The oceans are changing: impact of ocean warming and acidification on biofouling communities

Sergey Dobretsov, Ricardo Coutinho, Daniel Rittschof, Maria Salta, Federica Ragazzola & Claire Hellio

To cite this article: Sergey Dobretsov, Ricardo Coutinho, Daniel Rittschof, Maria Salta, Federica Ragazzola & Claire Hellio (2019): The oceans are changing: impact of ocean warming and acidification on biofouling communities, Biofouling, DOI: 10.1080/08927014.2019.1624727

To link to this article: https://doi.org/10.1080/08927014.2019.1624727

Published online: 08 Jul 2019.
The oceans are changing: impact of ocean warming and acidification on biofouling communities

Sergey Dobretsova,b, Ricardo Coutinhoc, Daniel Rittschofd, Maria Saltae, Federica Ragazzola e and Claire Helliof

aMarine Science and Fisheries Department, College of Agricultural and Marine Sciences, Sultan Qaboos University, Sultanate of Oman; bCentre of Excellence in Marine Biotechnology, Sultan Qaboos University, Sultanate of Oman; cInstituto de Estudos do Mar Almirante Paulo Moreira, Praia dos Anjos, Arraial do Cabo, RJ, Brazil; dNicholas School, Duke University Marine Laboratory, Beaufort USA; eSchool of Biological Sciences, University of Portsmouth, Portsmouth, UK; fLaboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Brest, CNRS, IRD, Ifremer, Plouzané, France

ABSTRACT
Climate change (CC) is driving modification of the chemical and physical properties of estuaries and oceans with profound consequences for species and ecosystems. Numerous studies investigate CC effects from species to ecosystem levels, but little is known of the impacts on biofilm communities and on bioactive molecules such as cues, adhesives and enzymes. CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres and rainfall patterns. These environmental changes are resulting in alterations within marine communities and changes in species ranges and composition. This review provides insights and synthesis of knowledge about the effect of elevated temperature and ocean acidification on microfouling communities and bioactive molecules. The existing studies suggest that CC will impact production of bioactive compounds as well as the growth and composition of biofouling communities. Undoubtedly, with CC fouling management will became an even greater challenge.

ARTICLE HISTORY
Received 15 February 2019
Accepted 20 May 2019

KEYWORDS
Biofilm; biofouling; bioactive compounds; climate change

Introduction
The carbon dioxide concentration in the earth’s atmosphere is clearly and steadily rising (IPCC 2013). Anthropogenic emission has driven the CO2 concentration in the atmosphere from 208 ppm during the pre-industrial era to well over 400 ppm at the Hawaii monitoring site since 2015, with an estimated increase of 2ppm per year (https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html). This increase in CO2 concentration in the atmosphere causes many physical consequences for marine environments including ocean warming (IPCC 2013). Over the last 39 years, the mean global sea surface temperature has increased at an average rate of >0.1°C per decade, with the strongest warming trends found at high latitudes, and with an estimated increase of 2.7°C by 2090. Temperature variations are often accompanied by changes in salinity due to reduced or enhanced precipitation relative to evaporation. Freshening and warming cause enhanced density stratification (IPCC 2013) and reduce the depth of winter mixing, which causes a decrease in O2 concentration in oxygen minimum zones to a greater extent than the estimated decrease in O2 concentration in the open ocean (mean rate of 0.1 to >0.3 µmol kg−1 year−1) (IPCC 2013). Additionally, climate change is expected to increase upwelling frequency and intensity, lead to a sea level rise due to thermal expansion and melting of sea ice and glaciers (Doney et al. 2012).

An increase in the level of atmospheric CO2 is leading to ocean acidification (Doney et al. 2009). Because the oceanic and atmospheric gas concentrations tend towards equilibrium, 30% of the added atmospheric CO2 has been taken up by the oceans, decreasing the average pH by 0.1 pH unit and ultimately changing water chemistry. The observed decrease in pH corresponds to a 26% increase in the hydrogen ion concentration of seawater (Feely et al. 2009). By 2100, the pH is expected to change by -0.13 (421 ppm under RCP2.6), -0.22 (538 ppm under RCP4.5), -0.28 (670 ppm under RCP6.0) and -0.42 pH unit (936 ppm under RCP8.5). Progress has been made in understanding the consequences of changes in pH, carbonate CO3²⁻ and the saturation...
state of CaCO3 for marine organisms and ecosystems (IPCC 2013; Wahl et al. 2015). These chemical and physical changes have direct implications for physiological processes such as photosynthesis, calcification, growth rates and internal pH regulation in a wide range of organisms (McCoy and Ragazzola 2014; Nannini et al. 2015; Evans et al. 2017; Fabricius et al. 2017; Okazaki et al. 2017) which will lead to a disruption of marine ecosystems and a reduction in biodiversity (Hoegh-Guldberg et al. 2007; Milazzo et al. 2014; Beaugrand et al. 2015).

