rubber stoppers to ensure no gas leakage and incubated for 42 days at 30 °C. CO2 evolution was followed at different time intervals using gas chromatography (GC) (see below 2.2.3.).

2.2.3. Chemical analyses

CO2 evolution was measured in the headspace of the gas tight serum bottles by withdrawing 250 μl of gas and injecting it manually into the GC (GC, Agilent model 6890N). The GC used helium gas as a carrier gas at a flow rate of 4 ml min⁻¹. The GC was equipped with a thermal conductivity detector and a 30 m × 250 μm capillary column (HP-Plot Q). The thermal conductivity detector was maintained at 200 °C while the injector temperature was 210 °C. The oven temperature was programmed from 50 °C to 80 °C with a final hold time 3 min at a rate of 20 °C min⁻¹. Oil mineralization rates were calculated by comparing the experimentally quantified CO2 with the theoretical amount of CO2 that would be produced by complete oxidation of the present oil (Abed et al., 2014, 2015a, b). CO2 evolution data over time were statistically analyzed using two-way ANOVA using the SPSS software (10th edition, Chicago, USA). The assumption of normality of data was verified with the Shapiro–Wilks test (Shapiro and Wilk, 1965). Turkey post-hoc test was used in order to compare individual means. In all cases, the threshold for significance was 5%.

Oil degradation was assessed by extracting samples 3 times with 10 ml dichloromethane (DCM) and the pooled extract was filtered with non-absorbent cotton to remove solid particles. Anhydrous sodium sulfate was used to remove traces of water from the filtrate. The filtrate was then evaporated using a rotary evaporator. The dry extract was re-dissolved into DCM and passed through silica gel prior to injection. Gas chromatography-mass spectrometry (GC–MS) was equipped with a 30 m × 250 μm capillary column (Rtx®-5MS) and individual hydrocarbons were quantified by comparing them to an external standard (C7–C30). Helium gas was used as a carrier at a flow rate of 1 ml min⁻¹ and the injector and detector were maintained at 290 °C. The oven temperature was programmed from 80 °C (initial hold time 2 min) to 290 °C (final hold time 30 min) at a rate of 10 °C min⁻¹.

2.2.4. Illumina MiSeq 16S rRNA amplicon sequencing

At the end of the experiments, the fate of the bacterial
consortium and changes in the bacterial community composition in the bioaugmented and non-bioaugmented soils with (1 μM) and without C12-HSL were followed using illumina MiSeq sequencing. DNA was extracted from triplicate soil samples at the end of experiments using skim milk protocol (Volossiouk et al., 1995). Purified DNA extracts were then submitted to Molecular Research MR DNA laboratory (www.mrdnalab.com, Shallowater, TX, USA) for illumina MiSeq sequencing of the bacterial 16S rRNA genes using the primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-GACTACHVGGGTATCTAATCC-3’) with barcode on the forward primer (Klindworth et al., 2013). Sequence analysis was carried out using the Mothur MiSeq SOP pipeline (Schloss et al., 2009). Brieﬂy, barcodes were removed and sequences <200 bp and sequences with ambiguous base calls were eliminated. Sequences were denoised, OTUs generated and chimeras removed. Operational taxonomic units (OTUs) were deﬁned by clustering at 3% divergence (97% similarity). Final OTUs were taxonomically classiﬁed using BLASTn against a curated GreenGenes database (DeSantis et al., 2006). Rarefaction curves and diversity indices (OTU richness, Chao and ACE) were calculated using the Mothur software. A multivariate analysis of all samples was performed to examine for signiﬁcant changes in soil communities using multidimensional scaling (MDS) based on Bray-Curtis dissimilarities as described in Ramirez et al. (2007). Analysis of similarities (ANOSIM) was carried out to test for signiﬁcant differences in bacterial communities. ANOSIM produces a sample statistic (R), which represents the degree of separation between test groups (Clarke, 1993). SIMPER (similarity percentage) analysis of the sequence data was performed using PAST program (version 2.17, Hammer et al., 2001), to ﬁnd out the bacterial genera that accounted for the community differences in the different treatments.

