
©2011 Gotham Digital Science, Ltd

Security Goodness with Ruby On Rails
SOURCE BARCELONA
 16th November 2011

Daniel Peláez
dpelaez@gdssecurity.com

- 2 -

AGENDA

• Who Am I?

• Brief Introduction to Rails

• How Secure is Ruby On Rails?

• Auditing Applications

• Building Secure Rails WebSites

Best practices, tools, security APIs.
How to identify and fix common vulnerabilities.

- 3 -

WHO AM I?

o Another crazy Spaniard who recently moved to London

o I have some experience with Rails & also with Security:
• Pentests

• Source Code Reviews

• Consulting

• Blablabla :)

IT Security Consultant at Gotham Digital Science (GDS)

- 4 -

ABOUT GDS

o Gotham Digital Science (GDS) is an international security services

company specializing in Application and Network Infrastructure security,
and Information Security Risk Management. GDS clients number among
the largest financial services institutions and software development
companies in the world.

o Offices in London and New York City

- 5 -

ABOUT GDS

o Tools & Papers:

o Padbuster, Blazentoo, GwtEnum … etc

o Publications with GDS Contributing Authors:

- 6 -

Overview of what is Rails

BRIEF INTRODUCTION
SECURITY GOODNESS WITH RUBY ON RAILS

- 7 -

BRIEF INTRODUCTION TO RAILS

www.rubyonrails.org

- 8 -

BRIEF INTRODUCTION TO RAILS

• WebSite Industries

- 9 -

BRIEF INTRODUCTION TO RAILS

 Twitter (In the early days)

 Groupon

 Linkedin

 Github

 Basecamp

 SlideShare

 Funny or Die

 Scribd

 CrunchBase

 Hulu

 Zendesk

 YellowPages

 OneHub

 Jobster

 Heroku

 Rackspace

 Engine Yard

 Shopify

• Who uses Rails?

- 10 -

BRIEF INTRODUCTION TO RAILS

• Hulu.com

- 11 -

BRIEF INTRODUCTION TO RAILS

• basecamphq.com

- 12 -

BRIEF INTRODUCTION TO RAILS

• GitHub.com

- 13 -

Philosophy and Design

BRIEF INTRODUCTION
SECURITY GOODNESS WITH RUBY ON RAILS

- 14 -

BRIEF INTRODUCTION TO RAILS

• PHP
– Zend

– CakePHP

– Symfony

– Zoop

– Akelos

• Ruby
– Rails

– Sinatra

– Merb*

• Java
– Struts

– Spring

– Stripes

– Hivemind

– JBoss

• Python
– Django

– Pylons

– Zope

– TurboGears

CONVENTION OVER CONFIGURATION (COC)
DON’T REPEAT YOURSELF (DRY)

Model-View-Controller (MVC) architecture pattern

FRAMEWORK

- 15 -

BRIEF INTRODUCTION TO RAILS

Rails Components & MVC

- 16 -

BRIEF INTRODUCTION TO RAILS

Rails Components & MVC

- 17 -

BRIEF INTRODUCTION TO RAILS

• Action Controller
– Processes incoming requests to a Rails application, extracts parameters, and dispatches them to the

intended action.
– Services provided by Action Controller include session management, template rendering, and

redirect management.

• Action View
– It can create both HTML and XML output by default.
– Manages rendering templates, including nested and partial templates, and includes built-in AJAX

support.

• Action Dispatch
– Handles routing of web requests and dispatches them as you want, either to your application or any

other Rack application.

• Active Record
– It provides database independence, basic CRUD functionality, advanced finding capabilities, and the

ability to relate models to one another, among other services.

• Active Model
– Interface between the Action Pack gem services and Object Relationship Mapping gems such as

Active Record. Active Model allows Rails to utilize other ORM frameworks in place of Active Record.

Model-View-Controller (MVC) architecture pattern

- 18 -

BRIEF INTRODUCTION TO RAILS

Generic Rails Architecture Diagram

- 19 -

BRIEF INTRODUCTION TO RAILS

• REST (Representational State Transfer)

– Using resource identifiers such as URLs to represent resources.

– Transferring representations of the state of that resource
between system components.

– GET /orders/17

– PUT /orders/26

– POST /orders/17

– DELETE /orders/26

- 20 -

BRIEF INTRODUCTION TO RAILS

- 21 -

BRIEF INTRODUCTION TO RAILS

- 22 -

BRIEF INTRODUCTION TO RAILS

- 23 -

BRIEF INTRODUCTION TO RAILS

- 24 -

BRIEF INTRODUCTION TO RAILS

- 25 -

Tools – Vulnerabilities - Recommendations

AUDITING APPLICATIONS
SECURITY GOODNESS WITH RUBY ON RAILS

- 26 -

AUDITING RAILS APPLICATIONS

• Authentication:
– Is the application enforcing an acceptable password policy for users?

– Can the authentication process be bypassed?

• Authorization:
– Does the application have authorization checks for all default and custom

actions?