All industrial installations in estuaries, bays, seas and oceans, such as vessels, platforms and buoys quickly develop biofouling, a community composed of micro- and macrofouling organisms (Clare et al. 1992). Microfouling usually presents as a dynamic microbial biofilm, which is composed of various species of bacteria, microalgae and protozoa incorporated in a mucopolysaccharide matrix (Dobretsov 2010; Malaeb et al. 2013; Salta et al. 2013). Macrofouling communities are complex, with barnacles, bryozoa, mussels, polychaetes and macroalgae being the most common (Richmond and Seed 1991; Zardus et al. 2008). In some cases, microfouling organisms produce chemical cues that induce or inhibit settlement of macrofouling species (Crisp 1984; Dobretsov et al. 2006; Hadfield 2011; Qian et al. 2007; Rittschof 2017) while in others there is a little direct relationship between macro- and microfouling.

Biofouling has a very large economic impact on maritime industries (Callow and Callow 2002; Trepos et al. 2014). Biofouling clogs aquaculture nets, water intakes, heat exchangers and reduces ship hull performance (Okamura et al. 2010; Schultz et al. 2011; Sievers et al. 2014). Moreover, biofouling increases corrosion, shear stress and drag, eventually leading to higher fuel consumption (Schultz et al. 2011) and increased production of CO2 and particulate carbon.

There are numerous reports of the effect of single environmental factors associated with climate change (CO2 level, elevated temperatures and acidification) on individual benthic species (Bamber 1990; Parker et al. 2011; Lane et al. 2013; Calosi et al. 2013; Peck et al. 2015). Some of these benthic species, like the blue mussel *Mytilus edulis*, are important biofouling species. In contrast, the percentage of biofouling publications considering climate change is quite low but increasing every year (Figure 1). Several publications report the effects of factors associated with climate change on micro- and macrofouling communities on inert substrata (Kim and Micheli 2013; Gladisschmacka et al. 2014; Peck et al. 2015) and living hosts (Nasrollahi et al. 2012; Stratil et al. 2013; Saderne and Wahl 2013; Saha et al. 2014).

A significant proportion of the biofouling-related climate change literature addresses invasive species (Stachowicz et al. 2002; Hellmann et al. 2008; Canning-Clode et al. 2011). These can be introduced by ship fouling and in ballast water (Davidson et al. 2008, 2009; Sorte et al. 2010; Keller et al. 2011). Most biofouling-related climate change literature deals with species (organismal level) or populations of individual species (Figure 2). Fewer researchers have investigated the potential impact of factors associated with climate change on multispecies communities. The lowest number of publications report effects of factors.
associated with climate change on signaling molecules and the biochemistry of organisms (Poloczanska and Butler 2009) (Figure 2). The impact of climate change on microbial communities and the bioactive molecules they generate is understudied.

This review focuses on the impacts of elevated temperature and ocean acidification, on biofouling communities. Particular focus is placed on the effect of factors associated with climate change on bioactive molecules of fouling organisms and on the growth and composition of microbial communities. Finally, areas are suggested for fruitful future investigation and the implication of climate change on the antifouling (AF) industry.

Climate change and bioactive molecules from fouling organisms

Biologically active molecules are produced by all phyla of marine organisms and play important roles in signaling, communication, allelopathy (Mayer et al. 2013) and organization of marine communities (Browne et al. 1998; Hay 2009; Rittschof 2017). Chemical cues from bacteria, diatoms and fungi can induce or inhibit settlement of invertebrate larvae and algal spores (Wieczorek et al. 1996; Zardus et al. 2008; Dobretsov et al. 2013). When released in the marine environment, most of the biologically active molecules are bio-transformed or biodegraded by microbes (Uroz et al. 2005; Moree et al. 2012). There is a straightforward relationship between an increase in temperature and the half-life of biologically active molecules (Singh et al. 2004). Similarly, there is a positive relationship between the concentration of heterotrophic bacteria and the half-life of signal molecules (Decho et al. 2010). Elevated water temperatures due to climate change will stimulate the growth of microorganisms and enhance biodegradation of cues as well as enhance synthesis of antimicrobial compounds by marine fouling organisms (Table 1).