2.3. Effect of AHLs on bioﬁlm formation

An additional experiment was performed in order to ﬁnd out if the addition of AHLs enhances the formation of bioﬁlms. Prior to these experiments, individual strains of the consortium were grown in artiﬁcial seawater medium supplemented with acetate at 30 °C (see above 1.2.1). The impact of the different concentrations (1, 10 and 100 μM) of C12-HSL on bioﬁlm formation of each bacterial strain was investigated after 2 h at 30 °C (Djordjevic et al., 2002). Brieﬂy, bound bacterial cells were stained with crystal violet solution and crystal violet absorbance was measured using a microplate photometer reader. Alteration between the control and the treatment color indicated differences in bioﬁlm formation of tested bacteria due to the presence of AHLs. Bioﬁlm formation is represented as the percent increase (%) in the attached cells in the presence of AHLs compared to the AHLs-free control.

3. Results

3.1. Effect of different AHLs on respiration activities

A signiﬁcant increase in CO2 evolution from 0.6 to 1.2 mg-CO2 g−1 of soil was observed in the soil bioaugmented with exogenous bacteria after 42 days of incubation in the presence of oil (p < 0.005). The addition of the ﬁve AHLs compounds (i.e. C2-HSL, C6-HSL, C8-HSL, C10-HSL and C12-HSL) to the soils resulted in a further increase in CO2 evolution rates (Fig. 1). Analysis of variance (ANOVA) showed that the presence of different AHLs, the incubation time and their combination had a signiﬁcant (p < 0.05) effect on the production of CO2 (Table 1). Already after 12 days of incubation, the amounts of evolved CO2 in the presence of the ﬁve AHLs were signiﬁcantly higher than in their absence (Turkey HSD, p < 0.05). The ﬁve AHLs exhibited comparable temporal dynamics of CO2 evolution (Fig. 1). After 42 days, all bioaugmented soils evolved around 1.6 ± 0.03 mg-CO2 g−1 of soil.

3.2. Effect of different concentrations of C12-HSL on respiration activities

The respiration activity of the bacterial consortium, as indicated by the evolved CO2 signiﬁcantly increased (Turkey HSD, p < 0.05) with the addition of 1 μM of C12-HSL reaching 1.95 ± 0.16 mg-CO2 g−1 after 42 days (Fig. 2). Higher concentrations of C12-HSL resulted in much lower amounts of evolved CO2. In the case of the non-bioaugmented polluted soil, the addition of C12-HSL at 1 μM concentration resulted in a signiﬁcant (Turkey HSD, p < 0.05) increase in respiration activity in comparison with the HSL-free soil (Fig. 2) with a total amount of 1.58 ± 0.7 mg-CO2 g−1 after 42 days. In contrast, the addition of 100-times higher concentrations of C12-HSL to the soil did not have any effect on the CO2 production. The addition of C12-HSL to the bioaugmented soil exhibited a similar pattern of CO2 evolution to that of the bacterial consortium alone (Fig. 2). The highest CO2 evolution rate (i.e. 3.54 ± 0.08 mg-CO2 g−1) of the contaminated soil with the consortium was observed in the

![Fig. 1. The effect of different AHLs compounds (C2-HSL, C6-HSL, C8-HSL, C10-HSL and C12-HSL) on CO2 evolution rates of an oil contaminated soil (amended with extra crude oil) in the presence of the bacterial consortium. As a control, the soil was treated without additional oil was used.](image-url)
presence of 1 μM of C_{12}-HSL. ANOVA suggested that different concentrations of C_{12}-HSL, the time of the experiment and their combination had a significant ($p < 0.05$) effect on the production of CO$_2$ (Table 1).