• Data Protection:
– Are sensitive database fields encrypted or hashed?

– Is TLS / SSL enforced during the transmission of sensitive information such
as passwords or credit card numbers?

• Input Validation & Sanitization:
– Is all input validated on the server?

– When displaying information, are we sanitizing the output?

The Basic Defense Points

- 27 -

AUDITING RAILS APPLICATIONS

• MONGREL

Server: Mongrel 1.1.5

• APACHE

Server: Apache/1.3.34 (Unix) mod_deflate/1.0.21
mod_fastcgi/2.4.2 mod_ssl/2.8.25 OpenSSL/0.9.7e-p1

• NGINX

 X-Powered-By: Phusion Passenger (mod_rails/mod_rack) 3.0.7

 X-Runtime: 0.008653

 Server: nginx/1.0.0 + Phusion Passenger 3.0.7
(mod_rails/mod_rack)

Information Leaks: How to Identify Rails WebSites

- 28 -

AUDITING RAILS APPLICATIONS

• APACHE

Add these lines to httpd.conf
 Header always unset "X-Powered-By"

 Header always unset "X-Runtime"

 Header always unset "Server"

• NGINX

 Add this directive to HttpHeadersMoreModule
 more_clear_headers Server X-Powered-By X-Runtime;

Removing HTTP Headers

- 29 -

AUDITING RAILS APPLICATIONS

• Default Static Files:

– /javascripts/application.js

– /javascripts/prototype.js

– /stylesheets/application.css

– /images/rails.png

• Pretty URLs (RESTful):
– /posts/32/edit

– /project/create

– /folders/delete/54

– /users/81

Information Leaks: How to Identify Rails WebSites

- 30 -

AUDITING RAILS APPLICATIONS

• Different default pages depending on Rails version

• Default templates for 404 and 500 status pages

• 422.html only in applications generated with Rails >= 2.0

Information Leaks: How to Identify Rails WebSites

- 31 -

AUDITING RAILS APPLICATIONS

• Stack Traces / error pages

Information Leaks: How to Identify Rails WebSites

- 32 -

AUDITING RAILS APPLICATIONS

• Assign all the values received from a Form to model attributes

• Example: User sign-up process

Vulnerabilities: Mass Assignment

- 33 -

AUDITING RAILS APPLICATIONS

• What if ...

Vulnerabilities: Mass Assignment

- 34 -

AUDITING RAILS APPLICATIONS

• REMEDIATION:

– Use attr_protected or attr_accessible

Vulnerabilities: Mass Assignment

- 35 -

AUDITING RAILS APPLICATIONS

• Formatting Allowed?
– Use HTML and remove unwanted tags and attributes

• Earlier versions of Rails:
– Blacklist approach for the strip_tags(), strip_links() and sanitize()

helpers.

– Injection was possible:

strip_tags("some<script>alert('hello')</script>")

Vulnerabilities: Cross Site Scripting (XSS)
<script>alert(‘Hello:I am not just a popup’)</script>

- 36 -

AUDITING RAILS APPLICATIONS

• Updated Rails 2 sanitize() helper
– Removes protocols like “javascript:”

– Filters HTML nodes and attributes

– Handles unicode/ascii/hex hacks

• Second step to protect against xss:
– Rails h() helper to HTML escape user input (easy to forget)

– escape_javascript()

– safeERB plugin. Raises an exception whenever a tainted string is not
escaped

– rails_xss plugin (Rails 2.3)

Vulnerabilities: Cross Site Scripting (XSS)

- 37 -

AUDITING RAILS APPLICATIONS

• Sanitize method:

– Whitelisting (since Rails 2)

• Rails 3:
– Strings inside views are “automagically” scaped

– Tainted strings? --> Call "tainted text".html_safe

– Show the string as it is? raw("I am tainted, you know ...”)

– XSS protection based on rails_xss plugin

Vulnerabilities: Cross Site Scripting (XSS)

- 38 -

AUDITING RAILS APPLICATIONS

Vulnerabilities: SQL Injection

- 39 -

AUDITING RAILS APPLICATIONS

Vulnerabilities: SQL Injection

• SELECT * FROM usuarios WHERE (nombre = '' AND password = '') LIMIT 1

• INPUT: something ' OR 'a'='a

• SELECT * FROM usuarios WHERE (nombre = 'GDS'
AND password = 'something' OR 'a' = 'a') LIMIT 1

- 40 -

AUDITING RAILS APPLICATIONS

Vulnerabilities: SQL Injection

• The right way:

– Use the methods find_(id) or dynamic methods such as: find_by_something(something)
– Use find conditions with named bind variables:

Usuario.find(:first, :conditions => ["nombre = ? AND password = ?",
nombre_usuario, clave])

Usuario.find(:first, :conditions => {:nombre => nombre_usuario,

:password => clave})

• If using connection.execute() or Model.find_by_sql() custom

filtering needs to be implemented

- 41 -

AUDITING RAILS APPLICATIONS

• Is the security token active in the controller?