Marine bacteria coordinate virulence, competence, conjugation, production of antibiotics, motility and biofilm formation by quorum sensing (QS) (Miller and Bassler 2001; Waters and Bassler 2005; Williams 2007). QS is based on the production, release and detection of chemical signal molecules called autoinducers. Increased concentrations of these signals due to high bacterial population density lead to an alteration in gene expression that regulates bacterial physiological activities (Decho et al. 2011). One of the most common and studied class of QS signal molecules is acyl homoserine lactone (AHL) (Waters and Bassler 2005). AHLs are unstable at >pH 7 (Yates et al. 2002). Studies assessing the stability of AHL against alkaline hydrolysis showed that AHLs having longer acyl chains (>12 carbons) are more resistant to breakdown than their shorter counterparts (Hmelo et al. 2011). In laboratory and field experiments, pH has been found to have a significant impact on the concentration of AHLs in microbial mats (Decho et al. 2009). In phototrophic microbial mats, short chain AHLs degrade quickly during the day, when the pH is >8.2. During the night, when the pH is 6.8 the concentrations of AHLs increases (Decho et al. 2009). When shorter-chain AHLs are degraded too rapidly, cellular communication may be disrupted. Acidification due to climate change will have a substantial effect on the concentration of AHLs (Table 1). Since AHLs are important for biofilm structure and the composition and settlement of some macrofouling species (Dobretsov et al. 2009), it is possible that changes in the production of QS compounds will alter the density and composition of biofouling communities.

Enzymes are biological catalysts that accelerate the rate of specific biochemical reactions. Most enzymes are proteins and their structure is important for their activity. Increased temperature and changes in pH can lead to partial inhibition and in extreme cases to inactivation of enzymes (Iyer and Ananthanarayan 2008). However, in other cases such as the activity of trypsin-like enzymes (Rittschof, 2017) increased temperature and lowered pH are near the optimum for the enzymes and increase rates of reactions. When marine organisms are subjected to environmental change (Hochachka and Somero 2002), the three main mechanisms used to maintain physiological homeostasis are: (1) quantitative (changing the concentration of enzymes and/or reactants), (2) qualitative (using a protein variant) and (3) modulation (modifying the protein environment to reduce the impact of environmental change) (Clarke 2003).

Research shows that temperature impacts the level of enzymes and the physiology of barnacles (Wong et al. 2011). Water temperature and high anthropogenic pollution have a significant effect on the concentrations of antioxidant enzymes, such as catalase, superoxide dismutase and NADH-DT diaphorase in the barnacle Balanus (=Amphibalanus) amphitrite (Niyogi et al. 2001). Anthropogenic ocean acidification alters protein expression patterns in B. amphitrite (Wong et al. 2011) although past studies have not found effects on reproduction due to changes in pH (McDonald et al. 2009; Nardone et al. 2018). The
impact of temperature and pH on adhesion of barnacles has been reported (Nardone et al. 2018).

Similarly, enzymes responsible for calcification of sedentary polychaete tubes were affected by elevated concentrations of CO₂ (Chan et al. 2012; Lane et al. 2013). Past work indicates the aragonite-producing juveniles of *Hydroides elegans* at the level of acidification predicted for the years 2050-2300 will not be able to maintain the integrity of calcification products (Chan et al. 2012).

Acidification affects interactions between iron and 3,4-dihydroxyphenylalanine (DOPA) and thus weakens byssus attachment of *Mytilus trossulus* to non-calcified materials (O’Donnell et al. 2013). Mussel byssus threads were weaker and less extensible when secreted under elevated pCO₂ (>1200 µatm), whereas shell and tissue growth were unaffected (O’Donnell et al. 2013). Byssal fiber performance was reduced by 40%, which suggest that mussels will be dislodged by forces lower than those which dislodge them under present conditions. Decreased mussel attachment strength due to low pH was also reported by Zhao et al. (2017) who showed with real time PCR that low pH altered the expression of the genes encoding proximal thread matrix protein, precursor collagen proteins and mussel foot proteins. The expression of some genes was down regulated, while others was up regulated. In multi-species communities, the impact of ocean acidification on mussel biomolecules became less predictable. A recent mesocosm study suggested that dense populations of macroalgae eg *Fucus vesiculosus* and macrophytes eg *Zostera marina*, may mitigate acidification impacts on mussel (*Mytilus edulis*) calcification by raising the mean pH of seawater (Wahl et al. 2017). In future, factors associated with climate change may change the activity of enzymes and other bioactive molecules and, thus, change the physiology and behavior of fouling organisms, finally leading to changes in biofouling communities.