3.3. Effect of addition of 1 μM C$_{12}$-HSL on soil bacterial community

A total of 1,246,999 16S rRNA gene sequences were obtained by MiSeq sequencing from all studied contaminated soils with numbers ranging between 26,178 and 152,882 sequences per sample (Table 2). The calculated OTU richness and Chao-1 index showed variations among the triplicates of each sample (Table 2). When variations in bacterial community composition were visualized in a two-dimensional space using multivariate analyses of OTUs (Fig. 3A), bacterial communities of differently-treated samples formed separate clusters (ANOSIM $R_0 = 0.55$), however this variation was not statistically significant (Bonferroni-corrected $p > 0.6$). The rarefaction curves revealed a good coverage of the community richness by the number of obtained sequences (Fig. 3B).

The bacterial classes Deinococci and Alphaproteobacteria dominated all bioaugmented and non-bioaugmented soils, with a relative abundance of 62–87% of total sequences (Fig. 3C). While sequences affiliated to the genus Truepera dominated the class Deinococci (\geq99%), most sequences belonging to the Alphaproteobacteria were related to the genus Sphingomonas (<20%). The remaining sequences belonged to Bacilli, Gammaproteobacteria, Candidate division tm7, Phycisphaerae, Gemmatimonadetes and Actinobacteria (Fig. 3C).

The addition of C$_{12}$-HSL to the non-bioaugmented soil resulted in a pronounced shift in the bacterial community structure of Gammaproteobacteria (Fig. 4). Sequences belonging to genera such as Gilvimonas, Thermomonas, Acidimicrobials and Phycisphaera appeared after the addition of C$_{12}$-HSL, while sequences belonging to the genera Gemmatimonas, and Aneurinibacillus were not detected anymore (Fig. 4). A similar community structure to the original soil was encountered in the bioaugmented soil, except for the detection of sequences belonging to the introduced bacterial consortium. Out of five members of the consortium, only sequences of the Alcanivorax sp. MH3 and Parvibaculum sp. MH21 persisted and were detected at the end of the experiment at an average relative abundance of 10.2 ± 6.7% and 3.7 ± 2.2% of the total sequences, respectively. After the addition of C$_{12}$-HSL, there was no significant change in the average relative abundance of the bacterial classes. In this treatment, sequences belonging to Alcanivorax sp. MH3 and Parvibaculum sp. MH21 were still detectable, however at a relative abundance of 3.7 ± 2.3% and 3.9 ± 2.0% of total sequences.

SIMPER analysis revealed that the major genera contributing to the dissimilarity between communities developed in the different treatments were Alcanivorax and Truepera (Table 3). The contribution of other genera did not exceed 3.7%. In the presence of the consortium, the Alcanivorax group had a more pronounced effect on the dissimilarity between communities (Table 3).

3.4. Effect of C$_{12}$-HSL addition on oil biodegradation

Since oil was presumably the only available carbon source in our experiments, oil mineralization could be calculated from the

Table 2

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Replicates</th>
<th>No. of sequences</th>
<th>No. of OTUs 0.03a</th>
<th>Chao-1</th>
<th>ACE</th>
<th>SSO</th>
<th>DSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>A</td>
<td>98,402</td>
<td>420</td>
<td>769</td>
<td>816</td>
<td>6.7</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>146,687</td>
<td>476</td>
<td>858</td>
<td>881</td>
<td>7.5</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>120,261</td>
<td>537</td>
<td>941</td>
<td>1005</td>
<td>8.6</td>
<td>10.5</td>
</tr>
<tr>
<td>Soil + C$_{12}$-HSL</td>
<td>A</td>
<td>77,880</td>
<td>453</td>
<td>806</td>
<td>855</td>
<td>6.9</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>140,163</td>
<td>576</td>
<td>1008</td>
<td>1010</td>
<td>8.8</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>41,002</td>
<td>334</td>
<td>621</td>
<td>666</td>
<td>6.1</td>
<td>6.5</td>
</tr>
<tr>
<td>Bioaugmented soil</td>
<td>A</td>
<td>152,882</td>
<td>632</td>
<td>1102</td>
<td>1148</td>
<td>11.3</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>132,855</td>
<td>510</td>
<td>923</td>
<td>950</td>
<td>7.9</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>96,543</td>
<td>416</td>
<td>766</td>
<td>813</td>
<td>6.6</td>
<td>6.5</td>
</tr>
<tr>
<td>Bioaugmented soil + C$_{12}$-HSL</td>
<td>A</td>
<td>102,764</td>
<td>450</td>
<td>801</td>
<td>839</td>
<td>8.4</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>111,382</td>
<td>811</td>
<td>1338</td>
<td>1382</td>
<td>13.9</td>
<td>14.4</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>26,178</td>
<td>359</td>
<td>671</td>
<td>743</td>
<td>8.4</td>
<td>7.0</td>
</tr>
</tbody>
</table>