– protect_from_forgery :secret =>
"123456789012345678901234567890"

• This does not check requests to XML APIs

• Restrict specific actions to specific HTTP methods:

verify :method => :delete, :only => [:destroy], :redirect_to =>
{:action => :denegar}

Vulnerabilities: Cross Site Request Forgery (CSRF)

- 42 -

AUDITING RAILS APPLICATIONS

• Ruby command execution:

– exec(command)

– system(command)

– syscall(command)

– `command`

Vulnerabilities: Command Execution

system(command, parameters)

- 43 -

AUDITING RAILS APPLICATIONS

• Redmine SCM Repository Arbitrary Command Execution:

• http://redminehost/projects/$project/repository/diff/?rev=`cmd`

Vulnerabilities: Command Execution

- 44 -

AUDITING RAILS APPLICATIONS

• Search eRB files for <%= if its user input ensure it is HTML
escaped

• Secure Access: check controllers and public actions

• Search for "forgery" make sure that
config.action_controller.allow_forgery_protection = false is
only disabled in test config

• Are passwords saved as clear-text in the db?, are being
logged? filter_parameter_logging

Checklist (Sort of)

- 45 -

AUDITING RAILS APPLICATIONS

• Ensure private data is not stored in cookies

• Appropriate use of attr_accessible/attr_protected

• Is the application using validations inside models to prevent
bad input?

• Are non-action controller methods private?

• Check for params[:id] usage

• Gems are up to date for latest security patches (rails security
mailing list)

• Word search for "find", "first", and "all" "sql"

• Check for mass assignment

Checklist (Sort of)

- 46 -

AUDITING RAILS APPLICATIONS

• Static analysis security scanner for Ruby on Rails
– www.brakemanscanner.org

• Vulnerabilities Detected:
– Cross site scripting

– SQL injection

– Command injection

– Unprotected redirects

– Unsafe file access

– Version-specific security issues

– Unrestricted mass assignment

– Dangerous use of eval() Default routes

– Insufficient model validation

Tools: Brakeman

- 47 -

AUDITING RAILS APPLICATIONS

• Using Brakeman

gem install brakeman

brakeman –p /path_to_your_rails_app

Tools: Brakeman

- 48 -

AUDITING RAILS APPLICATIONS

Tools: Brakeman

- 49 -

Tips – Gems – Plugins

BUILDING SECURE APPLICATIONS
SECURITY GOODNESS WITH RUBY ON RAILS

- 50 -

BUILDING SECURE APPLICATIONS

• Analyze the files with Antivirus

• Random name. Save outside DocumentRoot

• Avoid potential DOS (asyncronous tasks). Resque to the rescue!

• Validate the MIME type

• Ruby binding to libmagic (ruby-filemagic)

• shared-mime-info gem. Not recognized? Modify MIME.check(file)

• Serving the files later? send_file :disposition => 'attachment’

Recommendations: File uploads

- 51 -

BUILDING SECURE APPLICATIONS

• Popular authentication plugins:
– RestfulAuthentication

– Authlogic

• Popular SSO systems:

– OpenID

– CAS

– Kerberos

– GSS-API

– SPNEGO

– OAuth (gem install oauth)

– LDAP (gem install ruby-net-ldap)

Tips: Authentication

- 52 -

BUILDING SECURE APPLICATIONS

• Mandatory access control (MAC):
– Grants access based on the sensitivity of the information (i.e.,

clearance)
– Example: Government information classification, such as Secret

or Top Secret

• Discretionary access control (DAC):
– Grants access to objects based on the identity of subjects

and/or groups to which they belong.
– Example: Windows and Unix file permissions

• Role-based access control (RBAC):
– Access to actions is controlled through permission based on role

assignments, not at the level of individual data objects.
– Example: Active Directory

Tips: Authorization

- 53 -

BUILDING SECURE APPLICATIONS

• Simple Solutions: role_requirement
(http://code.google.com/p/rolerequirement/).

• Complex Scenarios: DeclarativeAuthorization plugin (RBAC)
(http://github.com/stffn/declarative_authorization)

• Other interesting plugins:

• ActiveRbac (http://active-rbac.rubyforge.org/).

• ModelSecurity
(http://perens.com/FreeSoftware/ModelSecurity/).

Tips: Authorization

- 54 -

BUILDING SECURE APPLICATIONS

• Isolate administrative interface (subdomain, authentication,
restricted)

• Check request.remote_ip
• Digital Certificates
• Two factor auth (ROTP - The Ruby One Time Password Library

https://github.com/mdp/rotp)
• Alerts (invalid logins, suspicious activity)
• Mandatory use of secure protocols

(ActionController::Base.session_options[:session_secure] = true)
• Cookies with httponly and secure flags
• Deployment:

– Passwords inside database.yml
– Subversion files
– Test files

Tips: Admin Interface & good practices

- 55 -

THANKS FOR COMING! ANY QUESTIONS?

dpelaez@gdssecurity.com