Table 1. Impact of factors associated with global climate change on bioactive molecules and microfouling communities

<table>
<thead>
<tr>
<th>Factors</th>
<th>Bioactive molecules</th>
<th>Microfouling communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in water and atmospheric temperatures</td>
<td>Enhance biodegradation of molecules due to microbes (Decho et al. 2010); change enzyme activity (Niyogi et al. 2001; Wong et al. 2011)</td>
<td>Changes in community structure (Stratil et al. 2013) and effect on larval settlement (Lau et al. 2005; Whalan & Webster 2014); lower community diversity (Stratil et al. 2013); disruption of host–microbe interactions (Stratil et al. 2013); increase growth of marine pathogens (Toren et al. 1998; Kushmaro et al. 2001)</td>
</tr>
<tr>
<td>Increased water turbulence and severe weather conditions</td>
<td>Changes in production of compounds and their dispersal (Zhou et al. 2018; Batista et al. 2018)</td>
<td>Disturbance of communities; changes in structure of microbial communities (Gladis-Schmacka et al. 2014; Batista et al. 2018)</td>
</tr>
<tr>
<td>New ship routes</td>
<td>No direct effect</td>
<td>Increase introduction of invasive species (Sorte et al. 2010); changes in communities (Zvyagintsev 2003)</td>
</tr>
<tr>
<td>Increased pollution</td>
<td>Changed concentrations of compounds (Niyogi et al. 2001)</td>
<td>Increased chances of algal blooms (Paerl & Huisman 2009) and decrease in diversity of biofouling communities (Dobretsov 2015)</td>
</tr>
<tr>
<td>Combine effect</td>
<td>Rather unpredictable</td>
<td>Rather unpredictable and mostly negative</td>
</tr>
</tbody>
</table>

Climate change and microbial communities

Stress factors associated with climate change affect the growth and productivity of microbes (Rajkumar et al. 2013) and production of bioactive compounds (Hasegawa et al. 2005; Yang et al. 2007). Temperature has a substantial impact on microbial growth (Price and Sowers 2004). Elevated temperature accelerates the growth of mesophiles and slows the growth of psychrophiles and alters the interactions between bacteria and their hosts (White et al. 1991; Wahl et al. 2012). In the case of marine pathogens, elevated temperature increased growth, virulence and antimicrobial resistance (Kimes et al. 2012; Abdallah et al. 2014). For example, at 28°C the infection rate and attachment of the coral pathogen *Vibrio shiloi* increased, while at the lower temperatures (~16°C) bacterial adhesion and growth in the tissues of the host coral *Oculina patagonica* was minimal and did not cause bleaching (Toren et al. 1998; Kushmaro et al. 2001). Virulence factors involved in motility, host degradation, secretion, antimicrobial resistance and transcriptional regulation were found to be up—
regulated in the pathogen *Vibrio coralliilyticus* at temperatures above 27°C (Kimes et al. 2012).

Factors associated with climate change (e.g., increase in temperature, frequency of El-Nino and La-Nina-like conditions) and anthropogenically induced eutrophication cause extensive algal blooms of microorganisms (Paerl and Huismann 2009). Due to the presence of algal toxins and elevated oxygen consumption, these blooms result in benthic and fish kills (Richlen et al. 2010; Hallegraeff 2010) and create estuarine and ocean dead zones (Diaz and Rosenberg 2008). In early July 2008, a high level of nutrients and surface temperature triggered a very substantial bloom of *Ulva* sp. in the China Sea off Qingdao, China (Lelaert et al. 2009). Similarly, in January-February 2014 extremely high ocean temperatures on the Atlantic coast of Brazil stimulated the largest algal bloom in the country’s history. The bloom was composed of several species with the red alga *Aglaothamnion uruguayense* (Martins et al. 2016). In 2008-2009 in the Persian Gulf, an algal bloom of the dinoflagellate *Margalefidinium* (Chocladinium) *polyroides*, probably brought by ballast waters, caused high mortality among benthic animals and fish (Richlen et al. 2010) and substantially decreased the biomass of bio fouling communities (Dobretsov 2015). These examples suggest that algal bloom conditions are becoming the norm for most populated coastal regions and their impact on benthic and fouling community ecosystems will intensify in the warming oceans.