a Operational taxonomic unit at 3% sequence dissimilarity based on equal subsets of sequences for all samples.
evolved CO₂. The extent of oil mineralization was highest in the presence of 1 mM C₁₂-HSL in all incubations. The amount of total petroleum hydrocarbons (TPH) mineralized after 42 days increased from 0.3 ± 0.04 to 0.9 ± 0.4 and from 0.06 ± 0.01 to 1.2 ± 0.09 mg g⁻¹ soil when C₁₂-HSL was added to the soil and to the bacterial consortium, respectively. The maximum oil mineralization rate was calculated in the case of the soil amended with the bacterial consortium and C₁₂-HSL and reached 2.1 ± 0.05 mg TPH g⁻¹ soil after 42 days of incubation. This value corresponds to 4.5% of the initial oil.

Biodegradation of oil at the end of the experiment was further verified by GC–MS analysis of the residual oil. The concentrations of different alkanes were significantly higher (p < 0.05) in the bioaugmented soil with and without C₁₂-HSL in comparison to the non-bioaugmented soils (Fig. 5). The decrease in the concentration of most alkanes was higher in the presence of C₁₂-HSL (Fig. 5). The addition of both the bacterial consortium and C₁₂-HSL to the soil resulted in the degradation of around 93% of the C₁₄–C₃₀ alkanes.

3.5. Effect of AHLs on biofilm formation of the bacterial consortium

The same concentrations of C₁₂-HSL, which were used in the bioaugmentation experiment (i.e. 1, 10 and 100 μM) stimulated biofilm formation of the strains (Table 1S), however to different extents. The maximum biofilm formation was observed at 10 μM concentration and reached up to 63.4% in Marinobacter sp. AH6 strain in 2 h. The addition of C₁₂-HSL at 1 μM concentration increased biofilm formation of only Parvibaculum sp. MH21 and Marinobacter sp. AH6, whereas its addition at 100 μM concentration increase biofilm formation of only Azospirillum sp. AH2 and Marinobacter sp. AH6.

4. Discussion

The success of any biodegradation approach relies on the presence of efficient hydrocarbon degraders in sufficient concentrations (Dellagnezze et al., 2014). Since QS compounds, such as AHLs, have been shown to facilitate the aggregation of microorganisms in biofilms and microbial mats (Decho et al., 2009), we proposed that the use of external AHLs in bioremediation can enhance the survival and activity of microorganisms, including hydrocarbon-degraders and consequently enhance biodegradation rates. Our data demonstrated a significant stimulatory effect of different AHLs on respiration activities of bacteria in the bioaugmented and non-bioaugmented oil-contaminated soils. This increase in respiration activities was concomitant with the degradation of hydrocarbons. The soils amended with AHLs having side-chain length ranging from four to twelve carbons had comparable rates of evolved CO₂, indicating a similar mode of action.

A strong negative correlation between the concentration of C₁₂-
Fig. 4. A heatmap showing the relative abundance (%) of the most dominant bacterial genera detected in the bioaugmented and non-bioaugmented soils with (+C12-HSL) or without (−C12-HSL) the addition of C12-HSL.

Table 3
The contribution of particular bacteria to total dissimilarity (as percentages) between the bacterial communities of the non-bioaugmented (S) and bioaugmented soils (BS) with and without C12-HSL using SIMPER (similarity of percentage) analysis.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Species contribution to dissimilarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S & BS</td>
</tr>
<tr>
<td>Alcanivorax</td>
<td>5.0</td>
</tr>
<tr>
<td>Truepera</td>
<td>4.7</td>
</tr>
<tr>
<td>Candidate division tm7</td>
<td>2.9</td>
</tr>
<tr>
<td>Sphingomonas</td>
<td>2.2</td>
</tr>
<tr>
<td>Aquicella</td>
<td>1.4</td>
</tr>
<tr>
<td>Thermomonas</td>
<td>0.3</td>
</tr>
<tr>
<td>Parvibaculum</td>
<td>0.5</td>
</tr>
<tr>
<td>Others</td>
<td>82.9</td>
</tr>
</tbody>
</table>

The taxons that contribute to >3% to the total dissimilarities in microbial communities are shaded.

Fig. 5. Degradation of individual alkanes (C14−C30) at the end of the bioaugmentation experiments in bioaugmented and non-bioaugmented soils with and without C12-HSL. Error bars represent ± standard deviation (n = 3). Note that the concentration of C24 in the soil was 10 times higher than the displayed bar.
HSL and respiration activities was consistently observed in the bacterial consortium and in the contaminated soils with and without the consortium. It is known that even nm concentrations of AHLs can significantly affect bacterial QS, cell density and activity (Decho et al., 2011; Harder et al., 2014). It is also known that AHLs with the longer side chains (>C10-HSL) at higher concentrations can interfere with bacterial QS signaling using shorter chain (<C6-HSL) AHLs (McClean et al., 1997; Dobretsov et al., 2009). Thus, it is possible to speculate that C12-HSL at the concentration of >10 μM inhibited QS of some bacteria that used short chain AHLs for their communication. Additionally, high concentrations of C12-HSL could be toxic to some bacteria, thus resulting in low CO2 evolution. On the other hand, the enhancement of CO2 evolution at 1 μM concentration could be attributed to increased activity of bacteria, although it should be kept in mind that even low number of bacteria can have high respiration rates. Indeed, MiSeq sequencing clearly demonstrated an increase in the relative abundance of the consortium member Pseudomonas sp. in the presence of C12-HSL. The biofilm formation assay on individual strains of the consortium, although performed for only 2 h, showed that C12-HSL addition was stimulatory to biofilm formation. AHL signals are known to enhance the formation of biofilm matrix (EPS) that protects the cells from environmental stress, facilitates chemical interaction among bacteria and increases the survival rate of bacteria (Gilan et al., 2004; Singh et al., 2006; Das et al., 2013).

Previous studies have shown that the degradation of environmental pollutants is more efficient by microorganisms in biofilms than by free-living bacteria (Singh et al., 2006; Verhagen et al., 2011; Shimada et al., 2012). For example, Pseudomonas stutzeri biofilm-associated cells degraded naphthalene and successfully survived in petroleum contaminated soil (Shimada et al., 2012). Although biofilm cultures degraded the pesticide chloropromazine slower than planktonic cultures, they did not produce toxic intermediate compounds (Verhagen et al., 2011). Relating to hydrocarbon degradation and biofilm formation by bacterial isolates was demonstrated by Dasgupta et al. (2013). Biofilms of Marinobacter hydrocarbonoclasticus enhanced hexadecane assimilation (Klein et al., 2010). AHLs compounds were found to play an important role in the degradation of sinking hydrocarbons in oceans (Buchan et al., 2005; Zier vogel and Arnosti, 2008; Hmelo and Van Mooy, 2009). An AHL-producing marine bacterium Croceicoccus napthovorans was able to degrade poly cyclic aromatic hydrocarbons (Huang et al., 2015). Similarly, AHL producing isolates belonging to the genera Sphingomonadales and Rhizobiales were able to degrade phenanthrene and pyrene (Huang et al., 2013). Rhl QS system in Pseudomonas aeruginosa was involved in regulation of aromatics biodegradation (Yong and Zhong, 2013). These examples suggest that AHLs compounds can be directly involved in the degradation of hydrocarbons and enhance the process by stimulation of bacterial activities and survival.