Marine biofilms are communities composed of viruses, bacteria, microalgae and protozoa incorporated in an exopolymer matrix (Zobell and Allen 1935; Webb et al. 2003; Qian et al. 2007; Dobretsov 2010). Biofilms are dynamic and the composition of communities can be altered by changes in environmental conditions, such as temperature, salinity, pH and nutrient availability (Qian et al. 2007; Salta et al. 2013). For example, the number of rainy days and temperature affected growth of phototrophic biofilms on roof tiles (Gladis-Schmacka et al. 2014). Researchers studied the effect of different temperatures (high, low and ambient) on the formation of microbial biofilms and subsequent larval settlement in laboratory experiments (Lau et al. 2005; Whalan and Webster 2014). Increased water temperatures led to formation of different microbial communities and subsequently affected the settlement of larvae. Compositions of microbial communities associated with the alga *Fucus vesiculosus* were different when the alga was exposed to different temperatures or light intensities (Saha et al. 2014). Changes in pH led to a significant decrease in biofilm performance and diversity (Patil et al. 2011). Peck et al. (2015) studied the formation of biofouling communities under ambient (pH = 7.9) and acidified (pH = 7.7) conditions at a constant temperature (23°C). After 100 days in acidified conditions, the proportion of sponges and ascidians increased, but the numbers of the spionid *Neodexiospora pseudocorrugata* were reduced 5-fold. Changes in pH affected microfouling communities also; the densities of the diatoms were lower in the low pH treatments compared to the controls (Peck et al. 2015). Similarly, the microbial communities of corals, coralline algae and foraminifera were significantly different after the exposure to pH 7.9 (pCO2 = 822 μatm) over 6 weeks (Webster et al. 2013). In contrast, elevated pCO2 had no impact on the microbiome associated with rhodoliths (Cavalcanti et al. 2018). In venturing beyond the host algal thresholds to climate change, positive host-microbiome interactions are disrupted. Increasing temperatures resulted in a 2-fold increase in the relative abundance of epibiotic Rhodobacteraeae on the surface of *F. vesiculosus* (Stratil et al. 2013). Similarly, community diversity measured by evenness and richness was higher at ambient water temperatures than at elevated temperatures. Moreover, the intensity of upwelling affects microbes associated with sponges and their bioactive compounds (Batista et al. 2018). Thus, climate change can shift the structure of biofilms on inert and natural substrata (Table 1).

Biofilms play an important role by inducing or suppressing settlement of spores and larvae of some macrofouling species (Dobretsov et al. 2006; Zardus et al. 2008; Hadfield 2011; Salta et al. 2013). Thus, changes in microbial communities due to climate change could alter the structure of macrofouling communities. For example, in the laboratory the microbial communities which developed at 23°C and 30°C were different from those at 16°C (Lau et al. 2005). Larval response to these biofilms was also different; biofilms developed in the laboratory at 23°C and 30°C stimulated settlement of larvae of the barnacle *B. (=A.) amphitrite* and B. (=A.) *trigonus* but had no effect on larvae of the polychaete *Hydroides elegans* (Lau et al. 2005). Similarly, biofilms developed at elevated temperatures stimulated sponge larval settlement (Whalan and Webster 2014). Changes in the microbial community associated with crustose coralline algae reduced coral larval settlement under low pH (Webster et al. 2013). UV radiation reduces the densities of bacteria in biofilms, which in turn
decreases settlement of *H. elegans* (Dobretsov et al. 2005). These examples show that temperature and pH associated with climate change directly affect the composition and densities of microorganisms in biofilms and indirectly (through biofilm composition and cues) reduce or enhance larval settlement of macrofouling species.