From our experiments, it remains unclear whether the evolved CO2 was due to the growth of microorganisms on AHLs compounds or on hydrocarbons. Since the tested soils were originally polluted, we could not maintain a similar incubation in the absence of oil. However, incubations of the bacterial consortium alone without the soil in the presence of either oil or C12-HSL as the sole carbon source (not shown) showed a similar temporal increase in the evolved CO2 in the first 18 days of incubation. This suggests that the bacteria in the consortium, and maybe even in the soil, could probably use C12-HSL as a carbon source, at least at the initial phase of growth, until its concentration is diminished and then switched to grow on hydrocarbons. This assumption is supported by several arguments. Firstly, the degradation of hydrocarbons in the presence of the consortium was indeed confirmed by our GC–MS analysis at the end of the experiment. Secondly, AHLs degradation has been identified in a wide range of soil bacteria including strains from the genera Bacillus, Arthrobacter, Variovorax,Ralstonia and Rhodococcus (Leadbetter and Greenberg, 2000; Huang et al., 2003; Lin et al., 2003; Dong et al., 2000; Lee et al., 2002; Park et al., 2003, 2005; Uroz et al., 2003). Sequences affiliated to these genera were also detected in our studied soils. These bacteria use enzymes such as oxido-reductase, AHL-acylase and AHL-lactonases to degrade AHLs and use them as a carbon source (Uroz et al., 2003, 2005; Park et al., 2006). Thirdly, AHLs are known for their instability in the environment, which depends on their chemical structure, pH and presence of AHL-degrading microorganisms (Horswill et al., 2007). AHLs are not stable at high pH (>7) and in some cases can be mineralized in soil within minutes (Wang and Leadbetter, 2005). Preliminary laboratory experiments showed that C12-HSL at concentration of 100 μM is fully degraded in 5–10 days in natural conditions (Dobretsov, personal communication). In our experiments, pH did not show a dramatic shift at the end of the incubation and was always between 7.4 and 7.6. Illumina MiSeq sequencing provided interesting information on the fate of the added bacterial consortium and helped us to select the most competent strains for future bioremediation treatments. Only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 out of five members of the added exogenous consortium could persist until the end of the experiment. This indicates that these two species were not outcompeted by the indigenous soil bacteria and enhanced the degradation of alkanes, which was demonstrated by GC–MS. These results highlight the importance of species belonging to Alcanivorax and Parvibaculum genera in bioaugmentation of oil-polluted soils. Indeed, previous studies have reported that Alcanivorax spp. is a key player in many bioaugmentation treatments (Golyshin et al., 2003; Gertler et al., 2009a, 2009b; Martins dos Santos et al., 2010; Hassanshahian et al., 2012) and this species has been used quite often in the construction of hydrocarbon degrading consortia (Gertler et al., 2009a; Hassanshahian et al., 2012). The importance of Parvibaculum species in degrading alkanes (Wang and Shao, 2013; Nie et al., 2014) and polycyclic aromatic hydrocarbons (i.e. pyrene, phenanthrene and fluoranthene) has also been reported earlier (Hilyard et al., 2008; Sipilä et al., 2008).

Unlike their effect on respiration activities, the addition of C12-HSL to the polluted soils did not induce dramatic changes in the bacterial community composition. All soils were dominated by bacteria belonging to the classes Deinococci and Alphaproteobacteria. While Alphaproteobacteria has been previously detected in oil-contaminated soils (Bordenave et al., 2007), the dominance of Deinococci in such ecosystems is not very common. Although the class Deinococci is known to include species that are resistant to the harsh environmental conditions in deserts (Albuquerque et al., 2005; Jun, 2010; Li et al., 2014), there is no evidence that these bacteria play any role in the degradation of hydrocarbons, which deserves further investigations. In opposite, MiSeq sequencing demonstrated presence of Alphaproteobacteria and Gammaproteobacteria that are known to include hydrocarbon-degraders. Strains belonging to Sphingomonas, Halomonas, Bacillus, Actinobacteria contain species known to degrade hydrocarbons (Ilori et al., 2000; Daane et al., 2002; Gauthier et al., 2003; Cubitto et al., 2004; Story et al., 2004; Perfumo et al., 2010, Prince et al., 2010; Ichikawa et al., 2010; Najafi et al., 2011; Lin et al., 2012; Chandankere et al., 2012).