Conclusions and future research directions

Climate change and increased anthropogenic activity will have pronounced effects on micro- and macrofouling communities (Figure 3; Table 1). Though there are some publications on the impacts of temperature, pH and generation of bioactive molecules, and on the cues and signals associated with climate change at the species level, there is far less information about the impact of these factors at the community and at the molecular levels (Figure 2). This review suggests that increased temperatures and ocean acidification can affect bioactive compound production, detection, turnover and, in turn, will have a measureable effect on microbial and macrofouling communities.

Reports of the impact of ocean acidification on biofouling communities and their bioactive compounds are contradictory, indicating that responses are community dependent. Acidification will impact aragonite and magnesium calcite producers, such as coralline algae, corals, mussels, barnacles and some bryozoans (Doney et al. 2012; Chan et al. 2012; Lane et al. 2013). Acidified conditions significantly change biofouling community composition by a decrease in calcified (tube worms) and an increase in soft-bodied organisms, like ascidians and sponges (Peck et al. 2015). In contrast, some biofouling species (such as *Amphibalanus amphitrite* and *Alcyonidium hirsutum*), larvae and proteins are not sensitive to predicted changes in pH (McDonald et al. 2009; Saderne and Wahl 2013; Nardone et al. 2018). Moreover, dense populations of macroalgae, like *F. vesiculosus*, may reduce the adverse effect of acidification on calcified biofouling organisms (Wahl et al. 2017). Thus, it is likely that ecological impacts of ocean acidification will be location, species and community specific (Ekstrom and Moser 2014; Ekstrom et al. 2015). Future studies will answer questions about biofouling communities facing ocean acidification.

With climate change, fouling management is a challenge (Table 2; Dobretsov 2009). Climate change will affect rates of leaching and dissolution of toxic ions and hydrolysis of copolymers of AF coatings because these are temperature, pH and flow dependent (Yebra et al. 2004; Yebra et al. 2006). Because coating chemistry and release rates are temperature sensitive, meeting environmental regulations in regions that experience extreme temperatures will be challenging. Additionally, spreading of invasive species (Sorte et al. 2010) will provide new challenges for industry. Novel regulations will require coating companies to address these issues and provide new environmentally safe products that are effective in managing fouling in a warming and changing world.

As the Arctic polar ice melts, fast and inexpensive polar shipping routes are becoming possible (Lasserre and Pelletier 2011). In the future, goods will travel on ships through the Arctic to Europe and Asia. However, the potential impacts of these new routes with respect to introduced and invasive species and the performance of AF coatings remains unclear (Bax et al. 2003; Ware et al. 2014, Table 2). Long term information on biofouling communities in the Arctic and preventive measures are lacking (Zvyagintsev 2003). Several important questions arise. Which

Figure 3. Schematic diagram showing the impact of climate change on biofouling molecules, communities and the antifouling industry.
invasive species have a chance to establish in warming Arctic waters? Will polar port biofouling communities develop that are comparable to those found in temperate and tropical regions? Will AF coatings designed for temperate waters be effective and environmentally benign in a warming Arctic ocean? All these questions should be answered urgently.

To conclude, scientists are at the beginning of understanding the impacts of factors associated with climate change on microbes and bioactive molecules. The few existing studies suggest that ocean warming and acidification will have significant consequences on biofouling communities and their bioactive compounds. This effect will probably be region, community and species specific and should be a priority of future studies.

Acknowledgements

RC acknowledges the CNPq Science without Frontier program for SD and CH, and CNPq for a DR travel grant, CNPq for the Research Productivity Fellowship and the INCT-PRO-OCEANO program. Part of the work of SD was supported by the internal grant IG/AGR/FISH/18/01, the TRC grant RC/AGR/FISH/16/01 and a collaborative grant CL/SQU-SA/18/01. CH and RC acknowledge the EU LEAF (Low Emission AntiFouling) FP7 European project 314697 for financial support.

Funding

This work was supported by National Council for Scientific and Technological Development (Brazil); FP7 (EU); The Research Council (Oman); Sultan Qaboos University (Oman).

ORCID

Sergey Dobretsov http://orcid.org/0000-0002-1769-6388

References

Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. 2008. Five potential consequences of the gambio climático para especies invasoras [Five potential consequences of...}

Okamura D, Mori Y, Hashimoto T, Hori K. 2010. Effects of microbial degradation of biofoulants on microfiltration

Climate change, non-indigenous species and shipping: assessing the risk of species introduction to a high-Arctic archipelago. Diversity Distrib. 20:10–19. doi:10.1111/ddi.12117