5. Conclusion

In conclusion, our investigation showed that the addition of AHLs in appropriate concentrations has a stimulatory effect on the respiration activity of microorganisms. This stimulatory effect was observed when AHLs were added to the soil alone, to the
revealed a surprising diversity of N-acylhomoserine lactones (AHLs) and abun-
dance changes that may relate to die-off. Environ. Microbiol. 11, 049–207.
Decho, A.W., Frey, R.L., Ferry, J.L., 2011. Chemical challenges to bacterial AHL
Dellagnexxe, B.M., de Sousa, G.V., Martins, L.L., Domingos, D.F., Lima, E.E.G., de
De Santis, T.Z., Gunholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T.,
ribosomal gene database and workbench compatible with ARB. Appl. Environ.
Microbiol. 72, 5069–5072.
Microbiol. 68, 2950–2958.
the acylhomoserine lactone quorum-sensing signal and attenuates the viru-
Fan, M.-Y., Xie, R.-J., Qin, G., 2014. Bioremediation of petrole um-contaminated soil
by a combined system of biostimulation-bioaugmentation with yeast. Environ.
Technol. 35, 391–399.
characterization of new bacteria degrading high-molecular weight polycyclic
aromatic hydrocarbons isolated from a zone-enrichment in a two-liquid-
Getler, C., Gerdes, G., Timmis, K.N., Golys hyn, P.N., 2009a. Microbial consortia in
mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and
bioaugmentation: bioremediation trial using oil sorbents and bioaugmentation.
FEMS Microbiol. Ecol. 69, 288–300.
Getler, C., Gerdes, G., Timmis, K.N., Yakimov, M.M., Golys hyn, P.N., 2009b. Pop-
ulations of heavy fuel oil-degrading marine microbial community in presence
Gilan, I., Hadar, Y., Sivan, A., 2004. Colonization, biofilm formation and biodegra-
dation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol.
Biotechnol. 65, 97–104.
Golys hyn, P.N., Martins Dos Santos, V.A.P., Kaiser, O., Ferrer, M., Sabi orbo, Y.S.,
Linsdorf, H., Chen rkov a, T.N., Golys hyn, O.V., Yakimov, M.M., Pühler, A.,
Lütkemeyer, K.N., 2003. Genomic sequence completed of Alcanivorax borkumensis,
a hydrocarbon-degrading bacterium that plays a global role in oil removal from
Harder, T., Rice, S.A., Dobretsov, S., Thomas, T., Carré-Mlouka, A., Kjellberg, S.,
Steinberg, P.D., McGough, D., 2014. Bacterial communication systems. In: La
Barre, S., Kornprobst, J.M. (Eds.), Outstanding Marine Molecules: Chemistry,
Hartmann, A., Schikora, A., 2012. Quorum sensing of bacteria and trans-kingdom
interactions of N-acyl homoserine lactones with eukaryotes. J. Chem. Ecol. 38,
704–713.
Hassan shahian, M., Emtiaz, G., Cappello, S., 2012. Isolation and characterization of
crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea.
Hassan shahian, M., Emtiaz, G., Caruso, G., Cappello, S., 2014. Bioremediation (bio-
augmentation/biostimulation) trials of oil polluted seawater: a mesocosm
Heijtjusjes, J.H.F.G., Hansen, T.A., 1986. Interspecies hydrogen transfer in co-
cultures of methanol-utilizing acidogens and sulfate-reducing or methano-
and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading
Horello, Van Moomy, B., 2009. Kinetic constraints on acylated homoserine lactone-
chemical, biological, and physical environment on quorum sensing in struc-
homoserine lactone quorum signals for growth by a soil pseudomonal and
methods revealed highly diverse bacteria with quorum sensing and aromatic
biodegradation systems – a potential broad application on bioaugmentation.
nov., a polycyclic aromatic hydrocarbons-degrading and acylhomoserine-
lactone-producing bacterium isolated from marine biofilm, and emended